
On The Alignment Problem In Multi-Head Attention-Based Neural
Machine Translation

Tamer Alkhouli, Gabriel Bretschner, and Hermann Ney
Human Language Technology and Pattern Recognition Group

Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

<surname>@i6.informatik.rwth-aachen.de

Abstract

This work investigates the alignment prob-
lem in state-of-the-art multi-head attention
models based on the transformer architecture.
We demonstrate that alignment extraction in
transformer models can be improved by aug-
menting an additional alignment head to the
multi-head source-to-target attention compo-
nent. This is used to compute sharper atten-
tion weights. We describe how to use the
alignment head to achieve competitive per-
formance. To study the effect of adding the
alignment head, we simulate a dictionary-
guided translation task, where the user wants
to guide translation using pre-defined dictio-
nary entries. Using the proposed approach,
we achieve up to 3.8% BLEU improvement
when using the dictionary, in comparison to
2.4% BLEU in the baseline case. We also
propose alignment pruning to speed up decod-
ing in alignment-based neural machine trans-
lation (ANMT), which speeds up translation
by a factor of 1.8 without loss in translation
performance. We carry out experiments on the
shared WMT 2016 English→Romanian news
task and the BOLT Chinese→English discus-
sion forum task.

1 Introduction

Attention-based neural machine translation
(NMT) (Bahdanau et al., 2015) uses an atten-
tion layer to determine which part of the input
sequence to focus on during decoding. This com-
ponent eliminates the need for explicit alignment
modeling. In conventional phrase-based statistical
machine translation (Koehn et al., 2003), word
alignment is modeled explicitly, making it clear
which word or phrase is being translated. The
lack of explicit alignment use in attention-based
models makes it harder to determine which target
words are generated using which source words.
While this is not necessarily needed for trans-

lation itself, alignments can be useful in certain
applications, e.g. when the customer wants to
enforce specific translation of certain words.

One simple solution is to use maximum atten-
tion weights to extract the alignment, but this can
result in wrong alignments in the case where the
maximum attention weight is not pointing to the
word being translated. Such cases are not uncom-
mon in NMT, making the use of attention weights
as alignment replacement non-trivial (Chatterjee
et al., 2017; Hasler et al., 2018). Alignment ex-
traction is even less clear for transformer models
(Vaswani et al., 2017), which currently produce
state-of-the-art results. These models use multiple
attention components for each of the stacked de-
coder layers. In this work we focus our study on
these models since they usually outperform single-
attention-head recurrent neural network (RNN) at-
tention models.1

Alignment-based NMT (Alkhouli et al., 2016)
uses neural models trained using explicit hard
alignments to generate translation. These systems
include explicit alignment modeling, making them
more convenient for tasks where the source-to-
target alignment is needed. However, it is not clear
whether these systems are able to compete with
strong attention-based NMT systems. Alkhouli
and Ney (2017) present results for alignment-
based neural machine translation (ANMT) using
models trained on CPUs, limiting them to small
models of 200-node layers, and they only inves-
tigate RNN models. Wang et al. (2018) present
results using only one RNN encoder layer, and do
not include attention layers in their models. In this
work, we investigate the performance of large and
deep state-of-the-art transformer models. We keep
the multi-head attention component and propose
to augment it with an additional alignment head, to

1The transformer models won in most of the WMT 2018
news translation tasks: http://matrix.statmt.org.

Figure 1: An example from the Chinese→English system. The figures illustrate the accumulated attention
weights of the baseline transformer model (left), the alignment-assisted transformer model (middle),
and the alignment-assisted model guided by a dictionary entry. We simulate a scenario where the user
wants to translate the Chinese word “强大” to “powerful”. Both the baseline and alignment-assisted
transformer models generate the translation “strong” instead. To enforce the translation, we use the
maximum attention weight to determine the source word being translated. Left: The maximum attention
of the baseline case incorrectly points to the sentence end when translating the designated Chinese word,
therefore we cannot enforce the translation in this case. Middle: The alignment looks sharper because the
system has an augmented alignment head. In this case the maximum attention is pointing to the correct
Chinese word. Right: using the maximum attention, the translation “strong” is successfully replaced with
the translation “powerful” as suggested by the user using our proposed alignment-assisted transformer.

combine the benefits of the two. We demonstrate
that we can train these models to achieve compet-
itive results in comparison to strong state-of-the-
art baselines. Moreover, we demonstrate that this
variant has clear advantage in tasks that require
alignments such as dictionary-guided translation.

