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Abstract
To encourage intra-class compactness and inter-class separa-
bility among trainable feature vectors, large-margin softmax
methods are developed and widely applied in the face recog-
nition community. The introduction of the large-margin con-
cept into the softmax is reported to have good properties such
as enhanced discriminative power, less overfitting and well-
defined geometric intuitions. Nowadays, language modeling is
commonly approached with neural networks using softmax and
cross entropy. In this work, we are curious to see if introduc-
ing large-margins to neural language models would improve the
perplexity and consequently word error rate in automatic speech
recognition. Specifically, we first implement and test various
types of conventional margins following the previous works in
face recognition. To address the distribution of natural language
data, we then compare different strategies for word vector norm-
scaling. After that, we apply the best norm-scaling setup in
combination with various margins and conduct neural language
models rescoring experiments in automatic speech recognition.
We find that although perplexity is slightly deteriorated, neural
language models with large-margin softmax can yield word er-
ror rate similar to that of the standard softmax baseline. Finally,
expected margins are analyzed through visualization of word
vectors, showing that the syntactic and semantic relationships
are also preserved.
Index Terms: large-margin, softmax, neural language model,
speech recognition

1. Introduction
The language model is an important component of automatic
speech recognition (ASR) systems [1, 2, 3, 4], and perplexity
(PPL) is known to be closely correlated with word error rate
(WER) [5, 6]. Nowadays, state-of-the-art language models are
commonly modeled using neural networks [7, 8, 9, 10]. The
language model aims to learn the probability of word sequences,
which are normally decomposed in an auto-regressive manner.
To capture long contextual dependencies, the recurrent neural
network (RNN) can be applied, which often uses the cross en-
tropy training criterion along with softmax [8, 10, 11].

The idea of applying large-margin to the softmax layer is
used to encourage intra-class compactness and inter-class sep-
arability among learned features. In the field of face recogni-
tion there exists a line of work [12, 13, 14, 15, 16, 17] that
studies large-margin in the softmax layer, providing significant
improvements in performance. Considering that the vectors in
the projection matrix before the last softmax layer in neural
language models (NLM) are essentially feature vectors of the
words, which resemble the feature vectors of images in face
recognition, we are thus curious to examine the performances
of the aforementioned margins in NLM.

Large-margin in NLM is not an unfamiliar concept. In [18],

a global-level margin that discriminates sentences is introduced.
In contrast, this paper focuses on the margin between atomic-
level word vectors. We apply different types of large-margins
from face recognition to NLM. Our initial experiments show
that using the largin-margin softmax from face recognition out-
of-the-box for NLM deteriorates the PPL dramatically. We as-
sume that this is due to the fundamental differences between
words and faces in their class distributions. It is important to
note that unlike in face recognition, the posterior probability
of words in NLM is highly unbalanced. Zipf’s law [19] is a
common approximation of word frequency versus word rank in
natural languages. In [20], the authors observe that NLM learn
word vectors whose norms are closely related to word frequen-
cies. Therefore, we conduct a series of experiments to compare
various norm-scaling techniques for the word vectors. In addi-
tion, we implement a heuristic to scale the norms of the con-
text vectors. It turns out that one of the norm-scaling methods
slightly improves the PPL. When it is used along with the mar-
gin techniques, comparable WER to the baseline is achieved.
Finally, to figure out the effects of margin techniques in NLM,
we visualize the word vectors and observe that word vectors
trained with large-margin softmax exhibit expected behaviors
and “stretch” the word vectors to more evenly populate the em-
bedding space.

2. Related Work
The minimum distance of feature vectors to a decision boundary
is called the margin. The large-margin concept plays an impor-
tant role in conventional machine learning algorithms such as
the support vector machine [21] and boosting algorithm [22].
Its core idea is to maximize the margin during training, in the
hope that it leads to greater separability between classes during
testing. [23, 24] study discriminative training on language mod-
els. The authors in [25] introduce large margin into gaussian
mixture models for phonetic classification and recognition task
(multiway classification). Later in [26], they show a framework
to train large margin hidden markov models in the more general
setting of sequential (as opposed to multiway) classification in
ASR. It has also been well studied in image processing. A novel
loss function is proposed in [27] to encourage large-margin in
any set of layers of a deep network. In this work, we concen-
trate on the traditional margin methods that only focus on the
output layer to see if it contributes to NLM.

