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Abstract

The search effort in LVCSR depends on the order of the lan-
guage model (LM); search hypotheses are only recombined
once the LM allows for it. In this work we show how the
LM dependence can be partially eliminated by exploiting the
well-known word pair approximation. We enforce preemp-
tive unigram- or bigram-like LM recombination at word bound-
aries. We capture the recombination in a lattice, and later ex-
pand the lattice using LM rescoring. LM rescoring unfolds the
same search space which would have been encountered with-
out the preemptive recombination, but the overall efficiency is
improved, because the amount of redundant HMM expansion in
different LM contexts is reduced. Additionally, we show how to
expand the recombined hypotheses on-the-fly, omitting the in-
termediate lattice form. Our new approach allows using the full
n-gram LM for decoding, but based on a compact unigram- or
bigram search space. We show that our approach works better
than common lattice rescoring pipelines, where a pruned lower-
order LM is used to generate lattices; such pipelines suffer from
the weak lower-order LM, which guides the pruning subopti-
mally. Our new decoding approach improves the runtime ef-
ficiency by up to 40% at equal precision when using a large
vocabulary and high-order LM.
Index Terms: efficient, decoding, search, rescoring, word pair
approximation, context approximation

1. Introduction

It is a popular belief that the order of the incorporated language
model (LM) during LVCSR decoding is a major factor which
degrades the efficiency. For some decoding algorithms this is
certainly true. For Weighted finite state transducer (WFST)
decoders which compose the LM and the lexicon statically,
the static composition becomes too costly when the LM is too
large; the LM needs to be pruned down for the composition,
and lattices need to be generated, afterwards the lattices can be
rescored using the unpruned LM [1, 2]. Dynamic on-the-fly
composition is an alternative approach for situations where a
static composition is not feasible [3], but the dynamic compo-
sition may become very costly, especially when using a large
vocabulary [4]. To profit from a large high-order LM during
initial decoding in a WFST based decoder, without the costs of
composition, and without lattice rescoring, approaches to com-
bine a unigram-based search space and a high-orer LM on-the-
fly during decoding were proposed [5], thereby re-inventing the
classical dynamic token-passing decoder [6, 2].

Dynamic network decoders, whether based on the token-
passing or word-conditioned concept, combine an optimized
single-word search network and the LM on-the-fly, and are able
to use arbitrarily large LMs in a single decoding pass [2, 7, 8].
A powerful LM helps focussing the search, prevents search er-
rors, and thus helps achieving better results at tighter pruning
thresholds.

In [8] we have shown that a dynamic network decoder can
outperform an efficient rescoring-based static WFST decoder
when a large LM is used. Although dynamic decoders are able
to deal with huge n-gram LMs, high order LMs still impose
certain problems, which might be avoidable; firstly, hypothesis
recombination is delayed until n − 1 equal words were recog-
nized, which increases the theoretical search space by orders
of magnitude; secondly, full-order LM look-ahead [9] becomes

more expensive with higher LM order, because one LM look-
ahead table needs to be filled for each encountered LM context
of length n − 1. The first problem is relaxed by the fact that
usually the overall search effort focusses on a small set of ac-
tive LM histories; the second problem is avoided in our decoder,
by exploiting the LM sparsity [9], and by activating full-order
LM look-ahead only for such LM histories, which correspond
to at least a certain minimum fraction of the active search space.

Nevertheless, equal words with equal acoustic realization
and time alignment, can be encountered in many different LM
contexts at the same time. Such words then incur redundant
search costs, because the best time alignment needs to be deter-
minined for each LM context separately.

The time conditioned search framework [10, 11] is one way
to avoid redundant evaluation of equal HMMs in different LM
contexts; however, time conditioned search shifts some of the
overall costs from within-word search to the cross-word recom-
bination, and is not compatible with some state-of-the-art meth-
ods like full-order sparse LM look-ahead [9]. Thus we do not
follow the time-conditioned approach directly.

