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Abstract

This paper introduces ClimateGPT, a model family of domain-specific large
language models that synthesize interdisciplinary research on climate change.
We trained two 7B models from scratch on a science-oriented dataset of
300B tokens. For the first model, the 4.2B domain-specific tokens were
included during pre-training and the second was adapted to the climate
domain after pre-training. Additionally, ClimateGPT-7B, 13B and 70B
are continuously pre-trained from Llama 2 on a domain-specific dataset of
4.2B tokens. Each model is instruction fine-tuned on a high-quality and
human-generated domain-specific dataset that has been created in close
cooperation with climate scientists. To reduce the number of hallucinations,
we optimize the model for retrieval augmentation and propose a hierarchical
retrieval strategy. To increase the accessibility of our model to non-English
speakers, we propose to make use of cascaded machine translation and show
that this approach can perform comparably to natively multilingual models
while being easier to scale to a large number of languages. Further, to
address the intrinsic interdisciplinary aspect of climate change we consider
different research perspectives. Therefore, the model can produce in-depth
answers focusing on different perspectives in addition to an overall answer.
We propose a suite of automatic climate-specific benchmarks to evaluate
LLMs. On these benchmarks, ClimateGPT-7B performs on par with the
ten times larger Llama-2-70B Chat model while not degrading results on
general domain benchmarks. Our human evaluation confirms the trends
we saw in our benchmarks. All models were trained and evaluated using
renewable energy and are released publicly1.

1https://huggingface.co/eci-io/
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Figure 1: Overview of automatic evaluation results on climate-specific benchmarks.

1 Introduction

Large Language Models (LLMs) have the exceptional ability to comprehend and generate
human-like text that empowers them to address a wide array of tasks with Claude-22, GPT-4
(OpenAI, 2023), Llama-2 (Touvron et al., 2023b) or Gemini (Gemini Team, Google, 2023) to
cite a few. They have been trained on diverse large datasets (from hundreds of billions to
trillions of tokens) covering a wide range of topics and domains. The universality of these
general-purpose models has made them accessible for a broad spectrum of applications: from
text comprehension, over content generation and summarization up to chatbots and much
more. Recent research has pointed to the potential of LLMs trained on domain-specific data,
e.g. Biomedical sciences (Lee et al., 2020), Finance (Wu et al., 2023) and Medicine (Peng
et al., 2023; Luo et al., 2022). These models, while being smaller, have outperformed general-
purpose models in their respective domains. The work reported in this paper continues
this line of research, addressing one of the most pressing and complex challenges this time:
climate change.
Climate change stands out as a multifaceted discipline, covering climate science (the natural
science behind modeling climate and the development of the earth’s atmosphere) as well as
human issues related to climate that impact our environment, our economies, our societies,
public health and biodiversity. Right now, we are moving to the brink of multiple risk tipping
points (UNU, 2023). Efforts are underway to avoid getting at these potentially irreversible
changes in the climate system. Accelerating this process requires global climate awareness
and collective knowledge, that we call “climate social intelligence”. Building an LLM that
addresses climate questions requires access to this collective knowledge, understanding, and
decision-making capacity of the human population to harness the collective climate social
intelligence available.
We propose an LLM on climate change, called ClimateGPT, which should help the diverse
science communities involved to exchange information and knowledge along the three major
multi-disciplinary dimensions it covers at large: environmental and natural science, economics,
and social science. As opposed to other work done around climate-related LLMs, e.g.
ClimateBERT (Webersinke et al., 2022), ClimateGPT-2 (Vaghefi et al., 2022), MBZUAI
Arabic Mini-ClimateGPT (Mullappilly et al., 2023), ChatClimate (Vaghefi et al., 2023), the
focus of our work was to develop high quality in-domain Instruction Fine-Tuning (IFT) data
as well as to train our model with as much climate data as possible, specifically technical
reports from the Intergovernmental Panel on Climate Change (IPCC) as well as top papers
from climate change research and related fields, such as the UN Sustainable Development
Goals. Further, we developed a multi-domain Large Language Model, which can give four
types of answers for each request: a natural science-related answer, an answer about the

2https://www.anthropic.com/index/claude-2
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economic aspects of climate change, as well as an answer about social impacts. The fourth
answer, the main one, gives a general high-level overview, addressing all of these sub-fields.
This paper introduces a large language model that seeks to be used across domains by people
learning from and collaborating with other specialists in the realm of climate information,
rather than merely acting as a chatbot. We are looking at it as a climate intelligence platform
that can assist governments, organizations, and individuals in making informed decisions
and that contributes to a global social intelligence related to climate.

1.1 Technical Approach

This section outlines our technical approach and the different steps we have taken to develop
ClimateGPT.
Language Modeling is done with a large decoder-only Transformer (Vaswani et al., 2017b;
Liu et al., 2018) architecture, which is in line with most of the recent literature on large
language models (LLMs) (Radford et al., 2019; Brown et al., 2020; Scao et al., 2022; Biderman
et al., 2023). The model represents tokens as continuous-valued hidden vectors and makes
use of the attention mechanism (Bahdanau et al., 2014) to model inter-token dependencies.
The training criterion is cross-entropy, which rewards the model for high probability mass
on the correct target token.
From-Scratch (FS) training is done to obtain a foundation language model in the climate
domain, the training data for which is cleaned with the climate domain in mind. We train a
climate foundation model as well as a general domain model with a focus on scientific content
to study the effect of up-sampling domain-specific data during foundation model training.
We follow closely the training hyper-parameters that were documented in the Llama-2 paper
(Touvron et al., 2023b).
Continued Pre-Training (CPT) is a common alternative to training a new foundation
model from scratch (Gupta et al., 2023; Chen et al., 2023). The goal is to adapt an existing
LLM trained on a large set of general domain data to the target domain by continuing the
pre-training on a smaller set of in-domain data. After an initial evaluation, we focus on
the Llama-2 model series as well as for our general not climate-specific from-scratch model.
During CPT, we keep the training criterion of the pre-trained model.
Instruction Fine-Tuning (IFT) is an important step to inject instruction-following
capabilities into the model. In the literature, this is also often referred to as Supervised
Fine-Tuning (SFT). We prefer IFT to make the distinction to domain adaptation via CPT
or task-specific supervised fine-tuning approaches. Instruction-completion pairs both from
the general domain and climate domain are prepared and gear the model towards following
user instructions. We collaborate with climate experts to create a high-quality human-
generated dataset. During the data collection, we follow standard approaches (Ouyang et al.,
2022a) and also tune the distribution among our and different public instruction-tuning
datasets. Although our model is capable of chatting, we focus on its question-answering and
instruction-following aspects, which also greatly simplify the instruction fine-tuning data
creation and retrieval steps.
Retrieval Augmented Generation (RAG) is implemented with high-quality climate
resources to increase factuality as well as to extend the system with new knowledge. We
crawl text from manually curated sources and process these sources into smaller chunks.
To retrieve relevant documents for a user query, we use a bi-encoder model to calculate
embeddings and make use of efficient nearest-neighbor search. During the generation phase,
the user instruction is concatenated with the most relevant text chunks for the model to
come up with more reliable and stable answers. As the sources of retrieved documents are
known, RAG also gives the possibility to provide citations for parts of the generated output.
Cascaded Machine Translation (MT) is included at the system level to enable support
for multiple languages. Specifically, non-English queries are first translated to English for
our underlying LLM and retrieval engine to generate an English answer. Finally, this answer
is translated back to the original language for display.
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Model Base Model Tokens LR GPU Hours
ClimateGPT-70B Llama-2 70B 4.2B 1 · 10−5 2,182
ClimateGPT-13B Llama-2 13B 4.2B 1 · 10−5 301
ClimateGPT-7B Llama-2 7B 4.2B 1 · 10−5 157
ClimateGPT-FSC-7B - 319.5B 3 · 10−4 14,131
ClimateGPT-FSG-7B - 323.7B 3 · 10−4 14,288

Table 1: ClimateGPT model variants.

Benchmarking and Evaluation is done both automatically and with human experts. For
automatic evaluation, we evaluate the model both on climate-domain tasks and general-
domain tasks. Furthermore, we describe our approach to human evaluation with domain
experts, hoping to address the limitations that come with the automatic evaluation of LLMs.
We present the results of an initial human evaluation comparing our main model variants.
Responsible AI is an important aspect of our work because as LLMs become stronger,
we strongly believe that the models should "do good." To this end, we include instruction
fine-tuning data that teaches the model to avoid answering unwanted or even malicious user
queries. During the whole development process, we carefully considered and actively worked
on reducing the environmental impact of our work. Finally, the models and evaluation
protocols are released publicly to increase the reproducibility of our work.

2 Domain-Specific Pre-Training

Foundation models are pre-trained on vast datasets encompassing a wide array of domains
(Brown et al., 2020; Touvron et al., 2023a,b). These domains range from general knowledge
and common sense reasoning to more specialized areas like science, technology, and literature
(Gao et al., 2020; Penedo et al., 2023). Training on a large-scale dataset enables the models to
exhibit impressive zero-shot and few-shot (in-context learning) learning capabilities (Brown
et al., 2020; Kojima et al., 2022; Wei et al., 2021, 2022), allowing them to perform reasonably
well on tasks they are not explicitly trained for. However, despite their versatility, foundation
models are not intrinsically designed to possess deep expertise in specific domains. Therefore,
recent efforts focused on training domain-specific language models that are either significantly
smaller or outperform their general domain counterparts on domains like finance (Wu et al.,
2023), science (Taylor et al., 2022) or medicine (Singhal et al., 2023; Chen et al., 2023). To
create such a model one can either perform domain adaptation on an existing general domain
model (Singhal et al., 2023; Chen et al., 2023) or train a new model from scratch (Wu et al.,
2023; Taylor et al., 2022). Which approach is preferable depends on various factors, like the
total compute budget, the amount of available domain-specific pre-training data and how
well the target domain is represented in the general domain data. To gain insights into these
tradeoffs for the climate change domain, we compare both approaches.
In this section, we first describe the general model architecture we used for ClimateGPT.
Then, we describe how we curated and collected our climate change and science-specific
pre-training dataset. Next, we make use of continued pre-training as a domain adaptation
technique to adapt a strong general domain model to the target domain. Finally, we describe
how we train a climate-specific model from scratch.

2.1 Model Architecture

We follow Llama-2 (Touvron et al., 2023b) closely in terms of the model architecture.
Specifically, the model is a decoder-only Transformer (Vaswani et al., 2017b; Liu et al.,
2018) network with word embedding layers sandwiching a stack of self-attention layers.
Key components, such as pre-normalization (Xiong et al., 2020) with RMSNorm (Zhang
and Sennrich, 2019), SwiGLU (Shazeer, 2020) activation function, and rotary positional
embeddings (RoPE) (Su et al., 2023) are retained in this work. Improvements on top of
Llama-1 (Touvron et al., 2023a), such as increased context length (4096) and the introduction

6



Subset Tokens Weight Tokens in model Percentage of data
FSG FSC FSG FSC

news 193.9 1 125.1 120.0 39.1% 37.5%
publications 23.1 4 59.6 57.1 18.6% 17.9%
modern books 28.4 3 55.0 52.7 17.2% 16.5%
patents 19.5 4 50.2 48.1 15.7% 15.1%
wikipedia 6.3 5 20.4 19.6 6.4% 6.1%
policy and finance 3.7 3 7.1 6.8 2.2% 2.1%
science 0.7 5 2.2 2.1 0.7% 0.6%
climate change 4.2 5 0 13.0 0.0% 4.1%
Total 279.7 - 319.5 100% 319.5 100%

Table 2: Subset breakdown of the 300B-token from scratch pre-training dataset.

of grouped-query attention (GQA) (Ainslie et al., 2023) for larger model variants were also
kept.

2.2 Pre-Training Dataset

The preparation of high-quality in-domain data is important for the success of the model.
Therefore, we started with a corpus of roughly 300B tokens from curated sources compiled
by Erasmus.AI. While the corpus spans a wide range of domains sources were evaluated
and selected based on their relevance to the topic climate, humanitarian issues and science.
The upper part of Table 2 shows the different subsets of the dataset and the corresponding
weight for model training. The last columns indicate the effective number of tokens each of
the from-scratch models has seen during from-scratch pre-training and the resulting data
distribution (see Section 2.4).
The news subset is a web crawl with a focus on relevant news and blog articles. It also
contains data from an internal extreme weather index. Publications is a collection of abstract
and full-text papers. The Modern books set consists of fiction and non-fiction books and
should help to model long-range context. Patents are collected mostly from the United
States Patent and Trademark Office. Wikipedia is a recent dump of the English Wikipedia
website. Policy and finance is a collection of text related to law, finance and companies and
stocks in the climate sector. Finally, science covers other science and climate-related texts
like EPA documents and ESG reports.
From this dataset, we identified high-quality sources such as scientific papers, and further
included primary sources, such as reports from the Intergovernmental Panel on Climate
Change (IPCC), and applied cleaning and filtering using keywords and topic classification.
In addition, we included our manually curated climate-specific data. More details on these
datasets are described in Appendix A.3. In total, we arrive at a corpus of 4.2B climate-specific
tokens which is used for continued pre-training.
To improve the quality of the training data, a set of cleaning, filtering, and pre-processing
steps was done, which included:

• filtering of sources from unrelated domains, such as sport and entertainment, politics
and crime, as well as fiction. By doing so, we hope to limit the number of opinion
pieces and information irrelevant to the climate domain;

• personal identifiable information reduction, such as email addresses, telephone
numbers, URLs etc.;

• keeping sentences with a Flesch reading score (Kincaid et al., 1975) between 5 and
120;

• handling of errors related to character encoding and special symbols;
• elimination of documents by text length;

7
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Figure 2: Training loss of the CPT models.

• focusing on sources from the past eight years;
• aggregating themes concerning climate, humanitarian issues and science;
• discovering key sentences and entities that are associated with climate;
• filtering based on symbol distribution, i.e. removing documents that contain at least

80% non-symbols;
• filtering based on language identification, i.e. removing documents that do not score

above 85% to be in English;
• removing double spaces, consecutive empty newlines, lines containing long repeating

characters such as “======” and “+++++”, etc.;
• deduplication based on MinHash (Broder, 1997) with proprietary extensions by

Erasmus.AI as well as removal of duplication identifiable in the source metadata.