The weights of the output layer are essentially feature vec-
tors of each class (image features in face recognition or word
embeddings in NLM). The scores (logits) of each sample are
obtained using the dot product between the feature and the con-
text vector. When using the cross entropy criterion along with
softmax, the logits are used to calculate the loss. There exists
a line of work in face recognition that modifies the loss func-
tion such that the scores of the true labels are reduced during



training.
In [12], the score for the ground truth class is manipulated

by multiplying the angle between the ground truth feature vec-
tor and the context vector by a constant integer term m. It leads
to a decline of that score, which ultimately leads to greater angu-
lar separability between learned feature vectors. This shares the
similar idea with A-Softmax Loss (SphereFace) [28]. However,
SphereFace normalizes the weights by L2-norms in advance so
that the learned features are restricted to be on a hypersphere
manifold, which is consistent with the widely used assumption
in the field of manifold learning for face recognition that face
images lie on or close to a low-dimensional manifold [29, 30].

Later, Hao et al. [14] propose a large-margin cosine loss
(CosFace) using L2 normalization for both the feature vectors
and the context vector, and subtracting a marginm from the co-
sine function output. CosFace also leads to a large-margin in the
angular space. Subsequently, an additive angular margin loss
(ArcFace) is presented in [15] that adds a margin term m to the
angle instead of multiplying an integer term as in SphereFace.
While these designs look similar, the authors claim that Arc-
Face has a better geometric attribute. Compared to SphereFace
and CosFace, which are nonlinear in the angular space, ArcFace
has a constant linear angular margin.

Word frequencies and vector norms are key concepts for
this paper. Zipf’s law [19] states that the frequency of words in
a corpus of natural language is inversely related to the rank of
words. Further in [20], the authors identify the relation between
the norms of word vectors and their frequency. The result shows
that the logarithm of word counts is a good approximation of
word vector norms. This inspires us to examine various norm-
scaling techniques for word vectors.

3. Methodology
Assuming the long short-term memory (LSTM) network [31] is
used for language modeling, the target word posterior probabil-
ity using softmax in the last output layer can be written as:

P (y|i) = exp l(y, i)

exp l(y, i) +
∑
y′ 6=y exp l(y

′, i)
(1)

where y denotes the target next word (dependency on i is
dropped for simplicity), y′ is a running index in the vocabu-
lary, i is a running index of positions in data and l(y, i) denotes
the logit calculation. When using the inner-product, it can be
written as:

l(y, i) = hTi Wy + by (2)
= ||hi|| · ||Wy|| · cos θy,i + by (3)

where hi is the context vector and the output of the LSTM
layer(s), Wy is the embedding vector, θy,i is the angle between
the two and by is the bias term.

Commonly, the softmax output is used together with the
cross entropy training criterion:

L = −
∑
i

logP (y|i) (4)

3.1. Conventional Margin

All of the three margins used in this paper only vary in the
calculation of the logit of the ground-truth class y. For Cos-
Face (lCOS) and ArcFace (lARC), the authors of the original paper
claim that the normalization on features is necessary to encour-
age feature learning in their approach. Moreover, it is better

to set the norm of the context vector as constant if the model is
trained from scratch. Hence, they set ||Wy|| = 1 and ||hi|| = s,
where s is some predefined constant. In contrast to ArcFace and
CosFace, L-Softmax (lLSM) does not normalize anything in ad-
vance. The three margins from face recognition are formally
defined as follows:

lCOS(y, i) = s× (cos(θy,i)−m) (5)
lARC(y, i) = s× cos(θy,i +m) (6)
lLSM(y, i) = ||hi|| · ||Wy|| · ϕ(θy,i) (7)

where ϕ(θy,i) is designed as:

ϕ(θy,i) = (−1)k cos(mθy,i)− 2k (8)

While marginm in lCOS and lARC are non-negative real numbers,
it must be a positive integer in lLSM. Using (8), the monotonicity
of ϕ(θy,i) with respect to m can be guaranteed. k in ϕ(θy,i) is
an integer in the range of [0,m− 1] and θ ∈ [ kπ

m
, (k+1)π

m
].