Translation in NMT can be performed without
explicit alignment. However, there are tasks where
translation needs to be constrained given spe-
cific user requirements. Examples include interac-
tive machine translation, and scenarios where cus-
tomers demand domain-specific words or phrases
to be translated according to a pre-defined dic-
tionary. We demonstrate that the explicit use of
alignment in ANMT can be leveraged to gener-
ate guided translation. Figure (1) illustrates an ex-
ample. The figures are generated using attention
weights averaged over all attention components in
each system.

The contribution of this work is as follows.
First, we propose a method to integrate alignment
information into the multi-head attention compo-
nent of the transformer model (Section 3.1). We
describe how such models can be trained to main-
tain the strong baseline performance while also us-
ing external alignment information (Section 3.3).
We also introduce alignment models that use self-
attentive layers for faster evaluation (Section 3.2).

Second, we introduce alignment pruning during
search to speed up evaluation without affecting
translation quality (Section 4). Third, we de-
scribe how to extract alignments from multi-head
attention models (Section 5), and demonstrate that
alignment-assisted transformer systems perform
better than baseline systems in dictionary-guided
translation tasks (Section 7). We present speed and
performance results in Section 6.

2 Related Work

Alignment-based neural models have explicit de-
pendence on the alignment information either at
the input or at the output of the network. They
have been extensively and successfully applied on
top of conventional phrase-based systems (Sun-
dermeyer et al., 2014; Tamura et al., 2014; Devlin
et al., 2014). In this work, we focus on using the
models directly to perform standalone neural ma-
chine translation.

Alignment-based neural models were proposed
in (Alkhouli et al., 2016) to perform neural ma-
chine translation. They mainly used feedfor-
ward alignment and lexical models in decoding.
Alkhouli and Ney (2017) used recurrent models
instead, and presented an attention component bi-
ased using external alignment information. In this

work, we explore the use of transformer models in
ANMT instead of recurrent models.

Deriving neural models for translation based on
the hidden Markov model (HMM) framework can
also be found in (Yang et al., 2013; Yu et al.,
2017). Alignment-based neural models were also
applied to perform summarization and morpho-
logical inflection (Yu et al., 2016). Their work
used a monotonous alignment model, where train-
ing was done by marginalizing over the align-
ment hidden variables, which is computationally
expensive. In this work, we use non-monotonous
alignment models. In addition, we train using
pre-computed Viterbi alignments which speeds up
neural training. In (Yu et al., 2017), alignment-
based neural models were used to model align-
ment and translation from the target to the source
side (inverse direction), and a language model was
included in addition. They showed results on a
small translation task. In this work, we present re-
sults on translation tasks containing tens of mil-
lions of words. We do not include a language
model in any of our systems.

There is plenty of work on modifying atten-
tion models to capture more complex dependen-
cies. Cohn et al. (2016) introduce structural biases
from word-based alignment concepts like fertility
and Markov conditioning. These are internal mod-
ifications that leave the model self-contained. Our
modifications introduce alignments as external in-
formation to the model. Arthur et al. (2016) in-
clude lexical probabilities to bias attention. Chen
et al. (2016) and Mi et al. (2016) add an extra term
dependent on the alignments to the training objec-
tive function to guide neural training. This is only
applied during training but not during decoding.
Our work makes use of alignments during training
and also during decoding.

There are several approaches to perform con-
strained translation. One possibility is includ-
ing this information in training, but this requires
knowing the constraints at training time (Crego
et al., 2016). Post-processing the hypotheses is
another possibility, but this comes with the down-
side that offline modification of the hypotheses
happens out of context. A third possibility is to
do constrained decoding (Hokamp and Liu, 2017;
Chatterjee et al., 2017; Hasler et al., 2018; Post
and Vilar, 2018). This does not require knowledge
of the constraints at training time, and it also al-
lows dynamic changes of the rest of the hypothe-

sis when the constraints are activated. We perform
experiments where the translation is guided on-
line during decoding. We focus on the case where
translation suggestions are to be used when a word
in the source sentence matches the source side
of a pre-defined dictionary entry. We show that
alignment-assisted transformer-based NMT out-
performs standard transformer models in such a
task.