2.3 Continued Pre-Training

We employ domain adaptation methods, as we aim to develop a model that is specialized
for climate change and possesses understanding and domain-specific knowledge. Domain
adaptation can help tailor the foundation model to the climate domain, ensuring that it not
only retains its broad knowledge base but also develops a more refined understanding of
climate-specific concepts, terminologies, and contextual nuances.
Domain adaptation (Ben-David et al., 2010), while not new, remains a cornerstone in the
evolution of machine learning systems, e.g. in language modeling (Karouzos et al., 2021),
machine translation (Kim et al., 2019), and automatic speech recognition (Baevski et al.,
2020). Fundamentally, the method involves the continued training of a baseline model on
specific, in-domain data to enhance its performance within that domain. This approach has
been widely recognized for its ability to significantly boost a model’s proficiency on in-domain
test data, while still maintaining robust performance on general tasks. In the context of
our work, we adopt this principle to further refine foundation models for climate change
applications. We prefer to term this process as “continued pre-training” (CPT), rather than
the more commonly used “fine-tuning”, to differentiate our approach from other methods like
“supervised fine-tuning” (Ouyang et al., 2022a) and to highlight the similarity to the initial
pre-training stage. We deliberately apply this CPT step before proceeding to instruction

8



fine-tuning. If instruction fine-tuning is done before domain adaptation, there is a risk that
the model might lose some of its newly acquired instruction-following capabilities. By first
adapting the model to the intricacies of the climate domain, we lay a solid foundation upon
which instruction fine-tuning can then be built, ensuring a more effective and domain-savvy
instruction-following model.
Domain adaptation, while offering significant benefits, presents two primary challenges. The
first challenge lies in preparing high-quality data for the in-domain training. The effectiveness
of domain adaptation is largely contingent on how closely the distribution of this training
data aligns with that of the in-domain test data. The closer the match, the more we can
anticipate enhanced performance in domain-specific tasks. To address this we make use
of the curated dataset described in Section 2.2. The second challenge is the prevention
of degradation in the model’s performance on general domain tasks, a phenomenon often
referred to as “catastrophic forgetting" (Kirkpatrick et al., 2017) in the literature. This
occurs when a model, upon being further trained on specific data, loses its proficiency in
tasks it was previously capable of handling. To mitigate this, we carefully tune the batch
size, learning rate, learning rate schedule, and data composition for the 7B model variants.
Due to time and compute-budget constraints during the project, we did not have time to
tune the hyperparameters for the 13B and 70B models and just chose the same values as for
the 7B models.
To choose a foundation model, we considered multiple candidates and chose the one that
performed best on our climate-specific benchmarks (discussed in Section 6.1). Candidates
that we considered were Llama-2 (Touvron et al., 2023b), Falcon (Almazrouei et al., 2023),
Pythia (Biderman et al., 2023) and Jais (Sengupta et al., 2023). From these models, we
achieved the best results with Llama-2 (see Tables 11 and 12), and thus we continued this
model. Redoing these experiments today, we would also consider Mistral-7B (Jiang et al.,
2023) and Mixtral (Jiang et al., 2024), but these models were not available at this time.
For training, we use a fork of NVIDIA’s Megatron-LM (Narayanan et al., 2021) by the EPFL
LLM Team (Cano et al., 2023; Chen et al., 2023). The main modifications to the original
version from Nvidia are support for Llama and other recent models. We use a cosine learning
rate schedule with a peak learning rate of 10−5, a warm-up of 100 steps and decay to a
learning rate of 5 · 10−6. The batch size is set to 1024 and we use the full sequence length of
4096 tokens. For regularization, we use weight decay of 10−2. All models are trained for
1,000 steps which corresponds to one epoch on the 4.2B climate dataset. The training loss
curves for the models are shown in Figure 2.
While we observed that higher learning rates resulted in better training and validation losses,
we observed a degradation on our downstream benchmarks. Therefore, we settled with this
learning rate as a trade-off between domain adaptation and avoiding overfitting.

2.4 From-Scratch Pre-Training

In contrast to the continued pre-training approach, an alternative strategy involves departing
from the use of pre-trained models such as Llama-2 (Touvron et al., 2023a) or Falcon (Penedo
et al., 2023). Instead, we initiate the weights of a domain-specific foundation model entirely
from scratch and directly train it on domain-specific data.
Adopting the approach of training a model from scratch comes with two significant impli-
cations. On the one hand, by choosing not to utilize a pre-trained foundation model, we
inherently forego the advantages that come from training on the vast corpus of trillions of
tokens that such models have been exposed to. These pre-trained models, despite not having
fully disclosed datasets, are likely to have been trained on a diverse range of information,
some of which could be beneficial for our purposes. On the other hand, initializing the model
from scratch offers us complete control over the training data, which is particularly crucial
in a field like climate change that is prone to misinformation and bias (Coan et al., 2021).
By carefully selecting and curating the data, we can ensure that the model is trained on
accurate, reliable, and scientifically valid information. This level of control allows us to
mitigate the risk of perpetuating biases or inaccuracies that might be present in larger, less
controlled datasets. While we can expect better performance from training on more data
(Kaplan et al., 2020; Hoffmann et al., 2022), projects developing domain-specific models
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Figure 3: Training loss of the from-scratch general (orange) and from-scratch climate (purple)
models.

often have lower compute budgets compared to general-purpose models with a broader range
of applications. Thus, training on less but more relevant and high-quality data could still
result in better performance.
In our setup, we align our model architecture closely with the Llama-2-7B model developed by
Meta, also utilizing the Llama tokenizer (Touvron et al., 2023a), which employs the Byte Pair
Encoding (BPE) algorithm (Sennrich et al., 2015). We recognize that developing our own
tokenizer, tailored specifically to climate-related terminology, could potentially give better
vocabulary compression for domain-specific terms. However, due to time constraints within
the project, we left this for future work. Nonetheless, our experience here provides a data
point to judge the impact of different training datasets on model performance, while keeping
other variables constant. For this reason, we continue with the rest of the development steps,
such as instruction fine-tuning, with the from-scratch pre-trained model.
For from-scratch training, we use the same setup as for CPT training. We use a cosine
learning rate schedule with a peak learning rate of 3 · 10−4, a warm-up of 100 steps and decay
to 10% of the peak learning rate, i.e. to 3 · 10−5. The batch size is set to 1040 and we use the
full sequence length of 4096 tokens. For regularization, we use weight decay of 10−1. Both
models are trained for 75,000 steps the resulting effective tokens seen per subset are shown in
Table 2. The training loss curves for the models are shown in Figure 3. To train both models
we use the Adam optimizer (Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.95 and ϵ = 10−5.
While these values are commonly used to train large language models (Brown et al., 2020;
Biderman et al., 2023; Touvron et al., 2023b), we want to highlight that decreasing the β2
momentum from the common default value of 0.999 decreases training instabilities and loss
spikes caused by large batch sizes (Zhai et al., 2023).

2.5 Training Hardware

Given the computationally intensive nature of training a foundational model from scratch
(Hoffmann et al., 2022), there are significant environmental considerations, especially pertinent
in the context of our work in the climate domain. Therefore, we choose to utilize a high-
performance computing cluster that is entirely powered by hydropower (24g CO2eq / kWH
(Schloemer et al., 2014)), provided by MLFoundry. The cluster has 32 nodes, each equipped
with 8 H100-SXM GPUs. These nodes are interconnected through InfiniBand, ensuring
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Figure 4: Instruction Fine-Tuning Tracks

high-speed data transfer and communication across nodes. Additionally, within each node,
the GPUs are connected via NvLink, facilitating efficient intra-node GPU communications.
Leveraging Megatron’s (Shoeybi et al., 2019; Cano et al., 2023) efficient implementations of
data parallelism, tensor parallelism, and pipeline parallelism, we achieved an average training
speed of 250 TFLOPS per GPU, and the training run took 3.7 days on 20 nodes. When
fully utilized, we assume a power consumption of 775W per GPU (including CPU).

3 Instruction Fine-Tuning

After pre-training, we expect that the resulting domain-specific language models have a
deeper understanding and knowledge of the target domain than comparable foundation
models. Since these models were merely trained to predict the next token in our pre-training
dataset, using them for specific downstream tasks requires careful prompting or providing
the model with few-shot examples. Adapting these models to follow users’ instructions
formulated in natural language and generate answers in a style appropriate for our use case
requires Instruction Fine-Tuning (IFT) (Ouyang et al., 2022a). In the literature, this is also
often referred to as Supervised Fine-Tuning (SFT), but we use this terminology as a clearer
distinction to other fine-tuning steps (e.g. CPT or task-specific fine-tuning). To do this, the
model is trained on instruction and corresponding completion pairs. In the following, we are
also referring to these pairs as demonstrations. To limit the complexity of the required data,
we decided to only focus on prompt and completion pairs and not to collect any multi-turn
chat interactions.
To adapt the style of completions to be appropriate for our envisioned use case, we require
a sufficiently large amount of in-domain data for IFT. However, collecting such a dataset
is challenging, as it requires a certain level of expertise in the target domain. During the
project, we had the privilege to be able to work with a small team of climate experts as well
as a larger team of non-experts with limited domain knowledge.
Figure 4 shows the different tracks we followed to collect IFT data. The first track of our
IFT data consists of demonstrations (i.e. instruction and completion pairs) collected through
interviews with senior climate experts (i.e. experienced researchers in the field like professors
or other leading experts). During the interviews, the main questions in the field of study of
the expert were discussed, implications on other fields as well as different use cases for a
climate-specific LLM.
For the remainder of the collected climate-specific IFT data, we provided annotators with
existing documents as the basis for the demonstrations they generate. We identified that
coming up with new topics can be a limiting factor in the data creation process for the
annotators, and this approach can help to concentrate their mental load to write a good
completion. Additionally, having control over these “seed” documents means that we can
increase the diversity of topics to be covered in the IFT corpus. For the human expert
generated part of our IFT data, non-senior climate experts (i.e. graduate or PhD students or
other early career researchers) created data based on primary sources (like research papers
and technical sections of the IPCC reports). As the time of climate experts is valuable and
limited we additionally worked with a larger team of non-expert data annotators. Most
primary sources, like climate change papers or technical sections of the IPCC reports, were
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Domain Name Total Size Training Samples
Climate Senior Expert Interviews 74 1,332

Grounded Expert Demonstration 403 7,254
Grounded Non-Expert Demonstrations 9,663 146,871
Synthetically Generated Demonstrations 57,609 0
StackExchange 3,282 9,846

General AppTek General 700 2,100
OASST-1 3,783 11,349
Dolly 15,001 45,003
Llama-2 Safety 939 2,817
FLAN 38,909 30,000
CoT 448,439 15,000

Total 271,572

Table 3: Details about the Instruction Fine-Tuning datasets.

not completely comprehensible by the non-experts. Therefore, for this team, we decided to
focus on secondary sources such as governmental websites (e.g. from the EPA, NASA, or
European Parliament) and summary sections of the IPCC reports. As we were still concerned
that we might not be able to collect a sufficient amount of in-domain data, we simultaneously
experimented with synthetically generated demonstrations from the documents using a
general-purpose LLM as opposed to the manual IFT creation from above.
Finally, to increase the amount and diversity of instruction-tuning data and to be able
to reuse well-developed non-climate domain-specific instructions, we made use of existing
general domain IFT data. Table 3 gives an overview of the different IFT datasets that were
used to train ClimateGPT. The rest of this section is devoted to providing more details on
these datasets and how they are used to train ClimateGPT.

3.1 Senior Expert Interview Demonstrations

Our vision for the model is for everyone to have a personal climate expert at their fingertips
breaking down questions and concepts to the level of expertise of the user. Interviews with
climate experts most closely resemble this goal and thus IFT data created in this process
is the most valuable data source for ClimateGPT. We started the interviews by defining
foundational concepts in the area of expertise of the interviewee and the role of climate
change. Second, we discussed current trends in the field and the expected developments in
the future. Next, we discussed pivotal findings and research papers in the field and extracted
key arguments. Finally, we brainstorm ways in which a climate-specific LLM could be helpful
for stakeholders involved in this specific field. As the time of the corresponding experts is
very limited, instruction and completion pairs were developed afterward by the interviewer.
For the first version of ClimateGPT, we conducted a series of interviews with the agricultural
ecologist Dr. David Lobell. He is the Director of the Center on Food Security and the
Environment at Stanford University and also served as lead author for the food chapter on
the IPCC Fifth Assessment Report (AR5). The result of this process was a high-quality
IFT dataset of 74 demonstrations. Based on these promising results, we plan to refine our
methodology and conduct additional interviews.

3.2 Grounded Expert Demonstrations

In addition to the non-expert annotators, we collaborated with nine climate scientists
(graduate or PhD level) from different European universities. For the data collection,
AppTek’s data annotation tool Workbench3 was used. The team worked in close collaboration
with the authors to improve the style of the generated data.

3https://www.apptek.com/technology/workbench-data-annotation
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Task Category %
Open Ended QA 26.9
Open Ended Generate 48.0
Open Ended Classification 1.2
Open Ended Chat 4.7
Open Ended Chain of Thought 0.1
Open Ended Brainstorm 7.5
Closed Ended Summarize 4.7
Closed Ended Rewrite 0.2
Closed Ended QA 3.8
Closed Ended Extract 1.6
Closed Ended Classification 1.3

Table 4: Task distribution for the non-expert data collection.

As a first step, we asked the nine climate scientists to think themselves about five to ten
questions relevant to climate change that they find important to address and feel comfortable
answering. We proposed to them to organize their answers with a scientific mindset (the
style we want ClimateGPT to use) by first making a summarizing statement followed by a
list of bullet points explaining or developing elements of the summary. Each answer should
refer to a scientific source, from which the experts should extract a couple of paragraphs
relevant to the answer. The retrieved paragraphs were stored so that they could be used
later on. This first exercise was a first test used to evaluate the writing skills of our experts.
At the end of this first phase, we continued with seven of the nine experts with the IFT
creation task.
In the second step, we provided the experts with references to primary sources and questions
related to these sources that have been generated by our synthetic IFT pipeline (Section 3.4),
as a source of inspiration. The synthetically generated questions can be very specific reading
comprehension questions with respect to the reference source that often has no relevance
outside of the source document used. Such questions would either need to be generalized or
skipped by the expert. Also, to be time-efficient while producing an answer, we proposed
to our experts to choose those questions that relate to their domain of expertise (e.g. city
climate, tropical climate, etc.). At the end, we gave each expert a set of 1,000 question-answer
pairs, from which 50 to 250 have been selected. In contrast to the non-expert data collection
effort (Section 3.3), we did not suggest specific task categories to the experts and instead let
them decide on relevant instructions.
As addressed previously, we want the model to be able to generate different in-depth responses
addressing the different dimensions of climate change, namely natural science, economics,
and social aspects. To collect IFT data for this feature, we asked the expert annotators to
create four responses to the same prompt one giving a general answer and three focusing on
one of these dimensions.

3.3 Grounded Non-Expert Demonstrations

For the non-expert data collection, we worked with a team of 99 annotators employed by
external contractors from six different countries and three continents. Annotators were
selected based on their educational background, domain-specific expertise and interests,
strong communication skills, and writing skills. More details on the demographics of the
annotators are provided in Appendix A.4. All annotators were trained by the corresponding
project managers on the project scope, guidelines and requirements. The team used the
same tool as the expert annotators (Section 3.2).
To ensure a certain level of diversity of types of instruction, we provided annotators with a
task category. The set of tasks and their distribution is based on the use case categories
reported in (Ouyang et al., 2022b). The resulting task distribution is shown in Table 4. For
each category textual guidelines were provided to the annotators.
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For the initial phase of the project, we did not provide annotators with any specific topic to
work on in addition to the general climate topic. However, we observed that this resulted in
too many simplistic and overlapping prompt and completion pairs. Providing annotators
with a specific topic to work on resulted in more diverse and interesting data. Topics were
selected based on interviews with climate experts to cover the climate impact across various
real-life situations and elements. Table 19 in Appendix A.4 shows the full list and distribution
of topics.
The recommended way of data creation was to find content from approved data sources
to develop ideas for prompt and completion pairs. Initially, we provided annotators with
primary sources, such as research papers and technical sections of the IPCC reports. However,
initial feedback showed that our annotators struggled with these documents. Therefore, we
decided to switch to secondary sources, such as governmental websites (e.g. from the EPA,
NASA, or the European Parliament) and summary sections of the IPCC reports. Besides
the trustworthiness of the content, data sources were approved to avoid copyright issues.
Annotators were instructed to give in-text citations to sources they were using in the
completion. We instructed annotators to give citations in MLA style (i.e. author name,
title, and source in brackets) but noticed that this resulted in inconsistencies that had to
be corrected in post-processing. Later we switched to IEEE style (i.e. reference number in
square brackets). The data annotation tool allows storing additional details for each citation,
such as the URL or the cited text, as additional metadata for the prompt-completion pair.
At the beginning of the data annotation process, we decided to instruct annotators to only
store the URL of the cited source and not the cited text itself. While the latter would have
been useful to improve the retrieval augmented generation capabilities of the model, we
decided against it in concern that annotators would restrict themselves to the referenced
text (instead of making use of all information in the document) and to avoid increasing the
complexity of the annotations process, and, thus, the volume of data we can collect. As an
alternative, we can make use of the URLs to crawl the complete document and reconstruct
the cited paragraph automatically. Section 4.3 discusses this process in more detail.

