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ABSTRACT

In the tandem approach, the output of a neural network (NN) serves
as input features to a Gaussian mixture model (GMM) aiming to
improve the emission probability estimates. As has been shown in
our previous work, GMM with pooled covariance matrix can be in-
tegrated into a neural network framework as a softmax layer with
hidden variables, which allows for joint estimation of both neural
network and Gaussian mixture parameters. Here, this approach is
extended to include speaker adaptive training (SAT) by introducing
a speaker dependent neural network layer. Error backpropagation
beyond this speaker dependent layer realizes the adaptive training of
the Gaussian parameters as well as the optimization of the bottleneck
(BN) tandem features of the underlying acoustic model, simultane-
ously. In this study, after the initialization by constrained maximum
likelihood linear regression (CMLLR) the speaker dependent layer
itself is kept constant during the joint training. Experiments show
that the deeper backpropagation through the speaker dependent layer
is necessary for improved recognition performance. The speaker
adaptively and jointly trained BN-GMM results in 5% relative im-
provement over very strong speaker-independent hybrid baseline on
the Quaero English broadcast news and conversations task, and on
the 300-hour Switchboard task.

Index Terms— MLP, GMM, log-linear mixture model, joint-
training, unsupervised adaptation, CMLLR, SAT

1. INTRODUCTION

Neural networks estimating directly the context-dependent phone
posterior probabilities have become the state-of-the-art acoustic
models in the field of automatic speech recognition (ASR) [1, 2].
In the tandem approach, being another advanced modeling tech-
nique, classic Gaussian mixture models are trained on the output or
bottleneck (BN) hidden layer activation of a neural network [3, 4].
On large vocabulary ASR tasks, the hybrid and tandem approaches
usually perform head-to-head [5].

Although the latter technique ends up in two acoustic models
working in tandem, a large variety of well established adaptation
methods exist for GMMs. They aim at decreasing the variance be-
tween speakers and coping with acoustic mismatch between training
and test conditions. For instance, to compensate for the frequency
shifts of formants related to differing vocal tract sizes of different

speakers, the amplitude spectrum is often calculated using a warped
frequency scale. The warping factor is estimated utterance-wise by
maximizing the likelihood either under a text-dependent or a uni-
versal Gaussian acoustic model [6, 7]. If more adaptation data are
available, an affine transformation of the speaker independent (SI)
GMM parameters can be estimated, a method known as maximum
likelihood linear regression (MLLR) [8, 9]. A constrained version
of the MLLR transform (CMLLR) can be carried out in the feature
space [10]. The CMLLR matrices allow the speaker adaptive train-
ing (SAT) of the underlying model. Besides that they can already be
estimated robustly on few minutes of data in an unsupervised way.
For large amounts of data the maximum a posteriori estimation of
the model parameters can improve the adapted models [11].

Although the inherent robustness of NNs against unwanted vari-
ability – e.g. speaker variation – is well known in the literature [12,
13, 14], the recognition performance can still drop significantly on
acoustically mismatched data [15]. Since discriminative approaches
are more sensitive to recognition errors and state-of-the-art models
have a large amount of trainable parameters, a lot of (mostly super-
vised) data is required [16, 17] to directly adapt the input [18], out-
put [19], hidden [20, 21], or all layers. The deviation of the weights
from the original SI model [16] or the difference in the posterior
output [22] needs to be controlled by a careful regularization. This
is especially important for adaptation with limited amount of data,
even in case of supervised adaptation. Therefore limiting the up-
date to a low number of parameters, such as linear transformation
of a narrow BN layer [23] or sharing the transformation between
time frames [24, 25], can make the adaptation more effective. Thus,
the robust maximum likelihood (ML) feature-space adaptation tech-
niques developed for GMMs are still very often used with NN based
acoustic models [26, 25]. For instance it is possible to perform the
CMLLR adaptation of each BN layer, when training hierarchical BN
structures [27, 28, 29].

Recent adaptation methods for NNs also include speaker aware
training, where speaker related information is directly fed as a
supplementary feature vector into the network. This results in a
speaker dependent bias in each layer the speaker vector is presented
to. The speaker dependent input can either be learned by the net-
work (e.g. speaker code [30]) or derived from auxiliary models, like
i-vector [31, 32, 33].