3 Alignment-Based Neural Machine
Translation

Alignment-based NMT divides translation into
two steps: (1) alignment and (2) word genera-
tion. The system is composed of an alignment
model and a lexical model that can be trained
jointly or separately. During translation, the align-
ment is hypothesized first, and the lexical score is
computed next using the hypothesized alignment
(Alkhouli et al., 2016). Hence, each translation
hypothesis has an underlying alignment used to
generate it. The alignment model scores the align-
ment path.

Formally, given a source sentence fJ1 =
f1...fj ...fJ , a target sentence eI1 = e1...ei...eI ,
and an alignment sequence bI1 = b1...bi...bI ,
where j = bi ∈ {1, 2, ..., J} is the source position
aligned to the target position i ∈ {1, 2, ..., I}, we
model translation using an alignment model and a
lexical model:

p(eI1|fJ1) =
∑
bI1

p(eI1, b
I
1|fJ1) (1)

≈ max
bI1

I∏
i=1

p(ei|bi, bi−11 , ei−11 , fJ1)︸ ︷︷ ︸
lexical model

·

p(bi|bi−11 , ei−11 , fJ1)︸ ︷︷ ︸
alignment model

.

Both the lexical model and the alignment model
have rich dependencies including the full source
context fJ1 , the full alignment history bi−11 , and the
full target history ei−11 . The lexical model has an
extra dependence on the current source position bi.

While previous work focused on RNN struc-
tures for the lexical and alignment models
(Alkhouli and Ney, 2017), we use multi-head self-
attentive transformer model structures instead.
The next two subsections describe the structural
details of these models.

3.1 Transformer-Based Lexical Model
In this work we propose to use lexical models
based on the transformer architecture (Vaswani
et al., 2017). This architecture has the following
main components:

• self-attentive layers replacing recurrent lay-
ers. These layers are parallelizable due to the
lack of sequential dependencies that recurrent
layers have.

• multi-head source-to-target attention: sev-
eral attention heads are used to attend to the
source side. Each attention head computes a
normalized probability distribution over the
source positions. The attention heads are
concatenated. Each decoder layer in the
model has its own multi-head attention com-
ponent.

We propose to condition the lexical model on
the alignment information. We add a special align-
ment head

α(j|bi) =

{
1, if j = bi

0, otherwise.

defined for the source positions j, bi ∈
{1, 2, ..., J}. This is a one-hot distribution
that has a value of 1 at position j that matches
the aligned position bi. This head is then con-
catenated to the rest of the attention heads as
shown in Figure (2). The one-hot alignment
distribution is used similar to attention weights
to weight the encoded source representations,
effectively selecting the representation hbi which
corresponds to the aligned word.

3.2 Self-Attentive Alignment Model
In this work we use self-attentive layers instead
of RNN layers in the alignment model. This re-
moves the sequential dependency of computing
RNN activations and allows for parallelization.
We replace the bidirectional RNN encoder of the
alignment model by multi-head self-attentive lay-
ers as described in (Vaswani et al., 2017). We also
use multi-head self-attentive layers to replace the
RNN layers in the decoder part of the network.
There are two main differences when comparing
this self-attentive alignment model to the trans-
former architecture described in (Vaswani et al.,
2017). (1) The output is a probability distribution
over possible source jumps ∆i = bi − bi−1, that

Scaled Dot-Product Attention

Linear Linear Linear

Scaled Dot-Product Attention

Linear Linear Linear

Scaled Dot-Product Attention

Linear Linear Linear

K

h1, h2, ..., hJ h1, h2, ..., hJ ri−1

Concat

Linear

h1, h2, ..., hJ

Alignment

hbi

Figure 2: Alignment-assisted multi-head attention
component. h1, h2, ..., hJ : the encoder states at
all J source positions, hbi : the encoder state at
the aligned source position bi, ri−1: the previ-
ous decoder state, K: number of attention heads.
Removing the alignment block results in the de-
fault multi-head source-to-target attention compo-
nent of (Vaswani et al., 2017).

is, the model predicts the likelihood of jumping
from the previous source position bi−1 to the cur-
rent source position bi. (2) There is no multi-head
source-to-target attention layer as in the trans-
former network. Rather, we use a single-head hard
attention layer. This layer is not computed like at-
tention weights, but it is constructed using the pre-
vious alignment point bi−1 using

α(j|bi−1) =

{
1, if j = bi−1

0, otherwise.

defined for the source positions j, bi−1 ∈
{1, 2, ..., J}. When multiplied by the source en-
codings, α effectively selects the source encoding
hbi−1

of the previous aligned position. This is then
summed up with the decoder state ri−1.