3.4 Synthetically Generated Demonstrations

As access to experts who can make use of primary sources is limited (and we initially
were concerned that we may not be able to collect enough human-generated IFT data), we
were also investigating synthetically generating demonstrations from primary sources. To
achieve that we prompted an existing general-purpose LLM with few-shot examples and a
document and instructed the model to first generate a question and the corresponding system
completion. The prompts were carefully designed to increase the diversity of the generated
data. Further, we applied multiple post-processing steps to ensure that the generated data
is of high quality. These steps included verifying that there is not too much and not too
little overlap to the reference documents and prompting general-purpose LLM again to check
whether the generated completion is plausible. Further, we filter out questions or responses
that mention figures or specific sections from papers and try to detect other text generation
artifacts like repeating sequences. This process was initially designed with a multi-turn
model in mind. Therefore, completions were intentionally kept shorter with the intent that
the user might ask follow-up questions. The decision not to allow multi-turn interactions in
this initial version and that more comprehensive answers are preferable came later in the
project.
While initial experiments showed promising results, we did not observe consistent improve-
ments in our automatic benchmarks for later versions of the models when using this data.
Thus, due to this and due to the lenght mismatch this data is not directly included in our
final IFT data mixture.

3.5 General Domain Data

As the last track of our IFT training dataset, we make use of existing human-written IFT
datasets that are available to us. The first is an internal high-quality set of prompt-completion
pairs originally collected by AppTek. We are referring to this dataset as AppTek General.
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The data collection methodology was similar to the one described for the non-expert data
collection.
Further, we make use of two openly available crowd-sourced IFT datasets. First, Databricks
Dolly (Conover et al., 2023) was the first openly available human-generated IFT dataset
with a permissive license. The dataset consists of 15,001 prompt and completion pairs
across 7 task categories and was generated over two months by over 5,000 employees at
Databricks. Second, OpenAssistant Conversations 1 (OASST-1) (Köpf et al., 2023) is a
dataset consisting of 161,443 messages in 35 different languages. The corpus is the result of
a worldwide multilingual crowd-sourcing effort involving over 13,500 annotators. In contrast
to all previously mentioned IFT datasets, this dataset does not only contain instruction and
completion pairs but also multi-turn conversations. For ClimateGPT, we only make use of
English conversation and only include the best-rated messages in each conversation tree,
resulting in a total of 3,783 conversations.
As an additional source of data, we included 3,282 question-and-answer pairs from domain-
relevant StackExchange communities (earth science, sustainability and economics). Another
common approach to curating IFT datasets is to format existing NLP datasets as instruction
and completion pairs using task-specific templates (Wang et al., 2022; Longpre et al., 2023).
While training on this type of data alone is not sufficient to achieve good performance
(Ouyang et al., 2022b), combining this type of data can be beneficial (Wang et al., 2023a).
A possible explanation for this is that this way the model is exposed to a larger variety
of tasks and more examples of in-context learning. At the same time, this type of data is
closer to our evaluation tasks than human-written pairs, which might explain improvements
in automatic evaluation that might not translate to improvements under realistic use. We
decided to include 15,000 examples per epoch from FLAN v2 and CoT as described by Wang
et al. (2023a) into our training data.
Most recently published instruction fine-tuning datasets were created by distillation from
large proprietary LLMs like GPT-4. Examples of these include Alpaca (Taori et al., 2023),
Vicuna (Chiang et al., 2023) or WizardLM (Xu et al., 2023). We intentionally decided not to
make use of these datasets. First, recent research has shown that training on these approaches
can successfully transfer the style of the models but not their factuality (Gudibande et al.,
2023). Second, the biases of the teacher model may be transferred to the student. And
finally, the licensing terms of commercial LLM providers often limit the use of their API to
train models that potentially compete with them. Due to this, the usage of this type of data
in models intended for commercial use is problematic (Taori et al., 2023).

3.6 Safety Data

One missing component in our IFT dataset is examples to align the model to be safe and
harmless. While both Dolly and OASST-1 contain a few examples of refusing to answer
intentionally harmful prompts, we observed that this was not enough to make the model
safe. To evaluate this, we analyzed completions of initial versions of the model on a subset
of the Do-Not-Answer dataset (Wang et al., 2023b). This dataset consists of around 1,000
prompts that are intentionally designed to invoke harmful or offensive model outputs. As
expected, the initial model produced multiple unsafe and potentially harmful outputs, which
suggests that additional demonstrations of expected model behavior are required. As writing
safe completions to these types of prompts can be especially stressful for annotators and new
approaches to safety are not the center of this work, we decided to make use of an already
safe model to generate the completions synthetically. Specifically, we generated completions
for each prompt in the dataset using Llama-2-Chat-70B (Touvron et al., 2023a) and included
this data in our IFT set. We are referring to this dataset as Llama-2 Safety. The design
considerations around safety are discussed in more detail in Section 8.1.

3.7 Data Preparation

We use a mix of different sources for our IFT data to enable alignment with the different
aspects outlined in the previous sections. Table 3 shows the mixing ratios of the different
subsets in our final model training. We just train for a single epoch on the general domain
data and up-sample the climate-specific data.
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Figure 5: Training (solid) and validation (dashed) loss of the final IFT models.

During inference, we want the model to generate text that is as close as possible to our
expert-generated data. However, since the majority of the IFT data comes from other
sources, we need some mechanism to counteract this. Our solution to this is to use different
system prompts for each data source to condition the model. By using the system prompt
corresponding to the expert IFT data we can control its style at inference time. Further,
this also allows us to train on data that, e.g. does not make use of all the features of the
model (e.g. does not provide citations to references as discussed in Section 4.3). The system
prompts for each of the subsets are listed in Appendix A.6.
To prepare the IFT data for training, we make use of the codebase from Open Assistant4.
During training the IFT data is formatted using the ChatML prompt template5, following
other recent open source models like Open Assistant6 or Meditron (Chen et al., 2023).
Standardizing prompt templates in open-source models results in greater compatibility with
existing tools and libraries.

3.8 Training

As for pre-training, we use a fork of NVIDIA’s Megatron-LM (Narayanan et al., 2021) by the
EPFL LLM Team (Cano et al., 2023; Chen et al., 2023) for IFT training. We use a cosine
learning rate schedule with a peak learning rate of 10−5 and a warm-up of 100 steps. The
batch size is set to 64 and we use the full sequence length of 4096 tokens. For regularization,
we use weight decay of 10−2 and dropout as used for LIMA (Zhou et al., 2023). The training
and validation loss curves for our models are shown in Figure 5. As the validation set, we
used a held-out set of 400 prompt and completion pairs from our non-expert climate data.
As was observed by previous work (Ouyang et al., 2022b; Zhou et al., 2023), the perplexity
on the validation set first decreases for the first steps and then increases. Typically, this is a
clear sign of over-fitting, but, as in other works, we observe that the quality of the model still
improves. This is measured by evaluating the model on our automatic evaluation benchmark
(Section 6).

4https://github.com/laion-ai/open-assistant/tree/main/model/pretokenizer
5https://github.com/openai/openai-python/blob/120d225b91a8453e15240a49fb1c6794d8119326/

chatml.md
6https://huggingface.co/OpenAssistant/llama2-70b-oasst-sft-v10
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4 Retrieval Augmented Generation

While pre-training and instruction fine-tuning on climate-specific data improve the climate
knowledge of the model, large language models still tend to hallucinate information, especially
facts that are not well represented in the training data. An example, where this is especially
problematic, is specific numeric figures, for example, CO2 emissions of a country in a specific
year. In addition, the model’s knowledge is frozen and it is not possible to incorporate new
facts or knowledge without additional training or other approaches to modify the model’s
weights (Mitchell et al., 2022). In the domain of climate change, these issues are critical.
The field is constantly evolving and having access to the latest findings is crucial to draw
relevant conclusions.
Retrieval augmented generation (RAG) addresses both of these issues by retrieving relevant
documents from external databases and providing these documents as additional context
to the model. While the approach was originally proposed for question-answering (Chen
et al., 2017; Guu et al., 2020), it has been successfully applied to other tasks like machine
translation (Khandelwal et al., 2021), task-oriented dialog (Thulke et al., 2021) and recently
in the context of instruction-tuned LLMs (Shi et al., 2023b). The general approach for RAG
is to have a separate retriever module which given the user query returns a list of relevant
documents. Then, in the language model – often referred to as reader in this context – both
user query and retrieved documents are given as context to the model to produce a response.
Due to the limited sequence length of transformers and efficiency concerns, it is often not
feasible to provide full documents (like full research papers) to the model. Instead, shorter
excerpts of a few sentences or paragraphs are typically used as the unit for retrieval and input
to the model. Systematic studies show that RAG can reduce the number of hallucinations in
language models (Shuster et al., 2021).
Nevertheless, the approach still suffers from limitations. Models usually suffer from noise
or irrelevant documents in the retrieval context (Shi et al., 2023a; Cho et al., 2023). We
address this issue by including distractor documents during IFT training to allow the model
to learn to ignore irrelevant documents.
While RAG is an obvious approach to increase the factuality of generated responses, it also
suffers from an inherent trade-off between factuality and abstractiveness (Daheim et al.,
2022, 2023). With current RAG approaches, generated responses are often limited to the
information provided in the retrieved documents and do not provide a broader perspective. For
climate communication, it’s especially important to provide an interdisciplinary perspective
integrating different viewpoints in the response. To address this in our approach, we propose
to make use of distinct sets of documents to generate different answers each covering one of
the main perspectives.
We would like to note that RAG is widely used in literature to improve LLMs in the domain
of climate change and communication First, ChatClimate (Vaghefi et al., 2023) makes use of
GPT-4 as LLM and follows the standard approach outlined above. As a document source,
the IPCC AR6 reports are used. The reports are converted to raw text and split into smaller
chunks. For retrieval, OpenAI’s text-embedding-ada-0027 embedding model is used. In
contrast to our approach the retrieval database is just limited to IPCC reports and the base
LLM was not adapted to the domain. The system explicitly refuses to generate completions
for prompts for which no relevant passages can be found in the IPCC reports. Secondly, for
Arabic Mini-ClimateGPT (Mullappilly et al., 2023) the authors fine-tune Vicuna-7B (Chiang
et al., 2023) which is based on the first version of Llama-7B (Touvron et al., 2023a). Similar
to this work, they dynamically retrieve both English and Arabic climate-specific documents
but do not specify the source of the documents in more detail. In contrast to us, they do
not perform continued pre-training to adapt the model to their domain. Furthermore, their
IFT data was synthetically, generated using ChatGPT, while our climate-specific IFT data
was manually curated by humans in close cooperation with multiple climate scientists and
experts.
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Source # Docs # 512 Chunks
IPCC Reports 16 17897
Potsdam Papers 390 8539
Earth4All 14 235
73 other (open access) 336 8648

Table 5: Statistics of the different data sources of the primary retrieval dataset.

4.1 Retrieval Dataset

The dataset for retrieval consists of a manually curated collection of scientific reports and
papers. We used the IPCC reports as a starting point and then manually extended the
dataset with additional trusted sources in collaboration with climate experts. Therefore, we
focused on recent documents to avoid including outdated research. During the data collection,
we carefully evaluated the license of each document and only included content with open
access or Creative Commons licenses allowing commercial use. To reduce the complexity
of the text extraction pipeline, we only considered digitally native PDF documents (i.e.
documents where the content can be directly extracted without requiring OCR or similar
approaches).
After collecting the PDF documents, we first split the documents into separate PDF pages
and for each page, the text is extracted using PyMuPDF8. While with this approach we
might split relevant paragraphs in the middle of a sentence and loose cross-page context,
it greatly simplifies our data processing pipeline. Then, the text on each page is split into
chunks of 115 tokens. Next, we observed that many pages in these documents do not contain
any relevant information for RAG and potentially degrade performance. These include, for
example, tables of content or pages with references. These pages have a high density of
superficially relevant content and thus are likely to be retrieved. On the other hand, in most
cases, these pages do not provide the full information required to generate a response. To
remove these pages, we use a combination of manual data cleaning as well as heuristics to
detect problematic content. We deployed a custom tool to iterate, filter, and manually edit
data and end with a final set of curated and clean data. The resulting pages are converted to
sub-word tokens and then split into chunks of length 115 with stride 10. As the last step, we
filter chunks that do not contain enough information (e.g., chunks only containing numbers
from tables).

4.2 Retrieval Approach

For retrieval, we follow the common approach of using a transformer bi-encoder model
(Mazaré et al., 2018; Reimers and Gurevych, 2019). Here, both document and query are
passed separately through a transformer encoder to produce embedding vectors for both
sequences of tokens. The similarity between the query and the document is then measured
by calculating the dot product or cosine similarity between corresponding vectors. The main
advantage of this approach is that embeddings for all documents can be pre-computed and
only the query has to be passed through the model at inference time. Other retrieval methods,
like cross-encoders (Reimers and Gurevych, 2019), pass query and document through the
model simultaneously. While this results in better retrieval performance, the inference cost
becomes prohibitively expensive if the document database exceeds more than a few hundred
documents; as in the case of our approach, where we want to access a broad range of content.
Therefore, the cross-encoder approach is commonly used only to re-rank results from other
more efficient methods.
As training our own retrieval model was out-of-scope for this project, we evaluated several
existing embedding models. We only considered bi-encoder models and did not integrate an
additional model for reranking. As an initial set of models, we considered the best-performing
models on the MTEB benchmark (Muennighoff et al., 2023). To be able to do our own

7https://openai.com/blog/new-and-improved-embedding-model
8https://pymupdf.readthedocs.io/en/latest/
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Question Answer
Model Params R@1 R@5 R@1 R@5
bge-base-en-v1.5 0.1B 54.8 71.5 81.8 92.1
bge-large-en-v1.5 0.3B 55.8 73.6 83.3 93.1
gtr-t5-large 0.3B 48.8 67.4 79.6 90.1
gtr-t5-xxl 4.8B 47.6 66.3 79.2 89.7
gte-large 0.3B 50.7 68.2 80.9 91.4
ember-v1 0.3B 49.5 68.6 79.7 91.1
instructor-large 0.3B 50.0 68.2 81.7 91.8
instructor-xl 1.2B 53.3 69.7 83.3 92.1

Table 6: Recall (R@1 and R@5) of retrieving the correct document given the question or the
answer from the synthetically generated IFT dataset.

in-domain and use-case-specific evaluation, we selected a subset of the synthetically generated
IFT data (Section 3.4) as a test set. The generated question and source paragraph are
considered positive pairs and all other paragraphs as negatives. We run the benchmark
both with the question and with the answer as a query. The results of this evaluation
and the models under consideration are shown in Table 6. We got the best results using
bge-large-en-v1.5 (Xiao et al., 2023) and decided to use this embedding model for retrieval.
To increase the relevance of retrieved chunks, we use a hierarchical retrieval approach.
Therefore, we first retrieve the top-k PDF pages. We use the full text on the page to
calculate the embedding. If the length of the text on a page exceeds the maximum sequence
length of the embedding model (512 in our case with variable stride length), we use a sliding
window over the sequence and average the embeddings to get a single embedding for the
whole page. After selecting the top-k (k = 60) pages, as a last step, we retrieve the top-k
(k = 5) most relevant chunks corresponding to these pages (note that the number of chunks
per page varies). This ensures that the page context of retrieved chunks is also relevant to
the query.
HuggingFace Transformers (Wolf et al., 2020) and Sentence Transformers9 (Reimers and
Gurevych, 2019) was used to deploy the embedding models and to embed text in preprocessing
and inference stages. For efficient nearest-neighbor search we use ScaNN10 (Guo et al., 2020).