In the tandem acoustic modeling the final GMM is trained in a
natural way on CMLLR transformed BN features. Therefore this
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paper investigates the possibility of training the speaker adapted BN
features and the GMM jointly. Several previous studies addressed
the simultaneous training of the tandem models [34, 35]. Our recent
investigation in [36] demonstrated that a GMM with a pooled co-
variance matrix can be easily implemented in the NN framework as
a softmax layer with hidden variables, a more general hybrid output
layer. Results also indicate that a properly tuned and jointly trained
tandem model can achieve equal or better error rates compared to
a standard hybrid models using the same number of output classes.
Following a similar principle as in [37], in this study we extend our
previous work by a speaker adaptive layer which enables the joint
training of the adapted BN-GMM. We will show that the CMLLR
adaptation of a tandem BN-GMM system can be interpreted as BN
layer adaptation of a low-rank factorized output layer similar to [23].
The initialization of the speaker dependent layer with CMLLR ma-
trices leads then to a robust unsupervised adaptation scheme. By
backpropagating the error signal through this layer without updating
it, the network is forced to use the CMLLR adaptation matrices. It
is also forced to adjust the rest of the parameters shared between all
speakers to minimize the discriminative error criterion, effectively
training both the BN feature extraction and the “GMM layer”. Dur-
ing the recognition we estimate the CMLLR transformations as usual
on the first-pass output obtained with an SI model. The improved re-
sults demonstrate that neither does the speaker adaptively and jointly
trained BN-GMM overfit the training matrices, nor does it suffer too
much from recognition errors in the CMLLR estimation.

The paper is organized as follows. Section 2 presents how the
speaker adapted GMM can be integrated into the deep neural net-
work (DNN) framework. It shortly overviews the relation between a
GMM and a softmax layer with hidden variables. After introducing
a speaker adaptive layer we address the joint training of the proposed
model. Section 3 and Section 4 give details about our experimental
setups and present recognition results on two different tasks. The
paper closes with conclusions in Section 5.

2. INTEGRATION OF SPEAKER ADAPTIVE GMM
INTO DNN

2.1. The log-linear mixture models

It has been shown that the posterior form of a Gaussian mixture
model is a log-linear model with hidden variables, also referred to
as log-linear mixture model (LMM), where the feature functions are
linear and quadratic [38, 39]. A GMM with a globally shared co-
variance matrix Σ results in a simplified LMM which has only linear
feature functions:

pθ(s|x) =
∑
i

pθ(s, i|x) = (1)

p(s)
∑
i

p(i|s)N (y|µsi,Σ)∑
s′
p(s′)

∑
i

p(i|s′)N (y|µs′i,Σ)
=

∑
i

exp(wTsiy + bsi)∑
s′,i

exp(wTs′iy + bs′i)

where pθ(s|x) corresponds to the estimated posterior probabil-
ity of state s given the observation x and model parameters θ =

{wsi, bsi}. We assume that the input feature x is transformed
e.g. by a BN multi-layer perceptron (MLP) such that f(x) = y.

Index i denotes the hidden variable, wsi and bsi are the hidden state
and output class dependent parameters. N (y|·,Σ) stands for the
normal distribution. The mixture component weights are denoted
as p(i|s), and µsi is the mean vector of the ith Gaussian mixture
component of state s. The conversion from the GMM to the LMM
parameters is defined by the following equations:

bsi = −1

2
µTsiΣµsi + ln p(s) + ln p(i|s)

wsi = Σ−1µsi

(2)

If we move the summation out of the numerator in Eq. 1, the
model can be represented by well-known building blocks of a neural
network, such as linear, softmax, and non-overlapping sum-pooling
layers. The LMM estimates class posterior probabilities directly, and
in a special case without hidden variables the model corresponds to
a conventional softmax layer. Due to hidden variables the softmax
layer is much larger than in a common hybrid acoustic model. E.g. a
model with 9000 HMM states and 32 Gaussians per state results in
144k nodes in this layer. The sum in the numerator of Eq. 1 can be
approximated by the maximum term (max-pooling). This enables
a faster and more stable log-likelihood acoustic score computation,
because the successive application of exponential and logarithmic
functions cancel out. Our previous study already demonstrated the
importance of the exact modeling during the training. However,
using maximum approximation only in decoding did not hurt the
recognition performance [36].