Instead, we show how to modify a common dynamic net-
work decoder to severely limit the redundant decoding of equal
word realizations in different LM contexts. We derive our moti-
vation from the well-known word pair approximation, which is
commonly used for lattice generation. Something similar was
tried in [12], but based on a more severe modification of the
standard search strategy, which is not compatible with full-order
LM look-ahead, and which introduces many approximation er-
rors. Our approach avoids these approximation errors, by only
focussing on word ends, which yields a certain amount of self-
healing (this is discussed in Section 5).

In our approach, we modify the word end recombination to
reduce the number of considered LM histories, and then we add
a succeeding lattice rescoring pass, which expands those LM
histories which were omitted during decoding.

In a second step, we integrate the context approximation
directly into a word conditioned decoder, by expanding recom-
bined hypotheses directly when encountering the next word end,
instead of during lattice rescoring. This approach allows the
decoder to correctly consider all expanded LM histories, and
leads to more precise pruning and LM look-ahead. It yields a
more elegant integrated framework, which does not require lat-
tice generation and -rescoring. However, this second approach
requires more severe modifications to the decoder, and induces
some additional overhead during decoding.

2. Dynamic Network Decoding

A dynamic network decoder combines the LM and an optimized
single-word search network dynamically [7, 8]. A state hypoth-
esis (h, s, q) consists of a LM history h, a state s in the single-
word search network, and a path probability q. Additionally a
traceback is attached to each hypotheses, which tracks the full
word history since sentence start. Hypotheses are propagated
through the search network using dynamic programming, and
if multiple hypotheses meet on the same history h and state s,
they are recombined (i.e. only the best one is preserved). At
each timeframe, hypotheses on word end states s = Sw with
word label w are expanded to word end hypotheses, by apply-
ing the LM probability p(w|h), and extending the LM history h
by the next word w. When across word modelling is used [13],
then the search network has many coarticulated root states, and



each word end state Sw has a specific target root state R(Sw),
which is followed by the hidden-markov-model (HMM) repre-
sentation of all correspondingly coarticulated successor words
[7]. After expansion of word end hypotheses, they are first
pruned, then their traceback is extended, and then they are re-
combined according to their new history h′ and their target root
state R(Sw). During word end recombination, we can straight-
forwardly generate a lattice, by simply linking the tracebacks of
deleted word end hypotheses into the tracebacks of correspond-
ing surviving ones, so that no traceback path is lost. According
to the word pair approximation [14], this approach generates a
correct lattice, when the length of histories h is at least 1 (see
Section 5).

3. Context Approximation (CA)

When using an n-gram LM, we can usually recombine two hy-
potheses after n−1 equal words were recognized. When using a
higher-order LM, for example a 4-gram, this means that search
paths are recombined only after 3 equal words were recognized.
Word pair approximation tells us that we could generate a good
lattice after a single equal word was recognized. This leads us
to the idea to shorten the LM histories used during recombina-
tion according to word pair approximation, and expand full LM
histories later in a lattice rescoring pass.

As we will see in Section 5, word pair approximation is just
one specific level of context approximation (CA). We will define
and evaluate three CA levels C(h) for histories h:

word C(h) :=last word of history h
n-phone C(h) :=last n phones of last word of history h
none C(h) :=nil

The word CA corresponds to word pair approximation, and
the none CA completely ignores the context.

During word end recombination, we usually recombine
word end hypotheses (h, s, q) and (h′, s′, q′) if:

h = h
′ ∧ R(s) = R(s′) (1)

With CA, we change the criterion to:

C(h) = C(h′) ∧ R(s) = R(s′) (2)

For within-word dynamic programming, we retain the stan-
dard recombination criterion h = h′ ∧ s = s′, based on the
history h which has won during the preceding word end re-
combination. Figure 1 shows an example 3gram lattice, and
the corresponding lattices created using the word and none CA.
Decoding with CA yields an approximate lattice with wrong
context dependency, and highly increased single-best error rate.
By applying LM rescoring, we can re-expand the lattice to its
full-order form.