4.3 Grounding

To improve the model’s capabilities to make use of reference paragraphs provided in the
context, we train the model with IFT examples that already include reference paragraphs. For
the IFT data collected from climate experts (Section 3.2) and from interviews (Section 3.1)
we asked the annotators to provide the reference paragraphs as additional metadata. For the
non-expert data (Section 3.3), we used the URLs of the cited sources to crawl corresponding
documents and extract cited paragraphs. Most of the cited sources were websites; therefore,
we constructed a separate pipeline to crawl these websites, extract the text using Mozilla’s
readability11 and inscriptis12, and split the content into smaller chunks.
As also shown in Table 6, it is easier to retrieve the correct paragraph using the completion
as a query than using the prompt. The reason for this is that the completion contains all the
relevant information from the document and thus has high semantic similarity. In contrast,
the question just asks for the corresponding information which may not necessarily imply
semantic similarity. In our case, we can make use of this fact by not only considering the
relevance of the prompt to the potential reference chunks, but also the relevance of the
answer. Furthermore, as discussed at the beginning of this section, numbers are a common
source of hallucinations in LLMs. Thus, we want to make sure, that the numbers that

9https://github.com/UKPLab/sentence-transformers
10https://github.com/google-research/google-research/tree/master/scann
11https://github.com/mozilla/readability
12https://github.com/weblyzard/inscriptis
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annotators extracted from the provided reference are part of the selected reference chunk. To
achieve this we add the overlap in numbers between the completion and potential reference
paragraph as an additional scoring factor. Based on these three scores, we select the best
matching chunk from the reference document as source chunk which is given as context
during IFT training.
To increase the robustness of the model to irrelevant retrieval results, we added distractor
chunks as additional context. These chunks are selected from the total set of chunks produced
by the pipeline above. To select chunks not relevant to the answer, we use the opposite of
the scoring function outlined above, i.e. we select chunks with high similarity to the prompt
but with low similarity to the answer and with low numerical overlap. Additionally, some
tasks for the model do not require information from any reference paragraph. Examples
include all closed-ended task categories described in Table 4. For these tasks, the prompt
already includes all relevant context, so everything that is retrieved is just unnecessary noise.
Instead of detecting this at inference time and disabling the retrieval augmentation, we also
include distractor paragraphs during the training of IFT examples of these categories to
make the model more robust.

4.3.1 Citations

In a scientific context, it is important that provided information is attributable. In RAG,
the retrieved chunks are attributable since their source is known. However, the generated
completion is not necessarily explicitly related to any of the chunks. It would be helpful to
know which chunks exactly were used to generate which part of the response. As discussed
in Section 3.3, annotators were asked to provide in-text citations for each reference. We
converted these citations to special tokens [[0]], [[1]], etc. which are prepended to the
corresponding chunk in the context as well as the token for the citation. While the general
approach seems to work, we observed that citation tokens are hallucinated in some cases.
We attribute this to the automatic extraction of reference chunks that might not cover all
relevant details of the source documents and, thus, introduce noise. For this reason, we
removed citations from the IFT data for the final ClimateGPT models and plan to reconsider
this in the future.

4.4 Three Dimensions

Climate change is inherently an interdisciplinary field. Therefore, to effectively serve our
intended audience, including policymakers, scientists, and journalists, we aim to enhance our
model to adeptly address queries from three critical perspectives: natural, economic, and
social science aspects. Our goal is to have the model’s outputs tailored to the multifaceted
nature of climate change, thereby providing comprehensive insights essential for informed
discussion and decision-making in the field.
To this end, we devise a three-step approach. First, we utilize the ChatGPT gpt-3.5-turbo
API to tag our retrieval database with labels corresponding to the natural science, economic,
and social aspects. Our preliminary experiments demonstrate that the quality of tags
generated through few-shot prompts with gpt-3.5-turbo are satisfactory, and we do not
further use gpt-4. The detailed prompt can be found in Appendix A.8. Second, during
inference, we retrieve the most relevant documents for each dimension using the tags above.
These sets of documents are then fed separately to the model to generate three distinct
completions. The final step involves modifying the system prompt to instruct the model to
focus on the specific dimension. These special system prompts were already used during IFT
training, for the examples where we had demonstrations focusing on these dimensions.

5 Multilinguality

To achieve our goal of making climate science accessible to a broader range of users, it is
important that the model is not only accessible in English but is multilingual. To support
multilinguality in LLMs, there are two options. The first is to include multilingual data
in the pre-training and IFT data. The other is to rely on Machine Translation (MT) to
translate the user input into English, and to translate the generated text back into the
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Method Supported Languages
native in LLM English
cascaded MT Arabic Bengali Chinese (simplified)

Dutch Finnish French
German Greek Hebrew
Indonesian Japanese Korean
Lithuanian Pashto Persian
Portuguese Russian Spanish
Thai Turkish Vietnamese

Table 7: Supported languages. English is native to the underlying LLM, while the support
for other languages is achieved via a cascaded translation approach, i.e. xx→en at the input
and en→xx at the output.

user’s language, i.e. a cascaded approach. We chose the latter because there is a lack of
multilingual data in the climate domain and we wanted to maintain consistent quality in
multiple languages. In Table 7, we list the supported languages.
To enable higher translation quality for climate text, we performed several domain adaptation
experiments. Building on a generic base NMT model, we continued fine-tuning the model on
parallel sentence pairs extracted from climate data only. As the initial version of the model
was presented in December 2023 at the 28th United Nations Climate Change conference in
Dubai, we focussed our experiments on Arabic.

5.1 In-Domain Data

To extract parallel climate-related data from our large background collection of public and
proprietary datasets, we explore two methods.
For the first method, we used around 2K climate terms and their human translations. We
filtered the parallel data based on exact matches of these terms. We then fine-tuned our
base model on these parallel sentences. We use Exact Match (EM) to denote this model.
The second method is based on sentence embedding similarity. For this method, we take
climate-related monolingual text, mainly a subset from our LLM pre-training data, as seed
data. First, we use a weighted average over the word embeddings of a sentence to generate
a fixed-size sentence embedding. To obtain a sentence pair embedding, we concatenate
the source and target sentence embedding of each bilingual sentence pair. Afterwards, we
employ k-Means clustering in the sentence pair embedding space. After obtaining a set of
clusters, we use the in-domain seed data to determine which clusters should be used for
training. This is done by selecting all clusters that contain a non-negligible portion of the
in-domain data using a fixed threshold. For details, refer to AppTek’s submission to the
shared task of the IWSLT13 evaluation (Bahar et al., 2020). The resulting parallel corpus is
then used for fine-tuning the baseline translation model. We call this approach Embeddings
Clustering (EC).
In Table 8, data statistics related to the machine translation adaptation are shown. Initially,
we took a subset of our training data, excluding those corpora that most likely will not benefit
the conversation about climate. For example, we excluded subtitling data, transcriptions,
and some others. The remaining data is the Filtered Base data in Table 8. We filtered this
data again to extract EM and EC data.

5.2 Training

We used Transformer big architecture and parameters for the MT model (Vaswani et al.,
2017a). The fine-tuning process is done for a fixed number of steps for both data setups.
The training stopped after 15M parallel sentence pairs with a learning rate of 8.0 · 10−5. This

13International Workshop (Conference) on Spoken Language Translation.
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Data Line count Word count
Filtered base 88.4M 1.9B
Exact Match 2.5M 63M
Embedding Clustering 22.5M 0.5B
IPCC Testing 5.7K 68K

Table 8: Data statistics related to machine translation adaptation.

IPCC FLORES OpenSubtitles
Base 28.1 40.3 29.1
EM 29.5 39.7 26.9
EC 28.8 40.0 28.1

Table 9: Bleu scores in % of the baseline and adapted Arabic→English models, using
in-domain climate data or out-of-domain data as held-out evaluation sets.

means that the EM data were seen multiple times, while the training did not go through all
of the EC data. For model adaptation usually the data size is much lower, and it does not
make sense to train on a huge amount of data.

5.3 MT Evaluation

To construct a climate-domain test set, we used a translated IPCC report (Pachauri and
Meyer, 2014). These reports have professional translations into multiple languages. We
converted the PDF reports into text and aligned the sentences using vecalign (Thompson
and Koehn, 2020).
Apart from evaluating our adapted MT models on this in-domain test set, we also computed
automatic MT evaluation measures on a general-domain FLORES test set (Team et al., 2022)
and a test set extracted from OpenSubtitles14. Since climate-related questions and answers
may have a broad range of styles and topics, we wanted to make sure that the adapted
models did not over-fit to the style of the IPCC reports, but were still able to translate more
general climate-related content well.
Table 9 presents the Bleu scores of the EM and EC models on the three evaluation sets.
Here, we notice an improvement on the in-domain test data as expected, while degraded
performance on the out-of-domain test set especially for the EM model can also be seen.
This decrease in performance is not as large for the EC model. One probable explanation
is that data filtering on exact matches is more strict than similarity-based filtering. From
these results, we decided to go with the EC approach for the reverse translation directions,
i.e. from English to Arabic.

5.4 Glossary Adaptation

To make sure that climate-specific terms are almost always translated correctly, we use
the climate term base that has formed the seed data for parallel data selection for the EM
model also at inference time. We convert it to a glossary and use a glossary override method
in which the desired glossary-based translation (a word or a phrase) is encoded together
with the source term in the source sentence, both in training and at inference time. Our
approach is similar to the glossary override method suggested by (Dinu et al., 2019), with a
difference that in training, randomly selected bilingual phrase pairs, determined via statistical
word alignment, are inserted as artificial glossary entries. We also use special translation
factors to mark the source and target glossary terms in the sentence, based on our factored
NMT architecture (Wilken and Matusov, 2019). With the successful adaptation of the MT
models to the climate domain, the models are then used in a cascaded approach to enable

14http://www.opensubtitles.org/
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Aspect Datasets Test Set Size Eval. Metric
Climate-Specific ClimaText 1.6K Accuracy

ClimateStance 0.3K Accuracy
ClimateEng 0.3K Accuracy
ClimateFever 1.5K Accuracy
CDP-QA 1.1K Accuracy
Pira 2.0 MCQ 0.2K Accuracy
Exeter Misinformation 2.9K F1-Macro

General Domain PIQA 1.8K Accuracy
WinoGrande 1.2K Accuracy
MMLU 14.0K Accuracy
HellaSwag 10.0K Normalized Accuracy
OpenBookQA 0.5K Normalized Accuracy

Table 10: Benchmarks in Climate and General Domains for downstream task evaluation and
their corresponding metrics.

multilinguality of the system, i.e. xx → en on the user query and en → xx on the LLM
response.

6 Automatic Evaluation

Automatic evaluation of LLMs presents significant challenges that stem not only from
the inherent complexities of natural language tasks but also from the difficulty in accu-
rately capturing the multifaceted capabilities of LLMs with limited metrics. Despite these
challenges, automatic evaluations, with their simplicity, interpretability, availability, and
cost-effectiveness can serve as valuable proxies for assessing model performance.
In our evaluation process, we utilize both established tasks and custom tasks integrated into
the LM Evaluation Harness (Gao et al., 2021), a widely adopted resource in large language
model evaluations, as seen in platforms like the Open LLM15. Our primary evaluation
format involves text classification and multiple-choice questions (MCQs), structured as log
probability ranking tasks. In the case of MCQs, the question and its corresponding choices
are concatenated for model assessment. For a comprehensive overview of these tasks, please
refer to Table 10. We publish all prompt templates and instructions on how to reproduce
the evaluation16.

6.1 Climate-Specific Benchmarks

ClimaBench (Spokoyny et al., 2023) consists of a collection of diverse climate-related
datasets designed to systematically evaluate model performance across a range of classi-
fication tasks. We employ the following 5 datasets from ClimaBench for evaluation: (i)
ClimaText (Leippold and Varini, 2020): This is a binary classification dataset containing
sentences from the web, Wikipedia and the section of US public companies’ 10-K reports that
address climate-related risks. The task is to predict whether a given sentence is relevant to cli-
mate change or not. (ii) ClimateStance (Vaid et al., 2022) contains climate change-related
tweets that were posted during the 2019 United Nations Framework Convention on Climate
Change. The tweets have been manually categorized into three groups for the purpose of
stance detection: those expressing support for climate change prevention, those opposing it,
and those with an ambiguous stance. (iii) ClimateEng (Vaid et al., 2022) is also a climate
change related Twitter dataset, collected in the same manner as ClimateStance, for the task
of fine-grained classification into topics such as: Disaster, Ocean/Water, Agriculture/forestry,
Politics, General. (iv) ClimateFever (Leippold and Diggelmann, 2020) is a fact-verification
dataset of climate change-related claims. Consisting of 1,535 claims obtained from the

15https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
16https://github.com/eci-io/climategpt-evaluation

23

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://github.com/eci-io/climategpt-evaluation


Internet, each claim is paired with five pertinent evidence passages extracted from Wikipedia.
Each claim-evidence pair is labelled into one of three categories: Supports, Refutes, or Not
Enough Info. We use this dataset in two ways for fact-verification: with evidence and without.
In the first case (dubbed Fever-Evidence), the task is to detect whether certain evidence sup-
ports or refutes the claim or neither. The second task (dubbed Fever-Boolean) is to classify
if a certain claim is true or false (without providing any evidence). (v) CDP-QA (Spokoyny
et al., 2023) is a dataset compiled from the questionnaires of the Carbon Disclosure Project,
where cities, corporations, and states disclose their environmental information. The dataset
presents pairs of questions and answers, and the objective is to predict whether a given
answer is valid for the corresponding question.

Pira 2.0 MCQ (Pirozelli et al., 2023) is constructed using a compilation of scientific
abstracts and United Nations reports focusing on the ocean, the Brazilian coast, and climate
change. The objective involves choosing the correct answer from a set of five candidates in
response to a given question, with or without supporting text. The candidate answers are
carefully crafted to exhibit substantial lexical similarity with the supporting text and closely
resemble the correct answer. This deliberate design adds an extra layer of complexity to the
task, demanding a more profound comprehension of the question at hand.