2.2. Feature space adaptation of Gaussian mixture models

In the constrained maximum likelihood linear regression (CMLLR)
approach a global transformation is applied to each Gaussian param-
eter per speaker [10]. This is equivalent to a linear feature-space
transformation, hence the goal is to select a matrix which maxi-
mizes the log-likelihood of the transformed input data under the
given acoustic model and usually a Viterbi alignment to the given
transcription:

N (y|µs,r,Σs,r) = |Ar|N (Ary + ar|µs,Σ) (3)

where r denotes the speaker cluster, µs,r and Σs,r correspond to
the speaker dependent Gaussian parameters of state s, obtained by a
linear transformation of the non-adapted acoustic model parameters
µs and Σ. Ar and ar refer to the affine feature-space transform for
the speaker r. The adaptation is not performed to the SI recognition
model but to a simpler target model [40]. We use a single Gaussian
model, thus the index i of the hidden variable was dropped.

2.3. Speaker dependent layer and joint training of speaker
adapted BN-GMM

In this section, the speaker adaptive layer is introduced in a very sim-
ilar way as in [37]. We define the speaker adapted layer in its general
form, however, in order to implement the simultaneous training of
the BN features and the adapted GMM, only the last hidden layer
should be speaker dependent. Denoting the output of the lth layer
as z(l)(x), the forward rule for a speaker dependent linear layer is
defined as:

z(l)(xr) = Arz
(l−1)(xr) + ar (4)
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where xr corresponds to an input vector belonging to speaker r.
The layer contains a set of linear transformations similar to a ten-
sor layer [41]. However, only one transformation is selected by the
hard speaker label. The backpropagation through the speaker depen-
dent layer is very similar to a conventional linear layer, except that
the speaker ID of the input vector is also considered.

∂E

∂z(l−1)
=

∑
j

∂E

∂z
(l)
j

∂z
(l)
j

∂z(l−1)
= A(l)T

r
∂E

∂z(l)
(5)

where ∂E/∂z(l) denotes the backpropagated error signal vector at
the output of the lth layer w.r.t. the objective function E, and z(l)j is
the jth element of the vector z(l).

The speaker dependent layer can be considered an extension of
a regular linear layer. The layer has a special input stream synchro-
nized with the input features, which contains the speaker label of
the current observation vector, and selects the proper transformation
matrix and the bias. As a consequence of the frame-level shuffling of
the training corpus, each frame in a mini-batch might have a differ-
ent speaker ID. Thus the usual matrix-matrix multiplication needs
to be carried out as a series of matrix-vector multiplications. The
vectors within the mini-batch can be processed concurrently either
by exploiting multiple cores of a modern CPU or by running parallel
computation streams on a GPU. In case of the GPU implementa-
tion, keeping all speaker dependent matrices in the GPU memory
might be impossible due to the limited available memory. This can
be overcome if only matrices are copied from host to device that
are necessary for processing the current mini-batch. This data trans-
fer can overlap with the computation of the preceding speaker inde-
pendent layers. At the recognition time a new matrix for each new
speaker needs to be loaded. Their robust initialization on limited
and unreliably transcribed data is one of the biggest challenges in
NN adaptation with linear layers.

A speaker adapted tandem BN-GMM acoustic model can now
be constructed from the previously introduced building blocks and is
depicted in Fig. 1. The classic tandem feature extractor is followed
by a speaker dependent linear layer initialized by CMLLR matrices.
The speaker adaptively trained GMM is converted to an LMM and
added to the network topology as the final layer. The full error back-
propagation to the input layer then performs an additional adaptive
training step. The Gaussian parameters are thus optimized simulta-
neously with the bottleneck (BN) features that were used to train the
underlying acoustic model. The CMLLR addresses the robust ini-
tialization issue for a new speaker. Because the network training is
based on CMLLR, both unsupervised and online adaptation meth-
ods can also be applied. Although the joint training of the speaker
adapted BN-GMM results in a second set of tandem features for the
second recognition pass, it can be extracted up to the BN immedi-
ately, i.e. in parallel with the first pass, because it does not include
the speaker dependent layer.