The advantage of lattice rescoring over handling the full
histories during decoding is, that dead-end arcs can be removed
before the LM rescoring, and that within-word HMM align-
ments don’t need to be performed for each of the LM histories
separately.

4. Integrated Context Approximation

The lattice rescoring approach from the previous section is easy
to implement, because it requires only minimal changes to the
recombination of a common dynamic network decoder. It suf-
fers from two problems though; firstly, a lattice rescoring step is
required, which forces us to generate lattices in the first place,
even if we don’t need them, and which yields a 2-pass strat-
egy; secondly, the overall precision of the decoding might be
reduced, because the LM histories used during decoding are
constrained in a problematic way.

This leads us to the idea of re-expanding the preemptively
recombined hypotheses directly when reaching the next word
end, similarly to time conditioned search [10, 11]. We perform
preemptive recombination as in the previous lattice rescoring
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Figure 1: Lattices generated with different levels of CA.

approach, but we remember which tracebacks we preemptively
combine together; then, when reaching the next word end, we
expand a separate word end hypothesis for each of the trace-
backs which were combined at the word start, each with cor-
rected acoustic and LM score. This expansion is very frequent,
and unlike the lattice based method, many dead-end paths are
expanded, thus early pruning is required to limit the expansion;
we sort the tracebacks by score during the preemptive recombi-
nation, and expand them in the same order, aborting the expan-
sion as soon as an expanded hypothesis falls beyond the pruning
threshold. We use a slightly relaxed word end pruning threshold
for this pruning.

When following this integrated approach, CA only affects
the within-word dynamic programming. During the handling of
word ends, full LM histories are expanded, and no further LM
rescoring is required.

5. Motivation

Why do we need word pair approximation for lattice genera-
tion at all? As mentioned in Section 2, we only link tracebacks
to form a lattice during the word end recombination. When
two state hypotheses are recombined during the within-word
dynamic programming, then only the traceback of the better hy-
pothesis is preserved, and the traceback of the worse hypothesis
is lost.

According to word pair approximation, the optimal bound-
ary time topt betweenw and any successor wordsw′ is the same
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Figure 2: Illustration of word pair approximation, with 3 pre-
decessor words v1, v2, and v3, successor word w

′, and optimal
boundary time topt. The path through v2 is most likely.



for all words v that came before w. Thus, word end hypothe-
ses corresponding to word w following the optimal alignment
path of predecessor words v1 and v2, are guaranteed to get re-
combined and linked together during the word end recombina-
tion at one specific optimal timeframe topt, and no optimal path
to a predecessor word vi can get lost. The within-word dy-
namic programming only needs to optimize over the boundary
time topt, which is the same for all preceding histories; thus
we don’t need to link a lattice during within-word dynamic pro-
gramming, it is sufficient to do that during word end recombi-
nation.

Figure 2 illustrates the optimal alignment paths through
word w following 3 different predecessor words v1, v2, and v3;
W (s) is the set of word ends reachable from state s. The word
pair approximation is satisfied here, because the optimal align-
ment paths merge within the HMM corresponding to the com-
mon successor word w, and thus the ideal word boundary topt
between w and a hypothetical successor word w′ is the same
for all predecessors. Word pair approximation follows from
the monotonicity and convergence assumptions as described in
[15]; the critical condition for paths to converge is that they are
aligned with a sufficiently long HMM.

5.1. Shorter Context Approximation

The word w illustrated in Figure 2 consists of 12 HMM states.
But what happens, if we apply CA from Section 3, and reduce
the number of common HMM states over which we expect the
optimal alignment paths to converge? Figure 3 shows an exam-
ple of the ideal alignment paths of 3 different words w1, w2,
and w3, which we expect to recombine while aligning their last
phoneme a, according to the 1-phone CA. In this example, the
assumption fails for the predecessor word w1; its ideal align-
ment path crosses the word boundary at topt1 = 7, instead of
topt = 13 like for the other predecessor words.