3.3 Training
Our attempts to train the alignment-assisted trans-
former lexical model from scratch achieved sub-
optimal results. This could happen because the
model could choose to over-rely on the alignment
information, risking that the remaining attention
heads would become useless, especially during the
early stages of training. To overcome this, we
first trained the transformer baseline parameters
without the alignment information until conver-
gence, and used the trained parameters to initial-

Algorithm 1 Alignment-Based Pruned Decoding

1: procedure TRANSLATE(fJ
1 , beamSize, threshold)

2: hyps← initHyp .init. set of partial hypotheses
3: while GETBEST(hyps) not terminated do
4: .compute alignment distribution in batch mode
5: alignDists←ALIGNMENTDIST(hyps)
6: .hypothesize source alignment points
7: activePos← {}
8: for pos From 1 to J do
9: .position computed if at least one

10: .beam entry surpasses the threshold
11: for b From 1 to beamSize do
12: if alignDists[b, pos] > threshold then
13: activePos.Append(pos)
14: break
15: .evaluate all positions if none survived pruning
16: if activePos is empty then
17: activePos← {1, ...J}
18: .compute lexical distributions of all
19: .hypotheses in hyps in batch mode
20: lexDists← LEXICALDIST(hyps, activePos)
21: .combine lexical and alignment scores
22: hyps← Combine(lexDists, alignDists)
23: .prune to fit the beam
24: hyps← Prune(hyps, beamSize)

25: .return the best scoring hypothesis
26: return GETBEST(hyps)

ize the alignment-assisted model training. This re-
sulted in better systems compared to training from
scratch. We were able to see significant perplex-
ity improvements in the second stage of training
indicating that the model was making use of the
newly introduced information. Further details are
discussed in Section 6.1.

4 Alignment Pruning

Alignment-based decoding requires hypothesizing
alignment positions in addition to word transla-
tions. The algorithm is shown in Algorithm (1).
Each lexical hypothesis has an underlying align-
ment hypothesis (activePos) that is used to com-
pute it (line 20). This is done as a part of beam
search. To speed up decoding, we compute the
alignment model output first for all beam entries
(line 5). This gives a distribution over the next
possible source positions. We prune all source
positions that have a probability below a fixed
threshold (lines 12–14). We only evaluate the
lexical model for those positions that survive the
threshold. If the pruning threshold is too aggres-
sive to let any of the source positions survive,
pruning is disabled for that time step (lines 16–
17).

5 Alignment Extraction

We use attention weights to extract the alignments
at each time step during decoding. We look up the
source word having the maximum accumulated at-
tention weight

j(i) = argmax
ĵ∈{1...J}

{
L∑
l=1

K∑
k=1

αi,k,l(ĵ)

}

where K is the number of attention heads per de-
coder layer, L is the number of decoder layers,
αi,k,l(ĵ) is the attention weight at source position
ĵ ∈ {1, ..., J} for target position i of the k-th head
computed for the the l-th decoder layer. This is
an extension of using maximum attention weights
in single-head attention models (Chatterjee et al.,
2017). In the alignment-assisted transformer, the
aligned position is given by:

j(i, j′) = argmax
ĵ∈{1...J}

{
L∑
l=1

(K∑
k=1

αi,k,l(ĵ) + α(ĵ|j′)
)}

where j′ ∈ {1, ..., J} is the hypothesized source
position during search, and α(ĵ|j′) is the align-
ment indicator which is equal to 1 if ĵ = j′ and
zero otherwise. This effectively gives a prefer-
ence for the hypothesized position over all other
positions. Note that the hypothesized positions
are scored during translation using the alignment
model described in Section 3.2.

6 Experiments

We run experiments on the WMT 2016
English→Romanian news task,2 and on BOLT
Chinese→English which is a discussion forum
task. The corpora statistics are shown in Table (1).