2.4. Initialization of softmax layer with hidden variables

The training of the bottleneck MLP, the estimation of the single
Gaussian target model, and the speaker adaptive training of the
GMM can be interpreted as pretraining steps of our final joint
model. We observed that the state posterior probability distribution
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Fig. 1. Joint model for tandem BN features and feature space
adapted GMM within the DNN framework.

of an ML GMM, especially with a high number of densities, is
much sharper than the output of cross-entropy (CE) trained DNN
models. This seems not to fit well to the discriminative criterion.
We therefore applied the smoothing steps in Eq. 6 iteratively before
integrating the GMM into the NN framework. The parameters α, β
and γ were optimized in each step by a grid search minimizing the
cross-entropy.

wsi → α · wsi bsi → α · bsi
p(s)→ pβ(s) (6)

p(i|s)→ pγ(i|s)

In case of the maximum approximation in Eq. 1, the first step
corresponds to the state posterior probability smoothing pα(s|y),
and does not affect the frame classification error. The other two steps
,,smooth” the class prior and the mixture component weights, often
reversing the effect of the first step. According to our observation,
the most crucial parameter is α, which we found to be roughly in-
verse proportional to the feature space dimension. Usually a sin-
gle run over these three steps already reaches the minimum, and
the three parameters can already be estimated robustly on a small
subset of the cross-validation (CV) set, e.g. 5 hours of speech. For
instance, on the Switchboard task the optimization ended up with
values (α, β, γ) = (0.1, 9, 6). Measuring the cross-entropy on a
subset of CV, the effect of weight smoothing, and the joint train-
ing of speaker independent or adapted BN-GMM is demonstrated in
Fig. 2.

Since the softmax function is invariant under additive transfor-
mations, the parameters of the LMM can be centered around 0 by
subtracting the mean value from each column of the weight matrix
and from the bias vector:

exp(wTsiy + bsi)

Z(y)
=

exp((wsi − v)T y + bsi − d)

Ẑ(y)
(7)

where Z(y) denotes the denominator of the log-linear model, v and
d correspond to the offset vector and scalar, respectively. The de-
nominator Ẑ(y) is defined using the centered parameters.
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Fig. 2. The effect of scaling the weights of an LMM initialized by
speaker independent (SI) or speaker adaptively trained (SAT) max-
imum likelihood (ML) GMMs. The GMM contains 16 densities per
state. For hybrid and joint BN-GMM training the cross-entropy (CE)
training criterion was used.

3. EXPERIMENTS ON BROADCAST NEWS AND
CONVERSATIONS TASK

3.1. Experimental setup

The first set of experiments was carried out on a smaller set of the
Quaero English broadcast news and conversations corpus [42]. For
our research purpose, we defined a 50 hour subset of the full corpus
as the training set. 10% of the data was held out to adjust the learn-
ing rate during the CE model training using the newbob scheduling.
For a fair comparison of tandem and hybrid models, the CV was
excluded from ML GMM training as well. The test data were au-
tomatically segmented by LIUM segmenter [43] and clustered by
RASR [44]. For further details on the corpus we also refer to [45].

In every case the DNNs are trained on fast vocal tract length nor-
malized input features [46]. The extraction of critical band energies
and the discrete cosine transformation were followed by utterance-
wise mean and variance normalization. Similar to our previous re-
sults reported on this small task [47, 48], the GMM and the DNN
acoustic models were trained on the Viterbi alignment generated by
the best performing evaluation system of the previous years. In this
work we only use rectified linear unit (ReLU) based neural networks
with L2 regularization [49]. The NNs model 4500 tied triphone
states and the weights are initialized by the discriminative pretrain-
ing [25]. The CMLLR matrices for the test data were estimated in an
unsupervised manner on the first pass output using the simple target
model approach [40]. The distribution of the cluster lengths can be
seen in Fig. 3. The average cluster length of training, development
and evaluation corpora are 208, 109, and 138 seconds.