3.2. Margin with Norm-scaling

We explore different norm-scaling techniques for word vectors
and context vectors, which differ only in how they alter the
norms of vectors. f(y) defines the modifications to word vec-
tors and g(i) defines the modifications to context vectors:

f(y) =



||Wy||, no-mod
||Wargmax{c}||, uniform
log(exp(||Wargmax{c}||)− v × y), log-rank
||Wargmin{c}||+ u× cy, unigram
log(cy), log-unigram

(9)

g(i) =

{
||hi||, no-mod
max{||h||}, max-norm

(10)

with v and u defined as:

v =
exp(||Wargmax{c}||)− exp(||Wargmin{c}||)

V
(11)

u =
||Wargmax{c}|| − ||Wargmin{c}||

argmax{c} (12)

where c is the count of words and V is the vocabulary size.
For uniform we assume that all word vectors have the same

norm, and in this case we use the norm of the word vector with
the largest count among all words in the training corpus. For
log-rank, we expect that the norm of the word vector is linear
with respect to its index before a logarithmic operation (assum-
ing words are sorted in descending order by their counts). For
unigram, we use scaled and shifted word counts as new word
vector norms after normalization. Note that for uniform, log-
rank and log-unigram, f(y) is dynamically updated in each up-
date step during training. For log-unigram, we take the loga-
rithm of word count directly as the norm of that word. On the
other hand, the heuristic max-norm scales the norm of the i-th
context vector hi using the largest norm in the batch where the
hi appears.

Finally, combining norm-scaling and margin techniques,
the logit calculation can be reformulated as:

l(y, i) = g(i)f(y)φ(θy,i) + by (13)



where g(i) is selected between ||hi|| and max{||h||} , f(y) is
selected among the five norm-scaling functions and φ(θy′,i) =
cos(θy′,i) for y′ 6= y, otherwise

φ(θy,i) =


cos(θy,i)−m, COS
cos(θy,i +m), ARC
ϕ(θy,i), LSM
cos(θy,i), no-margin

(14)

For all experiments in the next section, we always keep the
bias term by , as according to our early experiments, dropping
it slightly degradates the performance across all setups.

4. Experiments
We use two datasets to compare the effects of the aforemen-
tioned techniques: Switchboard (SWB) and Quaero English.
SWB is a relatively small dataset, with a vocabulary size of
30K and 25M training tokens. Quaero has a vocabulary size
of 128K and 49M training tokens. We use two-layer LSTM
language models with hidden state sizes of 1024 and 2048 for
SWB and Quaero, respectively. For Quaero, we also apply the
sampled softmax [32] method to speed up training. In the fol-
lowing experiments, we fix the model architecture and only alter
the softmax layer.

4.1. Conventional Margin

Considering that large-margin works well in face recognition, to
grasp the preliminary understanding of its effects on our task we
apply the large-margin techniques described in Section 3.1 out-
of-the-box for NLM. As shown in Table 1, for LSM, the norms
of vectors are retained as defined in Equation 7, and setting m
as one means that there is no modification of cosine similarity.
Therefore, the first row of the table gives us the baseline of this
margin. Moreover, as required in [12] thatmmust be an integer,
the minimal step is to increase m by one. As can be seen, even
setting m to two would dramatically worsen the performance,
we do not further increase m in this experiment.

Table 1: PPL on SWB using margins from face recognition out-
of-the-box.