CA with very short context lengths is likely not to satisfy
the path recombination, as shown in Figure 3. But what does
that mean for us? For example, consider that the most likely
history at topt is the one following w2. In worst case, the ideal
alignment path following w1 is lost, because its followup hy-
pothesis is overwritten by the path following w2, during within-
word dynamic programming of the next word. Since we retain
the full-order LM histories for the within-word dynamic pro-
gramming, this can only happen if the most likely word end
LM history at topt1 is the same as at topt (i.e. it is ending with
word w2). Otherwise a different best LM history is selected
during the word end recombination at topt1 , and the succes-
sor paths of w1 and w2 will never meet during within-word
dynamic programming; thus the alignment path following w1

won’t get lost. It is not very likely that w2 is the best hypothesis
at timeframe topt1 , because topt1 is quite far away from topt.
Furthermore, even if the ideal alignment path following w1 gets
lost, there may still be a less optimal path following w1 going
through topt, if the beam pruning threshold is large enough (see
the dotted path following w1 in Figure 3). These two arguments
are not independent: The closer topt and topt1 are, the more
likely it is that both have the same dominant predecessor word
wi, and in turn, the more likely it is that a traceback is incor-
rectly overwritten. However, the potential loss arising from the
overwriting declines with a reduced distance between topt and
topt1 , because the closer they are together, the less costly it is
for the path following w1 to take the detour over topt instead
of topt1 . Thus, in our proposed decoding framework, too short
CA is likely to slightly degrade the quality of cross-word HMM
alignment paths, by forcing the paths to take a slight detour.

The none CA, which completely ignores the context, can
be motivated by the structure of the search network. We only
recombine word end hypotheses which point to the same coar-
ticulated root state. Due to the coarticulation, these root states
are context dependent. When using triphonic acoustic models,
then they usually depend on the left and right context phoneme.
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Figure 3: Illustration of failed 1-phone CA, with 3 predecessor
words w1, w2, and w3, all ending with the same phone a.

In our decoder, we completely minimize the root states, so a
part of this context dependency is lost, but some context depen-
dency certainly survives the minimization. If we wouldn’t min-
imize the roots, then 1-phone CA would have no effect, because
it would already be an implicit part of the recombination.

6. Experimental Results

Our basic decoder was described in [7]. Acoustic look-ahead is
used to focus the pruning [16], and we use an efficient batch-
ing feature scorer with density clustering. All real time factors
(RTF) are measured on our computing cluster under full load.
The cluster mostly consists of 16-core AMD Opteron machines
with 2.6Ghz.

6.1. Results on Quaero Polish 600k

The Quaero Polish system uses a vocabulary of 600k words and
a 4-gram LM consisting of 82M n-grams.

Figure 4 (left) compares the search space under varied
global beam pruning, with different levels of integrated CA. The
word CA yields only a minor gain. The 1-phone CA gives a sig-
nificant gain, but the none CA, which ignores the context alto-
gether, works best; it achieves a reduction of 50 to 70% in com-
parison to the baseline. This shows that the context-dependency
which is provided implicitly by the coarticulated root states is
sufficient (see Section 5). When not using across-word mod-
elling, at least the 1-phone approximation is required, to avoid a
large amount of recombination errors. In the following we will
always use the none context-independent approximation.

Figure 4 (right) shows the effect of the different decoding
strategies on the relationship between WER and search space.
By using lattice-based CA followed by 4gram LM rescoring
(i.e. approx-lat-rescore), we can reduce the search space by
50 to 75%. Integrated CA performs similarly, but surprisingly
a little worse. The precision of the integrated CA suffers from
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Figure 4: WER vs. search space on Quaero Polish. Left: differ-
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Figure 5: WER vs. RTF on Quaero Polish (left) and -English
(right), for baseline 4gram decoding, dynamic WFST decoding,
bigram decoding followed by rescoring, lattice-based CA, and
integrated CA.

the pruning which we apply during the expansion of combined
traces.

Figure 5 (left) shows the relationship between WER and
RTF for the different strategies. We achieve a reduction of the
RTF by 20 to 50% at equal precision. The lattice-based ap-
proach is considerably faster than the integrated approach on
this task.