All transformer models use 6 encoder and 6 de-
coder self-attentive layers. We use 8 scaled dot
product attention heads and augment an additional
alignment head to the source-to-target attention
component. We use an embedding size of 512.
The size of feedforward layers is 2048 nodes. We
use source and target weight tying for the WMT
English→Romanian task, and no tying for BOLT
Chinese→English.

The structure of the RNN models is as follows.
The English→Romanian lexical and alignment
models use 1 bidirectional encoder layer. The

2http://www.statmt.org/wmt16/

WMT 2016 BOLT
English Romanian Chinese English

Train sentence pairs 604K 4.1M
Train running words 15.5M 15.8M 80M 88M
Dev sentence pairs 1000 1845
Test sentence pairs 1999 1124
Vocabulary 92K 128K 380K 815K
Neural network vocabulary 50K 50K 50K 50K

Table 1: Corpora statistics.

WMT En→Ro BOLT Zh→En
newstest2016 test

System Layer size PPL BLEU
[%]

TER
[%]

PPL BLEU
[%]

TER
[%]

baselines
1 Attention baseline 1000 10.2 24.7 58.9 8.0 20.0 65.6
2 Transformer baseline 2048 6.2 27.9 54.6 6.0 22.5 62.1
3 (Alkhouli and Ney, 2017) 200 - 24.8 58.1 - - -

this work
4 RNN Attention align.-biased 1000 7.2 26.4 56.1 5.6 19.6 62.3
5 Align.-assisted Transformer 2048 5.0 28.1 54.3 4.7 22.7 61.8

Table 2: Translation results for the WMT 2016 English→Romanian task and the BOLT Chinese→English
task. We include the lexical model perplexities.

Chinese→English models have 1 bidirectional en-
coder and 3 stacked unidirectional encoder lay-
ers. All models use 2 decoder layers. The base-
line attention models have similar structures. We
use LSTM layers of 1000 nodes and embeddings
of size 620. We train using the Adam optimizer
(Kingma and Ba, 2015). All alignment models
predict source jumps of maximum width of 100
source positions (forward and backward).

The alignments used during training are the re-
sult of IBM1/HMM/IBM4 training using GIZA++
(Och and Ney, 2003). All results are measured
in case-insensitive BLEU[%] (Papineni et al.,
2002). TER[%] scores are computed with TER-
Com (Snover et al., 2006). We implement the
models in Sockeye (Hieber et al., 2017), which al-
lows efficient training of large models on GPUs.

6.1 Performance Comparison

Table (2) presents results on the two tasks. The
RNN attention (row 1) and transformer (row 2)
baselines are shown. The transformer baseline
outperforms the attention baseline by a large mar-
gin. We also include the English→Romanian
system of Alkhouli and Ney (2017). This is

an alignment-based RNN attention system which
uses 200-node layers. We also trained our
own alignment-based RNN attention system us-
ing larger layers of 1000 nodes. This is shown
in row 4. Our RNN system outperforms the pre-
viously published alignment-based results (row 3)
by 1.6% BLEU and 2.0% TER. This is due to the
increase in model size.

Our proposed alignment-assisted transformer
system is shown in row 5. This system out-
performs the RNN alignment-based system of
row 4 by 1.7% BLEU on the English→Romanian
task, establishing a new state-of-the-art result for
alignment-based neural machine translation. We
also achieve 3.1% BLEU improvement over our
RNN alignment-biased attention system on the
Chinese→English task. In comparison to the
transformer baseline (row 2), the proposed sys-
tem achieves similar performance on both tasks.
We compare the development perplexity to check
whether the lexical model makes use of the align-
ment information. Indeed, the baseline trans-
former development perplexity drops from 6.2 to
5.0 on English→Romanian and from 6.0 to 4.7

WMT En→Ro BOLT Zh→En
Alignment #entries BLEU

[%]
TER

[%]
#entries BLEU

[%]
TER

[%]

1 Transformer baseline - 27.3 55.6 - 24.2 61.5
2 + dictionary 3.1K 29.7 55.4 4.6K 25.5 61.0
3 Alignment-assisted Transformer - 27.2 55.5 - 24.2 60.8
4 + dictionary 3.1K 31.0 53.0 4.6K 26.4 58.6

Table 3: Improvements after using the dictionary of the development sets. The tokenized references of
the English→Romanian and Chinese→English development sets have 26.7K and 46.6K running words
respectively.