Method m PPL
Baseline n/a 53.7

LSM 1 53.5
2 390.3

ARC

0 66.9
0.001 68.0
0.003 80.7

0.01 106.1
0.03 170.4

COS

0 66.9
0.001 70.3
0.003 77.7

0.01 108.0
0.03 382.1

For COS and ARC, the modifications on feature vector
norms are defined in Equation 5 and Equation 6. The feature
vector Wy and context vector hi are firstly normalized and then
a large scalar s = 64 is used for re-scaling. The results show a
clear trend that the bigger the margin term gets, the worse the
performance is. Even when disabling the margin, i.e. m = 0,

PPL is much higher than the baseline. As the only changes to
the calculation in this case is the re-scaling of vector norms, this
suggests that normalizing the word vectors and re-scaling them
to have norms of 64 is too harsh for NLM in concern.

4.2. Margin with Norm-scaling

Considering the pattern discovered in [20], that the norms of
word vectors approximate the logarithm of word counts, as well
as the results of our preliminary experiments, we believe that
norms of vectors play a nonnegligible role in NLM. Simply re-
ducing them and re-scaling them using a large constant seems
improper in our case. Hence, our next step aims to figure out
which kind of norm-scaling is more suitable for NLM. Specif-
ically, we vary the norm-scaling setup on g(i) and f(y) and
examine the PPL of the corresponding models.

The top half of Table 2 depicts the performance of five dif-
ferent norm-scaling techniques of word vectors as defined in
(9), where g(i) uses no-mod. As seen, all of them slightly
worsen the performance. The bottom half of the table reports
the performance when g(i) uses max-norm. We can see that
only applying the heuristic on the context vector gives the best
performance on SWB, and using max-norm and log-unigram
together slightly improves the PPL on Quaero. We go on to
apply the best norm-scaling setup in combination with φ(θy,i)
variants for NLM.

Table 2: PPL on SWB or Quaero using different norm-scaling
techniques. g(i) and f(y) being no-mod corresponds to the
standard softmax baseline.

g(i) f(y) SWB Quaero

no-mod

no-mod 53.7 105.8
uniform 56.8 108.4
log-rank 56.8 108.1
unigram 56.0 108.4
log-unigram 53.8 107.4

max-norm

no-mod 52.9 104.3
uniform 56.4 107.2
log-rank 57.4 109.6
unigram 54.6 106.1
log-unigram 53.1 104.1

Table 3: PPL on SWB combining norm-scaling and large-
margin softmax.

g(i) f(y) m ARC COS

no-mod no-mod 0.001 54.5 54.5
log-unigram 0.001 55.3 55.3

max-norm

log-unigram 0.001 55.3 54.9

no-mod

0.001 54.2 54.1
0.003 55.5 55.9
0.006 57.7 58.4
0.010 60.0 60.9

Now that we have good norm-scaling setups for both the
context vectors and the word vectors, the logical next step is
to assess the performance of various margins in combination
with them. We choose the four best combinations of g(i) and
f(y) in Table 2, and conduct large-margin experiments. First,
we use a very small margin term for all of them, i.e. m =
0.001. As can be seen in the first four rows in Table 3, they
do not differ much in PPL and none of them improves over the



Table 4: PPL on Quaero combining norm-scaling and large-
margin softmax.

g(i) f(y) m ARC COS

no-mod no-mod 0.001 111.2 111.6
log-unigram 0.001 114.7 114.2

max-norm log-unigram 0.001 113.7 112.7
no-mod 0.001 114.0 112.0

baseline on SWB. Furthermore, as shown in Table 4, all of them
deteriorate the PPL on Quaero to a large degree. To further
verify, we tune the margin term under our best norm-scaling
setting. The results in the last five rows in the Table 3 clearly
show that the performance gets worse as m increases.

Last but not the least, we conduct LSTM recurrent neural
network rescoring experiments as shown in Table 5 to make a
final verdict of the application of large-margin softmax in NLM.
The baseline system is based on the hybrid hidden Markov
model neural network[33]. It is interesting to find that although
PPL is deteriorated, NLM with large-margin softmax can yield
the same WER as the baseline.

Table 5: PPL and WER on SWB using ARC or COS with m =
0.001 and best norm-scaling techniques.