3.2. Speaker independent results: improved baseline

In the first set of experiments we optimized our feature extraction
pipeline. As shown in Table 1, increasing the resolution of the usual
Mel-cepstral feature extraction pipeline from 16 to 40, we observed a
significant word error rate (WER) reduction. An additional gain was
measured once we switched from the MFCC pipeline to the Gam-
matone (GT) feature extraction [50].
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Fig. 3. Speaker cluster length distribution on Quaero English.

We also reconsidered the way the ±8 frames context of the cep-
stral features should be presented to the neural network. As can be
seen in Table 2, the application of a non-dimension-reducing PCA to
the 850-dimensional spliced input vector (17×50) outperformed the
usual preprocessing steps where the features are concatenated with
derivatives, followed by a global mean and variance normalization
(+∆,∆∆; GMVN). Switching to a square LDA preprocessing of
the spliced input, better results could be observed if the transforma-
tion ended up in identity within-scatter matrix. In summary, LDA
finished slightly behind the PCA transformation.

Table 2 also shows that inserting 3 additional hidden layers im-
proved the results. Further increase in the depth of the MLP did not
lead to improvement.

Table 1. Effect of different input features on a 6-layer MLP hybrid
acoustic model. Word error rates (WER [%]) reported on Quaero
English task using speaker independent systems.

Features WER [%]
Type Dimension dev eval

MFCC
16 17.4 23.0
40 16.5 22.5
50 16.8 22.4

GT
15 17.5 23.2
50 16.5 21.9

3.3. Speaker adaptive and joint training of BN-MLP and GMM

In order to investigate the joint training of adapted BN-GMMs, we
also trained tandem systems. Our previous study has already shown
that a larger BN can be more beneficial after the CE training of a
speaker independent BN-GMM [36]. Therefore we trained a hy-

Table 2. Effect of different input feature transformations and more
hidden layers using 50-dimensional GT features. Speaker indepen-
dent results are reported on Quaero English task.

Transformation
hidden WER [%]
layers dev eval

+∆,∆∆; GMVN
6

16.5 21.9

PCA
15.8 21.2

9
15.4 20.6

LDA 15.6 20.7
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brid system which introduced a 256-dimensional linear BN layer as
the 10th hidden layer directly before the output. A single Gaussian
model with a pooled covariance matrix is known to be mathemat-
ically equivalent to a hybrid model with a low-rank factorized last
layer. Thus we include the result in the 2nd row of Table 3. As
can be seen, the hybrid model with a BN achieved a slightly worse
performance than the best system in Table 2.

After the extraction of the BN features the GMMs were trained
according to the maximum likelihood criterion. Table 3 shows that
the performance of ML trained GMMs saturates after 7 splits and
lags behind the hybrid results (rows 2 and 5). However, after the
joint training of the BN and the GMM the lost performance can be
gained back. The CE trained BN-GMM (row 4) performed better
than the hybrid with low-rank factorized output (row 2). The com-
parison with the best hybrid system (Table 2) does not allow a clear
conclusion.

In the next step we include the CMLLR adaptation of the BN
features and perform speaker adaptive training of the GMMs. All
ML GMMs benefited from the transformed BN features (cf. rows 5
and 10). However, the CE training of the joint and adapted model
showed less satisfying results. We measured a slight improvement
over the corresponding SI model (rows 4 and 9), but compared to the
best hybrid only the evaluation result showed a reduction of the error
rate. Therefore, in further experiments we re-investigated whether
the BN size, which was optimized in our previous study for SI sys-
tems, is still an optimal choice for CMLLR adaptation. Instead of
training new hybrid models with smaller BN layers, the BN was
reduced by PCA and then the two matrices were multiplied into a
single BN layer resulting in the desired tandem model. The error
rates in rows 9 and 13 of Table 3 clearly indicate that a narrower BN
is crucial for the speaker adaptive joint training of BN-GMMs. In
contrast, in speaker independent systems the larger BN pays off af-
ter the CE training [36]. In summary, the best CMLLR adapted and
jointly trained BN-GMM showed 2% and 5% relative improvement
over the best hybrid model on the development and evaluation sets.