0.9

1.2

1.5

1.8

2.1

2.4

2.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

22

24

26

28

sp
ee

d-
up

fa
ct

or

B
L

E
U

[%
]

threshold

BLEU[%]
speed-up factor

Figure 3: Speed up and translation quality in
BLEU vs. pruning threshold on the WMT
English→Romanian task.

on Chinese→English, indicating that the model is
making use of the alignment information.

6.2 Decoding Speed Up

Figure (3) shows the speed-up factor and perfor-
mance in BLEU over different threshold values.
The speed-up factor is computed against the no-
pruning case (i.e. threshold 0). The batch size
used in these experiments is 5. We speed up trans-
lation by a factor of 1.8 without loss in translation
quality at threshold 0.15. Higher threshold val-
ues result in more aggressive pruning and hence a
degradation in translation quality. It is interesting
to note that at threshold 0.05 we achieve a speed up
of 1.7, implying that significant pruning happens
at low threshold values. At high threshold values,
speed starts to go down, since we have more cases
where no alignment points survive the threshold,
in which case pruning is disabled as discussed in
Algorithm (1, lines 16–17).

7 Dictionary Suggestions

We evaluate the use of attention weights as align-
ments in a dictionary suggestion task, where a pre-
defined dictionary of suggested one-to-one trans-
lations is given. We perform a relaxed form of
constrained translation, i.e. we do not ensure
that the suggestion will make it to the translation.
To this end, we use attention weights to extract
the alignments at each time step during decod-
ing as described in Section 5. We look up the
source word fj(i) having the maximum accumu-
lated attention weight in the dictionary. If the word
matches the source-side of a dictionary entry, we
enforce the translation to match the dictionary sug-
gestion e(fj(i)) by setting an infinite cost for all
but the suggested word.

We create a simulated dictionary using the ref-
erence side of the development set. We map the
reference to the source words using IBM4 align-
ment. The development set is concatenated with
the training data to obtain good-quality alignment.
We exclude English stop words,3 and only use
source words aligned one-to-one to target words.
We include up to 4 dictionary entries per sentence,
and add reference translations only if they are not
part of the baseline (i.e. unconstrained) transla-
tion, similar to (Hasler et al., 2018).

Table (3) shows results for the dictionary sug-
gestions task described in Section (7). The
English→Romanian dictionary covers 11.6% of
the reference set, while the Chinese→English dic-
tionary has 9.9% coverage. We observe larger
improvement when using the dictionary entries
in the alignment-assisted transformer system in
comparison to the transformer baseline systems.
Our system improves BLEU by 3.8%, while the
baseline is improved only by 2.4% BLEU on the
English→Romanian task. We also observe larger

3Long stop list: https://www.ranks.nl/stopwords

improvements in the Chinese→English case. This
suggests that the maximum attention weights in
alignment-assisted systems can point more accu-
rately to the word being translated, allowing the
use of more dictionary entries. As shown in Fig-
ure (1), the accumulated attention weights are
sharper when the system has an augmented align-
ment head. This explains the larger improvements
our systems achieve.

8 Conclusion

We proposed augmenting transformer models with
an alignment head to help extract alignments
in scenarios such as dictionary-guided transla-
tion. We demonstrated that the alignment-
assisted systems can achieve competitive per-
formance compared to strong transformer base-
lines. We also showed that the alignment-assisted
systems outperformed standard transformer mod-
els when used for dictionary-guided translation
on two tasks. Finally, we achieved a speed-
up factor of 1.8 by pruning alignment hypothe-
ses in alignment-based decoding while maintain-
ing translation quality. In future work we plan
to investigate alternative pruning methods like
histogram pruning. We also plan to investigate
the performance of alignment-assisted transformer
models in constrained decoding settings, where
the user demands specific translation of certain
words.

Acknowledgments

This research has received funding from the
European Research Council (ERC) (under the
European Union’s Horizon 2020 research and
innovation programme, grant agreement No
694537, project “SEQCLAS”) and the Deutsche
Forschungsgemeinschaft (DFG; grant agreement
NE 572/8-1, project “CoreTec”). Tamer Alkhouli
was partly funded by the 2016 Google PhD fel-
lowship for North America, Europe and the Mid-
dle East. The work reflects only the authors’ views
and none of the funding parties is responsible for
any use that may be made of the information it
contains.