6.2. Results on Quaero English 180k

The following experiments are performed on the RWTH
Aachen Quaero English ASR system [17]. The lexicon com-
prises 158k words with 180k pronunciations, and the 4-gram
LM contains 50M n-grams.

Figure 5 (right) compares the RTF using the different de-
coding algorithms. We add our OpenFST based WFST decoder
with on-the-fly composition to the comparison, which we intro-
duced in [18] and extended with acoustic look-ahead in [19].
On top of the modifications mentioned in that paper, we re-
cently added a new pragmatic cross-arc pruning method, which
dramatically reduces the costs of the dynamic WFST compo-
sition; it applies a tighter pruning beam to HMM transitions
that cross multiple WFST arcs, similar to the arc-pruning men-
tioned in [8]. Cross-arc pruning basically halves the RTF of the
WFST based decoder at equal WER. However, it still can not
fully match the dynamic decoder baseline, which profits much
more from the acoustic look-ahead [7]. Both lattice-based and
integrated CA reduce the RTF by around 20% at equal WER.
On this task, we see the improved precision of the integrated
approach, which generates slightly better WERs for the tighter
pruning thresholds.

Figures 6 shows how the profiling of the baseline (left) and
the integrated CA (right) changes with the beam size.

Figure 7 compares the efficiency of the different methods
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at beam size 16, which is the point at which most of the meth-
ods reach a WER close to the optimum. The portion spent with
acoustic scoring is nearly constant for the different methods,
and CA can impossibly reduce that portion. The remaining
costs of the actual decoding are nearly halved by CA. We see
that theWFST decoder spends more time on the on-the-fly com-
position than on acoustic scoring, despite its arc pruning. Even
if we ignore the costs of on-the-fly composition, as if the search
network was composed statically, the dynamic decoder with CA
stays faster than the WFST decoder.

7. Conclusions

We have introduced two novel decoding strategies which con-
siderably reduce the search effort of a dynamic network de-
coder, especially when using a high-order LM. The first method
is a simple modification of the word end recombination, fol-
lowed by a lattice rescoring step. The second integrated method
uses the same approximative recombination, but expands it di-
rectly when encountering the next word end, instead of delay-
ing the expansion to a lattice rescoring step. Both methods
work similarly well, and allow reducing the RTF by up to 50%
when using a high-order LM. The most efficient level of con-
text approximation is the one which completely ignores the LM
context during the word end recombination. This seems like
a striking result at first, but it can be motivated by the across-
word-modelling, which yields a context-dependency similar to
the 1-phone context approximation described in Section 5. We
have compared our approach to a standard bigram-lattice based
rescoring method, and found that our approach works better,
because it allows integrating the full-order LM right during the
initial decoding. Our approach allows to partially decouple the
effort of decoding from the LM order.
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in Automatic Speech Recognition Reconsidered,” in Interspeech,
Makuhari, Japan, September 2010.

[12] F. Seide, “The Use of Virtual Hypothesis Copies in Decoding
of Large-Vocabulary Continuous Speech,” IEEE Transactions on

Speech and Audio Processing, vol. 13, no. 4, pp. 520–533, 2005.

[13] A. Sixtus, “Across-Word Phoneme Models for Large Vocabu-
lary Continuous Speech Recognition,” Ph.D. dissertation, RWTH
Aachen, Germany, 2003.

[14] H. Ney and X. Aubert, “A Word Graph Algorithm for Large Vo-
cabulary Continuous Speech Recognition,” vol. 3. Yokohama,
Japan: ICSLP, September 1994, pp. 1355 – 1358.
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[16] D. Nolden, R. Schlüter, and H. Ney, “Acoustic Look-Ahead for
More Efficient Decoding in LVCSR,” in Interspeech, Florence,
Italy, August 2011.

[17] M. Sundermeyer, M. Nußbaum-Thom, S. Wiesler, C. Plahl, A. El-
Desoky Mousa, S. Hahn, D. Nolden, R. Schlüter, and H. Ney,
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