Metrics baseline ARC COS
PPL 52.9 54.2 54.1

WER
Switchboard 13.7 13.7 13.7

Callhome 7.1 7.1 7.1
Average 10.4 10.4 10.4

5. Analysis
To analyze the effects of large-margin in NLM, in this section
we visualize the word embeddings trained with large-margin
softmax as well as the standard softmax. For visualization, the
dimensionality of word vectors is reduced to two by first apply-
ing principal component analysis and then using t-distributed
stochastic neighbor embedding [34].

Figure 1 shows the word vectors in polar coordinates. For
COS and ARC, we use the large-margin softmax in bold in Ta-
ble 3. The vectors are scaled and rotated to align the word “the”
in all plots. The points in blue are the top 100 frequent words in
SWB, which already account for around 65% of the total run-
ning words. As can be seen, these vectors of frequent words
obtained by large-margin softmax approaches in (b) and (c) are
more separable than those obtained by standard softmax in (a).
In other words, the word vectors are further “stretched” to more
evenly populate the embedding space.

To further investigate if the word embeddings obtained by
large-margin softmax maintain the word relations in general.
We visualize some word groups in the second column ((d), (e)
and (f)) of Figure 1. The words in red color series are pairs that
have semantic similarity while word groups in blue color series
have syntactic relations. As seen, even though the large-margin
softmax makes the angles among words larger, it can still pre-
serve the semantic and syntactic relations. For instance, words
that share a similar meaning (“auto” - “car”) are well gathered
and the angle between word “she” and “herself’ is almost the
same as the angle between word “he” and “himself” in (f).

(a) softmax, top 100 (d) softmax, word groups

(b) COS, top 100 (e) COS, word groups

(c) ARC, top 100 (f) ARC, word groups

Figure 1: Word vectors plotted in polar coordinates. In (a), (b)
and (c), the top 100 frequent words more evenly populate the
embedding space. In (d), (e) and (f), word groups with strong
semantic (shades of red) or syntactic (shades of blue) relations
are preserved.

6. Conclusions
In this work, we investigate the use of large-margin softmax
in neural language models. We first apply margins from face
recognition out-of-the-box, which evidently deteriorates per-
plexity. Considering the unbalanced nature of word distribu-
tions, we further conduct experiments to find good norm-scaling
settings for neural language models and tune the margin param-
eters. Then we apply the models trained with large-margin soft-
max in rescoring experiments, where we can reach the same
word error rate performance as the standard softmax baseline.
Finally, to figure out the effects of large-margin in neural lan-
guage models, we visualize the word vectors. It is interesting to
note that the expected margin are found among the word vec-
tors trained with large-margin softmax, which makes them more
evenly populate the embedding space. At the same time, the se-
mantic and syntactic relations among words are also preserved.
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GRU, highway and a bit of attention: An empirical overview for
language modeling in speech recognition,” in Interspeech, San
Francisco, CA, USA, Sep. 2016, pp. 3519–3523.

[2] X. Liu, Y. Wang, X. Chen, M. J. F. Gales, and P. C. Wood-
land, “Efficient lattice rescoring using recurrent neural network
language models,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2014,
pp. 4908–4912.

[3] Y. Si, Q. Zhang, T. Li, J. Pan, and Y. Yan, “Prefix tree based n-best
list re-scoring for recurrent neural network language model used
in speech recognition system,” in INTERSPEECH, 2013.

[4] X. Liu, X. Chen, Y. Wang, M. J. F. Gales, and P. C. Woodland,
“Two efficient lattice rescoring methods using recurrent neural
network language models,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 8, pp. 1438–1449,
Aug 2016.

[5] J. G. Wilpon, D. B. Roe et al., Voice communication between hu-
mans and machines. National Academies Press, 1994.

[6] D. Klakow and J. Peters, “Testing the correlation of word error
rate and perplexity,” Speech Commun., vol. 38, no. 1, pp. 19–28,
Sep. 2002. [Online]. Available: http://dx.doi.org/10.1016/S0167-
6393(01)00041-3

[7] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A
neural probabilistic language model,” J. Mach. Learn. Res.,
vol. 3, pp. 1137–1155, Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944966

[8] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khu-
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