References
Tamer Alkhouli, Gabriel Bretschner, Jan-Thorsten Pe-

ter, Mohammed Hethnawi, Andreas Guta, and Her-
mann Ney. 2016. Alignment-based neural machine
translation. In Proceedings of the First Conference
on Machine Translation, pages 54–65, Berlin, Ger-
many.

Tamer Alkhouli and Hermann Ney. 2017. Biasing
attention-based recurrent neural networks using ex-
ternal alignment information. In EMNLP 2017
Second Conference on Machine Translation, pages
108–117, Copenhagen, Denmark.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1557–1567, Austin,
Texas.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations, San Diego,
Calefornia, USA.

Rajen Chatterjee, Matteo Negri, Marco Turchi, Mar-
cello Federico, Lucia Specia, and Frédéric Blain.
2017. Guiding neural machine translation decod-
ing with external knowledge. In Proceedings of the
Second Conference on Machine Translation, pages
157–168, Copenhagen, Denmark.

Wenhu Chen, Evgeny Matusov, Shahram Khadivi, and
Jan-Thorsten Peter. 2016. Guided alignment train-
ing for topic-aware neural machine translation. In
Proceedings of the 2016 Conference of the Asso-
ciation for Machine Translation in the Americas
(AMTA), pages 121–134, Austin, Texas.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment
biases into an attentional neural translation model.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 876–885, San Diego, California.

Josep Crego, Jungi Kim, Guillaume Klein, An-
abel Rebollo, Kathy Yang, Jean Senellart, Egor
Akhanov, Patrice Brunelle, Aurelien Coquard,
Yongchao Deng, et al. 2016. Systran’s pure neu-
ral machine translation systems. arXiv preprint
arXiv:1610.05540.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and Robust Neural Network Joint Models for
Statistical Machine Translation. In 52nd Annual
Meeting of the Association for Computational Lin-
guistics, pages 1370–1380, Baltimore, MD, USA.

Eva Hasler, Adrià De Gisper, Gonzalo Iglesias, and Bill
Byrne. 2018. Neural machine translation decoding
with terminology constraints. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 506–512, New
Orleans, Louisiana, USA.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt
Post. 2017. Sockeye: A toolkit for neural machine
translation. arXiv preprint arXiv:1712.05690.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–
1546, Vancouver, Canada.

Diederik P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, San
Diego, Calefornia, USA.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statisti-
cal Phrase-Based Translation. In Proceedings of the
2003 Meeting of the North American chapter of the
Association for Computational Linguistics (NAACL-
03), pages 127–133, Edmonton, Alberta.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Supervised attentions for neural machine translation.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2283–2288, Austin, Texas.

Franz J. Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Mod-
els. Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Proceed-
ings of the 41st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324. Association for Computa-
tional Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Annota-
tion. In Proceedings of the 7th Conference of the As-
sociation for Machine Translation in the Americas,
pages 223–231, Cambridge, Massachusetts, USA.

Martin Sundermeyer, Tamer Alkhouli, Joern Wuebker,
and Hermann Ney. 2014. Translation Modeling with
Bidirectional Recurrent Neural Networks. In Con-
ference on Empirical Methods on Natural Language
Processing, pages 14–25, Doha, Qatar.

Akihiro Tamura, Taro Watanabe, and Eiichiro Sumita.
2014. Recurrent neural networks for word align-
ment model. In 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1470–
1480, Baltimore, MD, USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Weiyue Wang, Derui Zhu, Tamer Alkhouli, Zixuan
Gan, and Hermann Ney. 2018. Neural hidden
markov model for machine translation. In Proceed-
ings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 377–382. Association for Computa-
tional Linguistics.

Nan Yang, Shujie Liu, Mu Li, Ming Zhou, and Neng-
hai Yu. 2013. Word alignment modeling with con-
text dependent deep neural network. In 51st Annual
Meeting of the Association for Computational Lin-
guistics, pages 166–175, Sofia, Bulgaria.

Lei Yu, Phil Blunsom, Chris Dyer, Edward Grefen-
stette, and Tomás Kociský. 2017. The neural
noisy channel. In Proceedings of the International
Conference on Learning Representations, volume
abs/1611.02554.

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online seg-
ment to segment neural transduction. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1307–1316,
Austin, Texas.