Exeter Misinformation (Coan et al., 2021) dataset contains text from 33 influential
climate contrarian blogs and climate change-related content from 20 conservative think tanks
spanning the years 1998 to 2020. Annotation of the dataset was done manually using a
thorough three-layer taxonomy of contrarian claims related to climate change, developed by
the authors. We utilize this dataset specifically for the binary classification task of discerning
whether a given text contains a contrarian claim on climate change or not.

6.2 General Domain Benchmarks

Besides climate-specific benchmarks, we also conduct evaluations in the general domain. The
goal is to maintain proficiency across general benchmarks while enhancing performance on
climate-specific tests. The evaluation of models in the general domain focuses on two key
aspects: commonsense reasoning and world knowledge.
The reasoning capabilities of models within the general domain are examined using four
datasets: (i) HellaSwag (Zellers et al., 2019): comprising multiple-choice questions derived
from ActivityNet or wikiHow and challenging models to predict the next event in grounded
situations; (ii) PIQA (Bisk et al., 2020): containing binary-choice questions that require
understanding of real-world object interactions in physical scenarios, (iii) OpenBookQA
(O.B.QA) (Mihaylov et al., 2018): containing multiple-choice elementary-level science ques-
tions that evaluate the understanding of scientific facts and the ability to apply them to
novel scenarios; (iv) WinoGrande (Sakaguchi et al., 2021): containing sentences in fill-
in-the-blank format for the task of resolving ambiguous pronouns, given two options for
completion.
The evaluation of models’ world knowledge is carried out using the MMLU
dataset (Hendrycks et al., 2021), which consists of 57 subjects spanning STEM, humanities,
social sciences, and beyond, with varying difficulty levels from elementary to advanced
professional.

6.3 Results

We perform an automatic evaluation on all of our final ClimateGPT models as well as a set
of baselines and other publicly available foundation models. As baselines, we consider the
Llama-2 Chat models by Meta that were instruction fine-tuned on general domain data as
well as further tuned using reinforcement learning from human feedback.
Table 11 shows the 5-shot results of all models on the set of climate-specific
benchmarks. To increase readability, we here just report the weighted average of
ClimaBench results, the weights17 and results for individual tasks are shown in Ap-

17Weights are assigned based on the nature of the task and its relevance to the practical application
of the model.
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Model ClimaBench Pira 2.0 MCQ Exeter Misinf. Weight. Avg.
Stability-3B 71.4 48.7 52.6 62.8
Pythia-6.9B 63.6 22.9 48.9 50.8
Falcon-7B 62.9 19.8 39.9 48.3
Mistral-7B 73.1 80.0 63.7 73.7
Llama-2-7B 68.5 51.1 59.4 62.6
Jais-13B 66.9 26.4 54.2 54.4
Jais-13B-Chat 65.8 66.3 61.3 65.3
Llama-2-Chat-7B 67.8 72.0 64.3 68.5
Llama-2-Chat-13B 68.6 79.3 68.6 71.4
Llama-2-Chat-70B 72.7 88.8 72.5 77.0
ClimateGPT-7B 75.3 86.6 65.9 77.1
ClimateGPT-13B 75.0 89.0 70.0 78.0
ClimateGPT-70B 72.4 89.9 73.4 77.2
ClimateGPT-FSC-7B 59.3 17.2 45.1 46.2
ClimateGPT-FSG-7B 53.1 17.4 41.5 42.1

Table 11: Results on the climate benchmarks.

pendix A.9. The first half of the table shows a comparison among foundation models:
Stability-3B (stabilityai/stablelm-3b-4e1t), Pythia-6.9B (EleutherAI/pythia-6.9b),
Falcon-7B (tiiuae/falcon-7b, Mistral-7B (mistralai/Mistral-7B-v0.1), Llama-2-7B
(meta-llama/Llama-2-7b-hf) and Jais-13B (core42/jais-13b). We observe that Mistral-
7B shows the best performance, followed by Stability-3B and LLama-2-7B. As mentioned in
Section 2.3, due to the unavailability of Mistral-7B at the time of development, we continued
with LLama-2-7B as our base model.
Next, we compare Llama-2 chat models with Llama-2-based ClimateGPT models and observe
that all Llama-2-based ClimateGPT models outperform the corresponding Llama-2 Chat
variant. ClimateGPT-7B even outperforms the two times larger Llama-2 13B Chat model
and performs on par with the 70B Chat model. The two from-scratch models significantly
underperform the Llama-2-based models. While this was expected as Llama-2 was trained
on significantly more data (2T compared to 0.3T tokens), we hoped that the potentially
higher data quality of our corpus could counteract this.
We note that ClimateGPT-70B performs worse than expected on the climate-specific bench-
marks and even worse than ClimateGPT-13B. As discussed in Section 2.3, we did not have
enough time at the end of the project to optimize hyper-parameters for the 70B models, so
we assume the results can be significantly improved by additional optimization (e.g. lower
learning rates).
Further, we observe that the FSC model outperforms the FSG model on climate-specific
tasks. While this gives an indicator that including domain-specific data already during
pre-training could result in better results than the CPT of a general domain model, the
difference is not large enough to justify training domain-specific models from scratch. On the
contrary, when considering the resource requirements of from-scratch training, this confirms
the CPT approach used for the main ClimateGPT models.
Table 12 shows the results of the general domain benchmarks for our baselines and the
ClimateGPT models. We report 10-shot results on HellaSwag and 5-shot on all other
benchmarks. We used these benchmarks to verify that our models do not over-fit on the
climate domain and still perform on par with comparable models on non-climate tasks.
Comparing the main ClimateGPT models to the Llama-2 Chat models, we observe that
we not only do not degrade but even outperform the baseline models. Most of our general
benchmarks are still science focused so we assume that the additional climate data also
benefits these benchmarks.
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Model PIQA WinoGrande HellaSwag O.B.QA MMLU Avg.
Stability-3B 79.4 66.3 76.1 40.8 44.6 61.5
Pythia 6.9B 76.6 61.2 65.5 36.2 25.9 53.1
Falcon-7B 80.3 67.3 78.1 43.6 27.1 59.3
Mistral-7B 81.8 73.9 83.4 48.0 63.5 70.1
Llama-2-7B 79.0 69.1 79.0 45.2 47.0 63.9
Jais-13B 76.5 68.4 73.1 38.6 35.0 58.3
Jais-13B-Chat 76.5 68.4 73.1 38.6 68.4 63.1
Llama-2-7B-Chat 79.0 69.1 79.0 45.2 69.1 62.9
Llama-2-13B-Chat 79.9 72.3 82.3 48.2 72.3 66.4
Llama-2-70B-Chat 83.9 78.0 87.0 52.2 78.0 68.6
ClimateGPT-7B 79.8 70.3 78.4 47.6 68.6 65.1
ClimateGPT-13B 80.7 73.4 82.0 51.8 73.1 68.8
ClimateGPT-70B 83.6 79.4 85.8 53.0 66.6 73.7
ClimateGPT-FSC-7B 72.9 53.4 58.9 36.0 23.0 48.8
ClimateGPT-FSG-7B 72.5 54.5 58.7 38.6 25.1 49.9

Table 12: Results on the general benchmarks.

EXAMS (Acc [%])
Model Arabic MT Ar-En
Llama-2-13B-Chat 25.0 38.0
Llama-2-70B-Chat 28.7 38.6
Jais-13B-Chat 40.9 36.0

Table 13: Arabic EXAMS evaluation results of the English-only Llama-2 Chat models and
compared with the bilingual model Jais, taking the exam directly in Arabic and on an Ar-En
machine translation of the dataset.

6.4 Cascaded Machine Translation

To evaluate the cascaded machine translation approach we evaluate on the Arabic subset of
the EXAMS dataset (Hardalov et al., 2020). EXAMS is a multiple choice question answering
collected from high school examinations. The Arabic subset covers questions from biology,
physics, science, social science and Islamic studies.
For this evaluation we compare Llama-2 Chat which was primarily trained on English text
to the bilingual Arabic-English Jais Chat model (core42/jais-13b-chat) (Sengupta et al.,
2023). All models are first evaluated directly on the original Arabic version of the datasets.
Second, we translate the questions and answer options using our adapted Ar-En MT system
(see section 5) from Arabic to English. The results are shown in Table 13. We first observe
that when evaluating directly on Arabic, as expected, the Llama-2 Chat models significantly
underperform Jais Chat. But, when making use of cascaded machine translation, the Llama-2
Chat models recover most of the performance gap compared to Jais. At the same time with
Jais, we observe a degradation in the results when using the cascaded MT approach from
40.9% in Arabic to 36.0% in English. An explanation for that is, as shown in table 12, Jais
performs worse than Llama-2 Chat on English benchmarks (i.e. 65.3 for Jais compared to
71.4 for Llama-2-Chat-13B). Another explanation could be errors or potential ambiguities in
the automatic translation.
Overall, this shows that cascaded MT is a promising direction to scale LLMs to a large
number of languages. While truly native LLMs for each specific language seem to perform
better, training LLMs for each specific language or a truly multilingual LLM would require
a large amount of resources.
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7 Human Evaluation

The value of automatic evaluations is their very strict definition as well as their repeatability
which allows precise comparisons of systems and models. Automatic evaluations need a set
of clearly defined references and a metric that allows one to measure the difference between
the system output and the reference. For tasks like speech recognition the reference is clear
(the sequence of words that have been spoken) and counting substitutions, insertions and
deletions is fairly easy. For machine translation (respectively summarisation), because, given
a source sentence, several equivalent translations having the same meaning are possible,
flexible metrics have been developed like Bleu (Papineni et al., 2002) (respectively Rouge
(Lin, 2004) for summarisation). For question answering, (e.g. answering questions on climate
change) the variability in the formulation of responses is much higher than that for translation
or summarisation of text where the original text serves as base. Domain knowledge, factuality
and the bringing of arguments in a certain order (reasoning) are key to the quality of an
answer. While the tasks used for our automatic evaluation do cover in some respects climate
change and climate science knowledge they do not give us indications of how well an answer
is formulated, essentially they do not give us insights on how well the arguments (facts) of
the answer are brought together, how good the reasoning supported by the arguments do
lead to an easy to understand conclusion. Multiple-choice questions (used for automatic
evaluations as they allow to limit the number of valid outputs) are good at verifying the
understanding of atomic knowledge. ClimateGPT being targeted at answering complex
questions has to generate the dots between the acquired atomic knowledge, bringing in the
reasoning needed to make the answer self-explainable. It is probably necessary to master the
knowledge behind a domain like climate science to answer complex questions on climate, but
it is not enough. A good answer depends on the ability to reason on this knowledge and
on the formulation clarity of this reasoning. As of today, quality evaluation of answers to
questions is best done with humans having a comprehensive overview of the field and who
can judge whether a response is adequate, if it covers all relevant aspects to the question
and if the reasoning supported by the information provided is well formulated/expressed.
For our human evaluation, a set of 7 climate change post-docs, PhD students and master
students has been asked to provide feedback on the output of 3 different models by ranking
them against each other, Also they were asked to tell us if some claims in the generated
outputs have been hallucinated or not. For the ranking, human evaluators had positive and
negative points to distribute according to the following principles:

• Evaluate the quality of each answer by ranking them within each other and also
qualifying the goodness of each answer.

• Positive numbers are good, negative numbers are bad, the zero is neutral.
• Refer to the sheet “Quality Dimensions” for your evaluation.
• If answers differ only in their syntactical form, please consider them equal.
• The answers in each column have been randomly taken from one of the 3 system

outputs so that you shall not be tempted to find a pattern per system or that you
do not develop a preference for a system.

• Edit columns B C and D from the “Ranking” sheet according to the following
principles:

• You will have the following numbers at your disposition:
– 2 / 1 / 0 / -1 / -2

• The negative numbers are bad grades.
– 2 is best
– 0 is average
– -2 is the worst

• As we want to rank the answers, try to avoid giving the same rank to 2 system
outputs.
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Model Average Rank # Hallucinations
ClimateGPT-70B 1.0 2
ClimateGPT-7B 0.6 4
ClimateGPT-FSC-7B 0.2 5

Table 14: Human evaluation comparing the answers of 50 questions from 3 different systems.
An average rank around 0 means the system has been evaluated half of the time as good
and half of the time as not good, independently of its rank.

• If all are of the same quality, all get the same grade, between 2 if all are very good
and -2 if all very bad.

• If 2 are similarly good and 1 is bad, the 2 good ones get a positive number (e.g. 1)
and the 3rd a negative number (e.g. -1)

• If 2 answers are good and one is better, the better one gets a 2 and the less better
one a 1

The “Quality dimensions” referred to in the above guidelines are those from (Bulian et al.,
2023).
We noticed that human evaluators tended to try to find patterns for each system. To increase
the neutrality of their judgment, we decided not to name each answer by the model name
and to randomly order the answers of each system so that the annotators were not tempted
to try to guess from which system each answer comes.

7.1 Results

For the human evaluations, we asked the evaluators to compare and rank three versions of
our ClimateGPT models: the from-scratch model ClimateGPT-FSC-7B, the CPT models
ClimateGPT-7B and ClimateGPT-70B. This evaluation shows us that CPT models compare
positively against the from-scratch model (1.0 points vs. 0.2), and the 70B CPT model
performs better than the 7B CPT model (see table 14 first block). While the ranking between
from-scratch and CPT models correlates well with the automatic evaluation, it is not the
case when comparing the 7B and 70B within the CPT model family. We need to investigate
this further. Another outcome of this evaluation is the observation that the lower the rank
of a model, the higher the number of hallucinations.

8 Responsible AI

The pursuit of responsible AI systems is a critical aspect as important as, if not more than,
the model performance itself. In this work, we aim to follow closely the standard approaches
in the field. Of course, as an active and evolving field of study, the definition and scope of
“responsible AI" continue to develop in tandem with the advancement of more sophisticated
AI systems.

8.1 Content Moderation

Our perspective on responsible AI encompasses two fundamental aspects: maximizing benefit
and minimizing harm. This reflects an inherent trade-off between a model’s usefulness and
its safety. In the realm of LLMs, for instance, a system that refrains from answering any
question minimizes risk but offers limited utility, whereas a system that responds to all
queries increases usefulness but may be prone to misuse like generation of misinformation. A
pertinent example is content moderation. Simple methods like keyword block lists, as used
in the Jais model (Sengupta et al., 2023), can be effective: a safe refusal message is triggered
by a regex check against a predefined word list. However, such approaches risk having too
many false positives, for example, the keyword ’sex’, though potentially problematic, can be
a part of legitimate biological discussions. This illustrates how surface-level safety measures
might inadvertently constrain a model’s utility.
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A more elegant solution is to fine-tune the model on data that gracefully answers unintended
contents. In our case, we adopt the Do-Not-Answer dataset (Wang et al., 2023b), and
manually check many responses from the baseline Llama-2-Chat 70B model (Touvron et al.,
2023a). The model responses are often satisfactory, i.e. not only refusals but also include
helpful explanations and suggestions. Encouraged by this, we decide to augment the Do-
Not-Answer dataset with these model completions and include it in our IFT dataset (see
Section 3.5). Additionally, this automated approach to the curation of content moderation
examples spares human annotators from the stress of handling toxic data just to replicate
Meta’s existing efforts, further aligning with our responsible AI principles. While this
approach effectively helps to reduce undesired outputs and reduces the potential for misuse
of the model, we want to note that these fine-tuning approaches can be easily circumvented
if an attacker has access to the model (Yang et al., 2023; Zhan et al., 2023).