4. EXPERIMENTS ON SWITCHBOARD

4.1. Experimental setup

Further, we perform evaluation on the Switchboard task. The train-
ing set consists of Switchboard-1 Release 2 (LDC97S62), and the
Hub5’00 evaluation data (LDC2002S09) is used for testing. We re-
port the word error rates for the Switchboard (SWB) and CallHome
(CH) parts separately. The training transcripts of 2003 and the pro-
nunciation lexicon have been downloaded from the ISIP website.1

The recognition lexicon of size 30k has been derived from the train-
ing lexicon by removing word fragments, which are not modeled
well by the language model, and converting all words to lower case.
Thus there are no OOV words. The audio data segmentation is based
on the manual transcription by ISIP and the Hub5’00 reference STM
file. The speaker clusters have also been defined manually corre-
sponding to audio files after separating the channels. For the estima-
tion of the tied triphone states we used English phonetic questions
from our Quaero setup. The resulting decision tree has 9000 leaves.

1http://www.isip.piconepress.com/projects/switchboard/

Table 3. Effect of joint training on speaker independent (SI) and
speaker adaptively (SA) trained tandem BN-GMM/LMM systems
(Quaero English).

AM BN
size

BN-GMM/LMM WER
[%]split Joint

training
Training
criterion dev eval

SI 256

0 no ML 18.9 24.8 1.)
yes CE 15.9 21.5 2.)

5 no ML 16.7 22.5 3.)
yes CE 15.7 20.5 4.)

7 no ML 16.8 22.2 5.)

SA 256

0 no ML 17.2 22.4 6.)
yes CE 16.0 20.9 7.)

5 no ML 16.4 21.6 8.)
yes CE 15.5 20.4 9.)

7 no ML 16.2 21.4 10.)

SA 128

0 no ML 17.1 22.3 11.)

5 no ML 16.2 21.1 12.)
yes CE 15.1 19.5 13.)

8 no ML 16.0 21.1 14.)

SA 64 5 yes CE 14.9 19.7 15.)
9 no ML 15.8 20.7 16.)

A 4-gram language model has been estimated by interpolating LMs
trained on two data sets: the transcripts of the acoustic training data
(3M running words) and the merged transcripts of Fisher English
corpus part 1 (LDC2004T19) and 2 (LDC2005T19), that amount for
22M running words. The Kneser-Ney discount parameters and the
interpolation weights have been optimized on 10k sentences held out
from the Switchboard transcripts. The perplexity of the final LM on
Hub5’00 is 71.

Our Switchboard model building is still in progress. The fol-
lowing experiments were carried out on an alignment obtained with
a ML-SAT tandem GMM acoustic model that achieved 16.2% WER
on the SWB part of the test set. In contrast to the Quaero data,
Switchboard consists of narrow band telephone conversations, such
that the feature extraction pipeline needs to be modified, resulting
in 15 Mel and 40 Gammatone filters. We did not adjust the lower
and upper filter bank frequencies to the telephone bandwidth (300
to 3400 Hz). Similar to the Quaero task we excluded 10% of 300h
training data for CV such that there is no speaker overlap. The av-
erage speaker cluster length of training data is 230 seconds, and
185 and 140 seconds for the Switchboard and CallHome parts of
Hub5’00, respecitvelly (Fig. 4). Due to the larger output layer, the
size of the BN layer of the hybrid model with low-rank factorized
output layer was increased from 256 to 512.

4.2. Baseline

Table 4 shows the speaker independent baseline results with two dif-
ferent features. The higher resolution of cepstral features again led
to a significant improvement of the WER. Due to the larger training
set, a 12-layer MLP became our current best speaker independent
model. According to our knowledge this is one of the best speaker
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Fig. 4. Speaker cluster length distribution on Switchboard.

independent results ever published on the 300h Switchboard task af-
ter frame-wise training using only cepstral features. Surprisingly,
CMLLR transformation of the input features did not boost our im-
proved SI system.

Table 4. Effect of different input features and number of hidden
layers on hybrid acoustic models (Switchboard).