8.2 Transparency

Transparency is a cornerstone of responsible AI, fostering reproducibility, facilitating com-
munication, and revealing potential issues. The recent introduction of the Foundation Model
Transparency Index (FMTI) (Bommasani et al., 2023) offers a framework to assess the
transparency of foundation models.
Although we agree that the specific questions and their weightings in FMTI may be subject to
debate (Lambert et al., 2023), it represents a significant step towards standardizing disclosure
practices in LLM research. In our work, we nonetheless reference FMTI to self-assess and
achieve an FMTI score of 69 and also self-assessed using the revised methodology and
achieved a score of 62.18

These self-evaluations underscore our commitment to sustainability and the ongoing discourse
towards transparent model development.

8.3 Environmental Impact

The environmental footprint is a critical consideration in responsible AI, especially for
projects in the climate domain. Recognizing the substantial economic and computational
resources required for training LLMs, we prioritized the use of sustainable energy sources. In
collaboration with MLFoundry, we accessed a high-performance computing cluster powered
exclusively by hydroenergy. Although securing high-end GPU computing resources, especially
those powered by green energy, is challenging, our decision to partner with a provider
committed to clean energy sources reflects our dedication to minimizing the environmental
impact of our work.
Using a framework developed by Hershcovich et al. (2022), we have published a sustainability
scorecard that details the energy usage and emissions associated with training experiments,
as well as the final models. You can find the scorecard in the appendix in Table 16. This
data is currently being evaluated by Filecoin Green to establish a Green Score19 and will be
published once finalized.

9 Conclusion

This paper has introduced ClimateGPT, a domain-specific large language model (LLM) that
gives access to interdisciplinary research information on climate change. ClimateGPT is
therefore the first family of LLMs to generate not only one answer but four different answers,
three answers each along a different perspective (science/economic/social which we also call
dimension) plus a fourth answer summarising the answer of the three perspectives provided
to the user. We have compared five different ClimateGPT versions. The first two models are
from scratch (FS) foundational models trained on our own 300B tokens corpus, both with
a 7B parameters transformer architecture similar to that of Llama-2. The training corpus
of the first FS model contains 4B climate change data (Climate-FSC-7B), the other do not

18Detailed results: https://github.com/eci-io/climategpt-fmti
19https://www.greenscores.xyz/
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have these 4B tokens (Climate-FSG-7B) which allows us to compare the value of climate
change data within a foundational model. The next three models are based on a Llama-2
foundational model (7B, 13B and 70B, all pre-trained on 2T tokens). These models as well
as the ClimateGPT-FSG-7B are fine-tuned on 4B climate tokens (Continued Pre-Training,
CPT). We did not fine-tune the ClimateGPT-FSC-7B model as it had these 4B tokens
in the from-scratch training. All models have been further trained on a manually defined
Instruction Fine Tuning (IFT) climate-specific prompt/completion pair corpus that has been
produced by experts (climate consultants and climate scientists) and by non-experts. We
have been benchmarking our models on two different sets of tasks, one set specific to climate
(ClimaBench, Pira and Exeter), and the other one on standard non-climate tasks. We have
shown that, while adapting our models to climate change we do not lose performance on
general tasks (MMLU, HellaSwag, PIQA and WinoGrande) and that our Llama-2-based
ClimateGPT-7B outperforms Llama-2-Chat-13B (77.1% resp. 71.4%) on climate tasks with
two times fewer parameters and is on par with the Llama-2-Chat-70B results (77.1% resp.
77.0%) with 10 times less parameters.
The quality of the IFT data plays an important role. An interesting question that we did not
have time to address is whether a general science IFT dataset would also have contributed
and by how much.
In this paper, we show also the value of cascaded machine translation as opposed to using a
general one-system fits-all-languages approach. The comparison made on the Arabic subset
of EXAMS between the mono-lingual system Llama-2-13B-Chat with that of Jais-13B-Chat
(which has been also trained on Arabic data) shows that Machine Translation (translating the
EXAMS from Arabic to English, so translating the query and the answer into English) allows
Llama2-13b-Chat to improve from 25.0 to 38.0 very near the performance of Jais-13b-Chat
(40.9) which was evaluated directly in Arabic. We did not fine-tune our MT for this specific
task.
Another important aspect of our work is related to the sustainability of domain-specific
models: fine-tuning our ClimateGPT-7B has been done with a tiny fraction (so small that
it is apparent to a rounding error) of the CO2 production needed to produce the complete
Llama-2-Chat-70B model. Further, at inference time, our system answers questions producing
12 times less CO2 (needing 12 times less energy) than Llama2-70B would do, for the same
result.
Finally, our human evaluations show some correlation with the set of automated tasks used
for benchmarking.

10 Limitations

Like any LLM, ClimateGPT is subject to hallucinations. Retrieving relevant documents for
grounding before calling ClimateGPT can help control hallucinations. While subjectively
our proposed RAG approach seems to reduce hallucinations, we have not yet performed a
systematic evaluation.
This interdisciplinary project involving multiple partners is challenging in itself and inevitably
has many limitations. Here, we acknowledge the drawbacks by following standard practices
in the NLP community and hope to inspire future work.
Firstly, while Reinforcement Learning from Human Feedback (RLHF) is an effective method
for enhancing model performance, we do not employ it due to time and resource constraints.
We notice the model gives decent performance without RLHF, and thus we focus our efforts
elsewhere.
Secondly, LLMs are shown to exhibit strong native multilinguality and can perform the
machine translation task very well. However, we apply a cascaded approach to make use
of domain fine-tuned existing MT systems at AppTek because fully training a multilingual
LLM would inevitably be much more costly.
We also acknowledge the limitation of not using a domain-specific tokenizer which could have
improved the model’s representation of climate-related vocabulary as discussed in Section 2.4.
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For retrieval, we relied on a standard bi-encoder model and did not investigate domain
adaptation or more advanced retrieval techniques like reranking or verification of the relevance
of retrieved documents.
Finally, another limitation is in evaluation. Automatic evaluation is limited in reliability
and what they can evaluate and our human evaluation is limited in scale, completeness,
and breadth. Therefore, a lot of design decisions still need to be validated with systematic
evaluations.

Acknowledgments

The model development and evaluation was completed as independent research in advance
of the COP28 Conference from August to December 2023 through a grant provided by ADQ,
TAQA, Masdar, Etihad Rail, ADNEC Group, and Hedera.
We would like to thank The Club of Rome for their partnership and unwavering support,
specifically Sandrine Dixson-Declève, Paul Shrivastava, Mmampele Rampele, Peter Blom,
Carlos Alvarez Pereira, Wouter van Dieren, Per Espen Stoknes, Jorgen Randers, Gunter
Pauli; Nature Finance, specifically Simon Zadek; Goals House specifically Matthew Freud,
Arlo Brady, Anna Biles; Info.nl specifically Jann de Waal, Dominik Vrbic, Anandita Punj,
Jorrit Tinholt, Paul Domen; The Internet Archive, Brewster Kahle, Mark Graham, Wendy
Hanamura, Jamie Joyce, as well as the support from Babiche Veenendaal-Westerbrink.
Special thanks to David Lobell for participating in our expert interviews which gave invaluable
insights in his work and are the foundation of our IFT data. Next, we want to thank
Acheampong Baafi-Adomako, Hamidreza Mosaffa, Pan Hao, Qinghua Yu, Ralf Liebermann,
Thomas Kreuzwig and Yurong Gao for creating the expert IFT dataset as well as for having
participated in our human evaluations. We further want to thank Eugen Beck, Nico Daheim,
Nils Hilgers and Ege Beysel for helpful discussions on this work.
We thank ML Foundry for the opportunity to train ClimateGPT using renewable energy,
giving us early access to their H100 machines and for all the support across different time
zones during the main training phase.
In addition, we’d like to acknowledge Faisal Al Hammadi and the entire team at Further
Ventures, who helped coordinate the sponsorship funding and supported our vision to bring
the model to COP28.
We would also like to thank the engineering and cryptography team at EQTY Lab that
worked on the integrity of the AI lifecycle: Benedict Lau, Yurko Jaremko, Paul Dowman,
Cameron Fyfe, Tyler Brink, Mauve Signweaver, Tucker McCoy and Ziv Weissman. And a
special thanks to Dan Boneh.
Further, the team at Gladeye for designing and creating our website: Tarver Graham,
Conrad Blight, Nathan Walker, Antony Zouch, Kate Forsythe, Alastair Gray, Michael
Cannon, Giuliana Aliotti, Daniel Bonham, Joris Rotteveel and William Hamlin.
And all the people who worked on the responsible AI pipeline and pilots: Judie Muhrez,
Alex Feerst, Chris DiBona, Monica Granados and the entire Creative Commons team, Marc
Johson (Filecoin Green), Dr. Regina Stanback Stroud (RSSC), Anton Blewett, Travis Coan
(Exeter), John Cook (University of Melbourne), Nathan Schneider, Joshua Tan, Connor
Spelliscy, Scott Moore and Khalifa University, Students: Benhur Tekeste, Divora Yemane,
Maryam Alblooshi, Maryam Alraeesi and Noof Alhammadi.
Finally, this work would not have been possible without various contributions from the
open-source community. We want to highlight the Open Assistant project for crowd-sourcing
a high-quality multi-turn IFT dataset, Meta for sharing Llama-2, the EPFL LLM Team for
their work on Megatron-LLM and finally Databricks for sharing Dolly.

References
2023. Interconnected Disaster Risks 2023: Risk Tipping Points. United Nations University -

Institute for Environment and Human Security (UNU-EHS), Bonn. 96 pp.

31



Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. 2023. GQA: Training Generalized Multi-Query Transformer Models from
Multi-Head Checkpoints. arXiv preprint arXiv:2305.13245.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin
Malartic, Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo.
2023. The Falcon Series of Open Language Models.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020. wav2vec 2.0:
A framework for self-supervised learning of speech representations. Advances in neural
information processing systems, 33:12449–12460.

Parnia Bahar, Patrick Wilken, Tamer Alkhouli, Andreas Guta, Pavel Golik, Evgeny Matusov,
and Christian Herold. 2020. Start-Before-End and End-to-End: Neural Speech Translation
by AppTek and RWTH Aachen University. In Proceedings of the 17th International Confer-
ence on Spoken Language Translation, pages 44–54, Online. Association for Computational
Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. 2010. A theory of learning from different domains. Machine
learning, 79:151–175.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. 2023. Pythia: A suite for analyzing large language models across training and
scaling. In International Conference on Machine Learning, pages 2397–2430. PMLR.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. 2020. PIQA:
Reasoning about Physical Commonsense in Natural Language. In Thirty-Fourth AAAI
Conference on Artificial Intelligence.

Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej, Betty
Xiong, Daniel Zhang, and Percy Liang. 2023. The Foundation Model Transparency Index.
arXiv preprint arXiv:2310.12941.

A.Z. Broder. 1997. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pages 21–29.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901.

Jannis Bulian, Mike S. Schäfer, Afra Amini, Heidi Lam, Massimiliano Ciaramita, Ben Gaiarin,
Michelle Chen Huebscher, Christian Buck, Niels Mede, Markus Leippold, and Nadine
Strauss. 2023. Assessing Large Language Models on Climate Information.

Alejandro Hernández Cano, Matteo Pagliardini, Andreas Köpf, Kyle Matoba, Amirkeivan
Mohtashami, Olivia Simin Fan, Axel Marmet, Deniz Bayazit, Igor Krawczuk, Zeming
Chen, Francesco Salvi, Antoine Bosselut, and Martin Jaggi. 2023. epfLLM Megatron-LM.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading Wikipedia
to Answer Open-Domain Questions. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computational Linguistics.

Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami,
Alexandre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit,
Axel Marmet, Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut.
2023. MEDITRON-70B: Scaling Medical Pretraining for Large Language Models.

32

http://arxiv.org/abs/2311.16867
https://doi.org/10.18653/v1/2020.iwslt-1.3
https://doi.org/10.18653/v1/2020.iwslt-1.3
https://doi.org/10.1109/SEQUEN.1997.666900
http://arxiv.org/abs/2310.02932
https://github.com/epfLLM/Megatron-LLM
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
http://arxiv.org/abs/2311.16079


Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. 2023.
Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. Blog
post.

Sukmin Cho, Jeongyeon Seo, Soyeong Jeong, and Jong C. Park. 2023. Improving Zero-shot
Reader by Reducing Distractions from Irrelevant Documents in Open-Domain Question
Answering. In Findings of the Association for Computational Linguistics: EMNLP 2023,
Singapore. Association for Computational Linguistics.

Travis G Coan, Constantine Boussalis, John Cook, and Mirjam O Nanko. 2021. Computer-
assisted classification of contrarian claims about climate change. Scientific reports,
11(1):22320.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi,
Patrick Wendell, Matei Zaharia, and Reynold Xin. 2023. Free Dolly: Introducing the
World’s First Truly Open Instruction-Tuned LLM.

Nico Daheim, Nouha Dziri, Mrinmaya Sachan, Iryna Gurevych, and Edoardo M. Ponti. 2023.
Elastic Weight Removal for Faithful and Abstractive Dialogue Generation.

Nico Daheim, David Thulke, Christian Dugast, and Hermann Ney. 2022. Controllable
Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model. In
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1365–1381,
Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

Georgiana Dinu, Prashant Mathur, Marcello Federico, and Yaser Al-Onaizan. 2019. Training
Neural Machine Translation to Apply Terminology Constraints. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 3063–3068,
Florence, Italy. Association for Computational Linguistics.

O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler,
I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von
Stechow, T. Zwickel, and J.C. Minx. 2014. Climate Change 2014: Mitigation of Climate
Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. 2020. The pile: An 800gb dataset
of diverse text for language modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria
Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Gemini Team, Google. 2023. Gemini: A Family of Highly Capable Multimodal Models.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel,
Sergey Levine, and Dawn Song. 2023. The False Promise of Imitating Proprietary LLMs.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic Vector Quantization.
In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats Leon Richter, Quentin Gregory
Anthony, Eugene Belilovsky, Irina Rish, and Timothée Lesort. 2023. Continual Pre-
Training of Large Language Models: How to re-warm your model? In Workshop on
Efficient Systems for Foundation Models @ ICML2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. 2020.
REALM: Retrieval-Augmented Language Model Pre-Training. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org.

33

https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2310.17490
https://arxiv.org/abs/2310.17490
https://arxiv.org/abs/2310.17490
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
http://arxiv.org/abs/2303.17574
https://doi.org/10.18653/v1/2022.findings-emnlp.98
https://doi.org/10.18653/v1/2022.findings-emnlp.98
https://doi.org/10.18653/v1/P19-1294
https://doi.org/10.18653/v1/P19-1294
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2305.15717
https://openreview.net/forum?id=pg7PUJe0Tl
https://openreview.net/forum?id=pg7PUJe0Tl


Momchil Hardalov, Todor Mihaylov, Dimitrina Zlatkova, Yoan Dinkov, Ivan Koychev, and
Preslav Nakov. 2020. EXAMS: A Multi-subject High School Examinations Dataset for
Cross-lingual and Multilingual Question Answering. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 5427–5444, Online.
Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Understanding.
Proceedings of the International Conference on Learning Representations (ICLR).

Daniel Hershcovich, Nicolas Webersinke, Mathias Kraus, Julia Bingler, and Markus Leippold.
2022. Towards Climate Awareness in NLP Research. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pages 2480–2494, Abu Dhabi,
United Arab Emirates. Association for Computational Linguistics.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc,
Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William
Rae, and Laurent Sifre. 2022. An empirical analysis of compute-optimal large language
model training. In Advances in Neural Information Processing Systems.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral 7B.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud,
Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang,
Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mixtral of Experts.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling Laws for
Neural Language Models.

Constantinos Karouzos, Georgios Paraskevopoulos, and Alexandros Potamianos. 2021.
UDALM: Unsupervised domain adaptation through language modeling. arXiv preprint
arXiv:2104.07078.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2021.
Nearest Neighbor Machine Translation. In International Conference on Learning Repre-
sentations.

Yunsu Kim, Yingbo Gao, and Hermann Ney. 2019. Effective Cross-lingual Transfer of
Neural Machine Translation Models without Shared Vocabularies. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 1246–1257,
Florence, Italy. Association for Computational Linguistics.

J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom. 1975.
Derivation of new readability formulas (automated readability index, fog count and flesch
reading ease formula) for navy enlisted personnel.

Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations (ICLR), San Diega, CA, USA.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. 2017. Overcoming catastrophic forgetting in neural networks. Proceedings of the
national academy of sciences, 114(13):3521–3526.

34

https://doi.org/10.18653/v1/2020.emnlp-main.438
https://doi.org/10.18653/v1/2020.emnlp-main.438
https://doi.org/10.18653/v1/2022.emnlp-main.159
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=7wCBOfJ8hJM
https://doi.org/10.18653/v1/P19-1120
https://doi.org/10.18653/v1/P19-1120


Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
2022. Large language models are zero-shot reasoners. Advances in neural information
processing systems, 35:22199–22213.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Minh Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul ES,
Sameer Suri, David Alexandrovich Glushkov, Arnav Varma Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexander Julian Mattick. 2023. OpenAssistant
Conversations - Democratizing Large Language Model Alignment. In Thirty-seventh
Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

Nathan Lambert, SE Gyges, Stella Biderman, and Aviya Skowron. 2023. How the Foundation
Model Transparency Index Distorts Transparency. blog.eleuther.ai/.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. BioBERT: a pre-trained biomedical language representation model
for biomedical text minings. Bioinformatics, 36(4), 1234-1240.

Markus Leippold and Thomas Diggelmann. 2020. Climate-FEVER: A Dataset for Verification
of Real-World Climate Claims. In NeurIPS 2020 Workshop on Tackling Climate Change
with Machine Learning.

Markus Leippold and Francesco Saverio Varini. 2020. ClimaText: A Dataset for Climate
Change Topic Detection. In NeurIPS 2020 Workshop on Tackling Climate Change with
Machine Learning.

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Text
Summarization Branches Out, pages 74–81, Barcelona, Spain. Association for Computa-
tional Linguistics.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. 2018. Generating Wikipedia by Summarizing Long Sequences. In
International Conference on Learning Representations.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V Le, Barret Zoph, Jason Wei, et al. 2023. The Flan Collection: Designing Data
and Methods for Effective Instruction Tuning. arXiv preprint arXiv:2301.13688.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan
Liu. 2022. BioGPT: generative pre-trained transformer for biomedical text generation and
mining. Briefings in Bioinformatics 23, no. 6.

Pierre-Emmanuel Mazaré, Samuel Humeau, Martin Raison, and Antoine Bordes. 2018.
Training Millions of Personalized Dialogue Agents. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 2775–2779, Brussels, Belgium.
Association for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. 2018. Can a Suit of
Armor Conduct Electricity? A New Dataset for Open Book Question Answering. In
EMNLP.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn.
2022. Memory-Based Model Editing at Scale. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 15817–15831. PMLR.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019. Model Cards
for Model Reporting. In Proceedings of the Conference on Fairness, Accountability, and
Transparency, FAT* ’19, page 220–229, New York, NY, USA. Association for Computing
Machinery.

35

https://openreview.net/forum?id=VSJotgbPHF
https://openreview.net/forum?id=VSJotgbPHF
blog.eleuther.ai/
https://www.climatechange.ai/papers/neurips2020/67
https://www.climatechange.ai/papers/neurips2020/67
https://www.climatechange.ai/papers/neurips2020/69
https://www.climatechange.ai/papers/neurips2020/69
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=Hyg0vbWC-
https://doi.org/10.18653/v1/D18-1298
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596


Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. 2023. MTEB: Massive
Text Embedding Benchmark. In Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics, pages 2014–2037, Dubrovnik,
Croatia. Association for Computational Linguistics.

Sahal Shaji Mullappilly, Abdelrahman Shaker, Omkar Thawkar, Hisham Cholakkal,
Rao Muhammad Anwer, Salman Khan, and Fahad Shahbaz Khan. 2023. Arabic Mini-
ClimateGPT : A Climate Change and Sustainability Tailored Arabic LLM. In EMNLP
2023.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Pat-
wary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan
Catanzaro, Amar Phanishayee, and Matei Zaharia. 2021. Efficient Large-Scale Language
Model Training on GPU Clusters Using Megatron-LM. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21,
New York, NY, USA. Association for Computing Machinery.

OpenAI. 2023. GPT-4 Technical Report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022a. Training language
models to follow instructions with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,
Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022b. Training language models to follow
instructions with human feedback. In NeurIPS.

R.K. Pachauri and L.A. Meyer, editors. 2014. Climate Change 2014: Synthesis Report.
Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. 151 pp.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method
for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational Linguistics.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro
Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay.
2023. The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web
data, and web data only. arXiv preprint arXiv:2306.01116.

Cheng Peng, Xi Yang, Aokun Chen, Kaleb E. Smith, Nima PourNejatian, Anthony B. Costa,
and Cheryl Martin. 2023. A Study of Generative Large Language Model for Medical
Research and Healthcare. arXiv preprint arXiv:2305.13523.

Paulo Pirozelli, Marcos M José, Igor Silveira, Flávio Nakasato, Sarajane M Peres, Anarosa AF
Brandão, Anna HR Costa, and Fabio G Cozman. 2023. Benchmarks for Pir\’a 2.0, a
Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate
Change. arXiv preprint arXiv:2309.10945.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China. Association
for Computational Linguistics.

36

https://aclanthology.org/2023.eacl-main.148
https://aclanthology.org/2023.eacl-main.148
https://aclanthology.org/2023.findings-emnlp.941.pdf
https://aclanthology.org/2023.findings-emnlp.941.pdf
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
http://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410


Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2021. WinoGrande:
An Adversarial Winograd Schema Challenge at Scale. Commun. ACM, 64(9):99–106.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100.

Steffen Schloemer, Thomas Bruckner, Lew Fulton, Edgar Hertwich, Alan McKinnon, Daniel
Perczyk, Joyashree Roy, Roberto Schaeffer, Ralph Sims, Pete Smith, and Ryan Wiser.
2014. Annex III: Technology-specific cost and performance parameters, pages 1329–1356.
Cambridge University Press, United Kingdom. This annex should be cited as: Schlömer
S., T. Bruckner, L. Fulton, E. Hertwich, A. McKinnon, D. Perczyk, J. Roy, R. Schaeffer, R.
Sims, P. Smith, and R. Wiser, 2014: Annex III: Technology-specific cost and performance
parameters. In: Climate Change 2014: Mitigation of Climate Change. Contribution of
Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K.
Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S.
Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA.

Neha Sengupta, Sunil Kumar Sahu, Bokang Jia, Satheesh Katipomu, Haonan Li, Fajri Koto,
Osama Mohammed Afzal, Samta Kamboj, Onkar Pandit, Rahul Pal, et al. 2023. Jais and
jais-chat: Arabic-centric foundation and instruction-tuned open generative large language
models. arXiv preprint arXiv:2308.16149.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine translation of
rare words with subword units. arXiv preprint arXiv:1508.07909.

Noam Shazeer. 2020. Glu variants improve transformer. arXiv preprint arXiv:2002.05202.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael
Schärli, and Denny Zhou. 2023a. Large Language Models Can Be Easily Distracted by
Irrelevant Context. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 31210–31227.
PMLR.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke
Zettlemoyer, and Wen tau Yih. 2023b. REPLUG: Retrieval-Augmented Black-Box Lan-
guage Models.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter language models
using model parallelism. arXiv preprint arXiv:1909.08053.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. 2021. Retrieval
Augmentation Reduces Hallucination in Conversation. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages 3784–3803, Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin
Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang,
Mohamed Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa
Dominowska, Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher
Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias,
Shekoofeh Azizi, Alan Karthikesalingam, and Vivek Natarajan. 2023. Towards Expert-Level
Medical Question Answering with Large Language Models.

Daniel Spokoyny, Tanmay Laud, Tom Corringham, and Taylor Berg-Kirkpatrick. 2023.
Towards Answering Climate Questionnaires from Unstructured Climate Reports.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. 2023.
Roformer: Enhanced transformer with rotary position embedding. Neurocomputing, page
127063.

37

https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
http://arxiv.org/abs/2301.12652
http://arxiv.org/abs/2301.12652
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2021.findings-emnlp.320
http://arxiv.org/abs/2305.09617
http://arxiv.org/abs/2305.09617
http://arxiv.org/abs/2301.04253


Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An Instruction-following
LLaMA model. GitHub repository.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis
Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. 2022. Galactica: A Large
Language Model for Science.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth
Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett,
Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews,
Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj
Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang. 2022. No Language Left Behind: Scaling
Human-Centered Machine Translation.

Brian Thompson and Philipp Koehn. 2020. Exploiting Sentence Order in Document Align-
ment. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5997–6007, Online. Association for Computational Linguistics.

David Thulke, Nico Daheim, Christian Dugast, and Hermann Ney. 2021. Efficient Retrieval
Augmented Generation from Unstructured Knowledge for Task-Oriented Dialog. In AAAI
2021, Workshop on DSTC9.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023a.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023b. Llama
2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288.

Saeid Vaghefi, Veruska Muccione, Christian Huggel, Hamed Khashehchi, and Markus
Leippold. 2022. Deep Climate Change: A Dataset and Adaptive domain pre-trained
Language Models for Climate Change Related Tasks. In NeurIPS 2022 Workshop on
Tackling Climate Change with Machine Learning.

Saeid Vaghefi, Qian Wang, Veruska Muccione, Jingwei Ni, Mathias Kraus, Julia Bingler,
Tobias Schimanski, Chiara Colesanti Senni, Nicolas Webersinke, Christian Huggel, and
Markus Leippold. 2023. ChatClimate: Grounding Conversational AI in Climate Science.
Swiss Finance Institute Research Paper No. 23-88.

Roopal Vaid, Kartikey Pant, and Manish Shrivastava. 2022. Towards Fine-grained Classifi-
cation of Climate Change related Social Media Text. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics: Student Research Workshop,
pages 434–443, Dublin, Ireland. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
ukasz Kaiser, and Illia Polosukhin. 2017a. Attention is All you Need. In Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
ukasz Kaiser, and Illia Polosukhin. 2017b. Attention is all you need. Advances in neural
information processing systems, 30.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi.
2023a. How Far Can Camels Go? Exploring the State of Instruction Tuning on Open
Resources. In Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.

38

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2211.09085
http://arxiv.org/abs/2211.09085
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
https://doi.org/10.18653/v1/2020.emnlp-main.483
https://doi.org/10.18653/v1/2020.emnlp-main.483
https://www.climatechange.ai/papers/neurips2022/27
https://www.climatechange.ai/papers/neurips2022/27
https://ssrn.com/abstract=4414628
https://doi.org/10.18653/v1/2022.acl-srw.35
https://doi.org/10.18653/v1/2022.acl-srw.35
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=w4zZNC4ZaV
https://openreview.net/forum?id=w4zZNC4ZaV


Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap,
Eshaan Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob
Anderson, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad
Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit
Verma, Ravsehaj Singh Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat,
Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit, and Xudong Shen.
2022. Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+
NLP Tasks. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 5085–5109, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Yuxia Wang, Haonan Li, Xudong Han, Preslav Nakov, and Timothy Baldwin. 2023b. Do-
Not-Answer: A Dataset for Evaluating Safeguards in LLMs.

Nicolas Webersinke, Mathias Kraus, Julia Anna Bingler, and Markus Leippold. 2022. Cli-
mateBert: A Pretrained Language Model for Climate-Related Text.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,
Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language models are zero-shot
learners. arXiv preprint arXiv:2109.01652.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. 2022. Emergent abilities
of large language models. arXiv preprint arXiv:2206.07682.

Patrick Wilken and Evgeny Matusov. 2019. Novel applications of factored neural machine
translation. arXiv preprint arXiv:1910.03912.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Syl-
vain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45,
Online. Association for Computational Linguistics.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David Rosenberg, and Gideon Mann. 2023. BloombergGPT: A
Large Language Model for Finance. ArXiv preprint: https://arxiv. org/pdf/2303.17564.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. 2023. C-Pack: Packaged
Resources To Advance General Chinese Embedding.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai
Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. 2020. On layer normalization in
the transformer architecture. In International Conference on Machine Learning, pages
10524–10533. PMLR.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. 2023. WizardLM: Empowering Large Language Models to Follow Complex
Instructions.

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, William Yang Wang, Xun Zhao, and
Dahua Lin. 2023. Shadow Alignment: The Ease of Subverting Safely-Aligned Language
Models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. 2019. HellaSwag:
Can a Machine Really Finish Your Sentence? In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. 2023. Sigmoid Loss
for Language Image Pre-Training.

39

https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
http://arxiv.org/abs/2308.13387
http://arxiv.org/abs/2308.13387
http://arxiv.org/abs/2110.12010
http://arxiv.org/abs/2110.12010
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2310.02949
http://arxiv.org/abs/2310.02949
http://arxiv.org/abs/2303.15343
http://arxiv.org/abs/2303.15343


Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, Tatsunori Hashimoto, and Daniel
Kang. 2023. Removing RLHF Protections in GPT-4 via Fine-Tuning.

Biao Zhang and Rico Sennrich. 2019. Root mean square layer normalization. Advances in
Neural Information Processing Systems, 32.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and
Omer Levy. 2023. LIMA: Less Is More for Alignment.

40

http://arxiv.org/abs/2311.05553
http://arxiv.org/abs/2305.11206


A Appendix

A.1 Model Card

Table 15 presents a model card (Mitchell et al., 2019) that summarizes details of the models.

Model Details

Model Developers AppTek, EQTYLab, Erasmus AI
Variations ClimateGPT comes in a range of parameter sizes: 7B, 13B, and 70B. Additionally, there are two

7B model variants trained from scratch.
Input Models input text only.
Output Models generate text only.
Model Architecture ClimateGPT is an auto-regressive language model that uses an optimized transformer architecture.

After pre-training, instruction fine-tuning (IFT) is used to align the models to the expected output
format.