Features MLP WER [%]
Type Dim. #hidden BN SWB CH Total

MFCC 15
7 -

15.8 29.5 22.7

GT
40

15.1 27.7 21.4

12 512
13.7 26.9 20.3

GTCMLLR 13.9 26.6 20.3

4.3. Speaker adapted systems

After setting up the baseline hybrid models, we trained tandem
models on the 128-dimensional PCA reduced BN output. Table 5
presents the results of our speaker independent and adapted, ML
and CE trained BN-GMM systems. The CE objective function be-
fore and after the joint training of a SI and SA tandem BN-GMM
is shown in Fig. 2. As can be seen, the jointly trained SI BN-
GMM achieved the same recognition performance as the best hybrid
(row 3). Table 5 also shows that the best speaker adapted ML GMM
(row 11) already outperforms our best hybrid model and the gap
increased further after speaker adaptive joint training of the model
with CE criterion (row 10). The unsupervised adaptation of BN-
GMM leads to around 5% relative improvement over the best hybrid
model on both the Switchboard and the CallHome part of the test
data. This improvement is confirmed after minimum phone error
(MPE) sequence level discriminative training of the acoustic models
[51]. After MPE, we measured 12.6% WER for the best hybrid
model and 11.5% WER for the speaker adapted BN-GMM on the
Switchboard test set.

The results in rows 7 and 10 indicate the importance of the mix-
ture layer, the CMLLR aware adaptation of a standard low-rank
factorized hybrid output is 0.5% absolute behind the adapted BN-
GMM. Further experiments (rows 6-7 and 9-10) also show that the
CE training solely of the GMM is not enough, and that deeper back-
propagation is necessary to obtain the best speaker adapted results.

Table 5. Effect of joint training on speaker independent (SI) and
speaker adaptively (SA) trained tandem BN-GMM/LMM systems
(Switchboard).

BN
size

BN-GMM/LMM WER
[%]split Joint

training
Training
criterion SWB CH Total

SI 128

0 no ML 18.5 35.0 26.8 1.)

4 no ML 15.4 29.7 22.6 2.)
yes CE 13.6 27.0 20.3 3.)

8 no ML 14.2 27.8 21.0 4.)

SA 128

0 no ML 16.0 29.8 22.9 5.)

CE 14.1 26.4 20.3 6.)
yes 13.4 25.4 19.4 7.)

4 no ML 13.9 26.9 20.7 8.)

CE 13.7 26.0 19.9 9.)
yes 12.9 24.9 18.9 10.)

8 no ML 13.3 26.4 19.9 11.)

5. CONCLUSIONS

It has been shown that a feature-space adapted tandem BN-GMM
can be easily expressed in the neural network framework after intro-
ducing a speaker dependent linear layer. The speaker adaptation of a
tandem MLP-GMM is closely related to linear BN layer adaptation
of a low-rank factorized output layer in a hybrid system. We also
demonstrated that the neural networks can be trained CMLLR trans-
formation aware. During the recognition the CMLLR matrices can
be estimated in an unsupervised manner, fitting well to the model.
On two different English speech recognition tasks – broadcast news
and conversations, and conversational telephone speech – we mea-
sured 5% relative WER improvement over a very strong speaker in-
dependent hybrid baseline after cross-entropy training. Our results
on the Switchboard part of Hub5’00 improved from 12.6% to 11.5%
word error rate by the proposed model after sequence level discrim-
inative training.

Some obvious extensions of the proposed method include the
application of multiple BN and CMLLR layers as well as the dis-
criminative fine-tuning of the speaker dependent layer initialized by
CMLLR. Further improvements are expected by using i-vectors or
more complex neural network structures [32]. Our research will ex-
tend in these directions.
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S. Hahn, R. Schlüter, and H. Ney, “The RWTH 2009 QUAERO
ASR evaluation system for English and German,” in Inter-
speech, 2010, pp. 1517–1520.

[43] M. Rouvier, G. Dupuy, P. Gay, E. Khoury, T. Merlin, and
S. Meignier, “An open-source state-of-the-art toolbox for
broadcast news diarization,” in Interspeech, 2013, pp. 1477–
1481.

[44] D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer,
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