Model Dates ClimateGPT was trained between September 2023 and November 2023.
Status This is a static model trained on an offline dataset and intended to dynamically include new

knowledge via RAG.
License ClimateGPT Community License
Where to send com-
ments

Feedback can be given by creating a discussion thread on the model’s Huggingface page (https:
//huggingface.co/eci-io/).

Intended Use

Intended Use Cases ClimateGPT is intended to be directly used as a question-answering model that is specialized in the
climate domain. It is built to provide useful feedback for decision-makers, scientists and journalists
involved in climate discussions.

Out-of-Scope Uses Use in any manner that violates applicable laws or regulations.

Hardware and Software (Section 2)

Training Factors We used a fork of the Megatron-LLM Repository by the EPFL LLM Team (http://github.com/
epfLLM/Megatron-LLM). A cluster provided by MLFoundry was used for pre-training, instruction
fine-tuning and evaluation.

Carbon Footprint Pre-training utilized a cumulative 31,059 GPU hours of computation on hardware of type H100
SXM (including CPU TDP of 775W). The cluster for training and evaluation was powered using
100% hydropower (24g CO2eq/KWh (Schloemer et al., 2014)) which resulted in the emission of
577.7kg CO2eq.

Training Data (Sections 2.2 and 3)

Overview ClimateGPT was continuously pre-trained on a dataset of 4.2B climate-specific tokens. The from-
scratch models were trained on 300B tokens. All models were instruction fine-tuned on a dataset
consisting of public IFT data as well as IFT data collected in cooperation with climate experts
during the project.

Data Freshness The pretraining data contains documents up to October 2023.

Evaluation Results

See automatic evaluation in Section 6 and human evaluation in Section 7

Ethical Considerations and Limitations (Section 10)

Despite the efforts from the development team to eliminate them, as with every other chat-capable LLM, this model
may generate biased, offensive or inaccurate responses. Testing done to date has been mostly in English and no
extensive red-teaming was conducted. Therefore, for all downstream applications users should be made aware of these
limitations and should be incentivised to double check model outputs.

Table 15: Model card for ClimateGPT.
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A.2 Sustainability Scorecard

Model Publicly Available Yes
Time to train final models 31,059 GPU Hours
Location for computations for final models United States (WA)
Energy mix at location for final models 24 gCO2eq/kWh
Power of GPU and CPU for final models 0.775 kW
CO2eq for final models 577.70 kgCO2eq
Time for all experiments 1,535 GPU Hours (Canada, ON)

2,150 GPU Hours (United States, CA)
Power of GPU and CPU for experiments 0.55 kW
Location for computations for experiments Canada, ON & United States, CA
Energy mix at location for experiments 134 gCO2eq/kWh & 186 gCO2eq/kWh
CO2eq for all experiments 113.13 kgCO2eq & 219.95 kgCO2eq
Average CO2eq for inference per sample 24.5 mgCO2eq

Table 16: Sustainability scorecard for ClimateGPT.
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A.3 Curated Climate-Specific Pre-Training Data Details

The following section gives additional details on the high-quality and manually curated
climate-specific datasets that are part of our pre-training data.

Extreme Weather Events A corpora built out of the the most recent decade (2023-2013)
of extreme weather news reports, in excess of on average 1M articles per year (slightly less
in the earlier years and more in the latter). The intent of the corpora is to build a collection
of human-centered effects of climate change, and how extreme weather events impact human
activity systems.
The articles were categorized using a custom-built classifier from Erasmus.AI which from its
daily planetary scale web crawl organized the articles into 19 categories (Drought, Sandstorm,
Extreme Heat Wave, Forest Fire, Wildfire, etc.) and one not-relevant class. Low certainty
scoring articles were eliminated from training corpora.
Candidate articles were translated into English from 19 languages. Extreme weather events
in certain areas such as West Africa, Latin America, and parts of China do not have a great
deal of reporting in English. For example in 2023 in Columbia, 78% of the articles were
reported in Spanish. In Peru, 97% of the articles were non-English and were collected from
128 unique websites and associated with 442 Peruvian cities.
The candidate articles were geographically assigned using named entity recognition and a
proprietary framework from Erasmus.AI to ensure higher accuracy in assigning events to
specific locations as well as to check the events against each other as it would be highly
unlikely to have single reports of extreme weather events.
The events were matched to human timelines, and reporting about expected future weather
events was eliminated, as much of climate reporting relates to future events that may or may
not happen.
The overall goal of the corpora was to train the model family on how, at a human activity
systems level, the changing climate connects with geographic knowledge as well as deeper
knowledge on the causal effects of climate events (e.g. Snowstorm leads to electricity outages,
stay at home orders, supply disruptions; Drought in the Horn of Africa leads to increased
civil conflict, etc.).

Technical Game-Changing Breakthroughs For Europe’s largest technology company
Erasmus.AI in partnership with the Digital Thinking Network researched and identified 153
game-changing breakthroughs in Energy, Climate Change, Food Security, Health, etc.. The
process encompassed 500+ pages of technical documentation, and 153 themes set up in a
proprietary interface NewsConsole run by Erasmus.AI. The interface enables graph-based
curation of large bodies of articles through multiple views (narrative analysis, temporal, etc.
views). A theme might present breakthroughs in super-capacitors, desalination technologies,
multiple approaches to batteries, novel bacteria that convert sunlight directly into animal
feed, saltwater-based agriculture, etc.. Each of these themes presents a forward-looking
approach to addressing climate challenges with technology. This includes, for example, not
just experience curves in Solar PV and Battery technology, but the viewpoint that these
experience curves will continue to make Solar PV (and wind) the cheapest forms of energy in
most locations or breakthroughs in animal feed. A selection of the top-ranked few thousand
articles per theme was used, where ranking was a combination of human feedback, automated
systems, and curation on rich visual interfaces.

Sustainable Development Goals For the Club of Rome as pre-work into the Earth4All
process, Erasmus.AI prepared a breakdown of the 17 Sustainable Development Goals (SDGs)
of the United Nations into sub-goals and set up a framework of themes on the platform
described above that tracks these subgoals of the SDGs. The intent here is to provide a more
holistic human-scale view of climate change, and its effects, where action on carbon reduction
using cutting edge Solar PV and Battery technologies is constrained by for example poverty.
Action on climate change is not just simply the rational allocation of resources to enable
the best long-term returns for a healthy planet and humanity. The climate change action
discussion is deeply political with countries in the Global South making the case that they
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will be bearing the brunt of the climate liabilities in which historically polluting countries
in the Global North have accrued the benefits. Capturing these nuances in terms of the 17
SDGs and a holistic outcomes-driven discussion seemed prudent in data selection to ensure
the model has some degree of the human development challenges inherent in the climate
change discussion.

Climate Change News Next to the Extreme Weather Corpora, Erasmus.AI searched
and curated corpora based on a set of climate semantic concepts. The semantic concepts
were built and curated initially from themes inside Erasmus.AI’s NewsConsole which displays
machine- and human-curated visualisations of narrative analysis of vast amounts of articles.
Once the set of these themes was deemed of sufficient quality through human inspection,
these concepts were used for larger-scale searches through the Erasmus.AI corpora.

Climate Change Specific Corpora International development organizations, treaty
organizations, and the broad NGO community (World Bank, OECD, IPPC, UN, EU, TCFD,
US Gov, Nation State Governments, NASA, ESA, WRI, IREA, WEF, Nature Finance,
etc.) together publish significant well-researched work on climate change and its impacts on
financial systems, countries, ecologies, etc. Erasmus.AI built a collection of these reports
from a combination of existing collections and performed a set of custom crawls.

Climate Academic Research A set of academic publications of open access and open
web academic articles were collected on climate change. It was decided to limit this corpus
to open access and open web full articles (and not just abstracts) to ensure that the model
represented logical arguments, inherent in full academic publications not just conclusions
taken from abstracts.

44



A.4 AppTek Non-Expert IFT Data Details

Age Count
18-29 72
30-49 25
50-69 2

Table 17: Age distribution of non-expert IFT data annotators.

Country Num. Annotators Num. prompts
India 51 4970
USA 35 1901
Germany 6 560
Mexico 3 3090
CAN 3 107
Costa Rica 1 200

Table 18: Geographic distribution of non-expert IFT data annotators.

Topic %
Climate 9.2
From Experts Interviews
Central Bank Policies 2.3
Extreme Weather 2.4
Geo-engineering 2.3
Industrial Systems 2.0
Natural Systems and Services 2.3
Reducing Carbon Emissions 2.6
Regenerative Agriculture 0.2
Other Topics
Agriculture 2.3
Animals 3.9
Culture 4.0
Ecosystems 4.1
Energy 4.1
Environment 5.5
Health 3.7
History 3.9
Legal 4.1
News 3.6
Politics 4.0
Technology 4.1
Travel 3.9
Weather 24.0

Table 19: Distribution of topics provided to non-expert IFT data annotators during the data
collection process.
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A.5 Retrieval Augmentation Example

Rank Text
user query - What policies should India implement in Kolkata to mitigate

flooding?

retrieved chunk

1 land use and land cover of ekw between 2000 and 2019 when
engaging with officials and engineers from the kolkata municipal
corporation and the i & wd, it becomes evident that wastewa-
ter regulation is influenced by various pressures that must be
considered in urban environmental planning, management, and
governance. officials utilize the bantala lock gate to lower the
wastewater level in the main canal, especially during monsoons,
to accelerate sewage and stormwater flow and mitigate the risk
of urban flooding. the dense informal settlements in the deltaic
city of kolkata heighten the threat of waterlogging, and

2 heighten the threat of waterlogging, and the deterioration of
both natural and human - made blue infrastructure amplifies
the city’s vulnerability to floods. officials are cautious about
attracting media attention and criticism if flood risks are not
managed effectively. however, opening the bantala lock gate
hinders wastewater supply to the inlet canals and, consequently,
the bheris. this puts kolkata municipal corporation and the i
& wd in a dilemma, torn between addressing the needs of low
- lying urban residents and fishers during the monsoons. the
media portrayal suggesting a deliberate

3 the monsoons. the media portrayal suggesting a deliberate
jeopardizing of fishing livelihoods to facilitate real estate de-
velopment is likely an exaggeration. decisions made by other
government agencies and departments emphasize that there
is no systematic effort to convert the wetlands into built - up
areas.

4 these floods is likely to increase as the climate changes, par-
ticularly due to storm surges, sea level rise and more intense
precipitation. " future proofing " kolkata against climate change,
population growth and economic development is an immense
challenge, particularly considering the scale of poverty and
informality in the city. iii. methods this paper evaluates the
implications of " business - as - usual " modes of development
for kolkata ’ s energy use, energy bills and greenhouse gas
emissions in the period to 2025. it also evaluates a wide range
of energy efficiency, renewable energy and other mit

5 kolkata and other indian cities are experimenting with more
inclusive forms of urban planning and policymaking. kolkata
has a tropical climate, with monthly mean temperatures varying
from 19 to 30°c. most rainfall occurs during the monsoon season
between june and september. the city frequently experiences
flooding during this time due to the inadequate drainage and
sewer networks, which do not serve the city ’ s whole population.
where this infrastructure exists, it is often a century old and
lacks the capacity to meet the current population ’ s needs. the
frequency and severity of these floods is likely to increase as
the climate changes

Table 20: Examples retrieval results.
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A.6 System Prompts

Subset System Prompt
Senior Expert Interviews You’re ClimateGPT a large language model synthesizing

inter-disciplinary research on climate change. Always answer
as helpfully and professional as possible, while being safe.
Avoid colloquial language. Your answers should not include
any harmful, unethical, racist, sexist, toxic, dangerous, or
illegal content. Please ensure that your responses are socially
unbiased.

Grounded Expert Demon-
strations

You’re an expert in climate science. Always answer as
helpfully and professional as possible, while being safe.

Grounded Non-Expert
Demonstrations

You’re a helpful assistant supporting users with their ques-
tions on climate change.\n Cite the documents provided in
the context.

StackExchange You’re an AI assistant generating answers to questions on
the website stackexchange on the topic {source}.

AppTek General You’re a helpful and harmless AI assistant.
OASST-1 You’re Open Assistant, an AI language model, developed

by Laion AI together with an open source community and
trained using crowdsourced data.

Dolly You’re an AI language model trained on data generated by
employees of databricks.

Llama-2 Safety You’re a helpful assistant supporting users with their ques-
tions on climate change.

FLAN You’re a multi-task model solving a variety of NLP tasks.
Give short responses only and follow the format of the user
query.

CoT You’re a multi-task model solving a variety of NLP tasks.
Give short responses only and follow the format of the user
query.

Table 21: System prompts used for IFT training for each of the different subsets.
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A.7 Prompts used in Climate-Specific Automatic Evaluation Tasks

Task Prompt
ClimaText Given the following statement, is it relevant

to climate change or not:\n{}\nAnswer:
ClimaStance Is the following statement in-favor, against,

or ambiguous about climate change preven-
tion:\n{}\nAnswer:

ClimateEng Given the five categories: ’general’, ’poli-
tics’, ’ocean/water’, ’agriculture/forestry’,
’disaster’, assign the following statement to
one of the categories: ’{}’. \nAnswer:

CDP-QA Given a question and an answer, ex-
amine if the answer addresses the
question.\nQuestion: {}\nAnswer:
{}\n\nOutput:

Fever-Boolean Is the following statement on climate cor-
rect or misinformation:\n{}\nAnswer:

Fever-Evidence Given the following documents:\n{}\n\nIs
the following claim:\n{}\nSupported or Re-
futed?\n

Pira 2.0 MCQ (no con-
text)

Answer the following question with the cor-
rect alternative. GIVE ONLY THE COR-
RECT LETTER. \nQuestion: {}. A: {}.
B: {}. C: {}. D: {}. E: {}\nANSWER:

Pira 2.0 MCQ (with
context)

Based on the following context: \n\n {}. \n
Answer the following question with the cor-
rect alternative. GIVE ONLY THE COR-
RECT LETTER \n Question: {{question}}
\n\n A: {}. B: {}. C: {}. D: {}. E:
{}\nANSWER:

Exeter Misinformation This is a climate-misinformation classifi-
cation task. Your task is that of telling
whether the given text presents a contrar-
ian claim regarding climate change. Your
reply should be: 1: contains a contrarian
claim; 0: does not contain a contrarian
claim. Your reply should contain only the
corresponding number and nothing else (i.e.,
0 or 1).\nTEXT: {} ANSWER:

Table 22: Prompts used in each of the climate-specific automatic evaluation tasks.
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A.8 Prompt for Retrieval Database Tagging

In Figure 6, we present the prompt we used with the OpenAI gpt-3.5-turbo text completion
API to tag text chunks from our retrieval database. The text chunks in the few-shot example
sections in the prompt all come from the IPCC Climate Change 2014 Mitigation of Climate
Change report (Edenhofer et al., 2014). Our initial runs with the prompt proved to be
satisfactory, but not perfect. For example, despite adding “Please generate comma-separated,
plain-text tags, e.g. natural,social (no need to add space after the comma separators and
do NOT repeat your tags).", the model sometimes did not follow this specific instruction
exactly. Nonetheless, such imperfections are easily fixable with post-processing scripts, and
we stuck with the prompt.
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Your task is to tag a chunk of text with labels from ("natural", "economic", "social"), depending
on which science discipline the text is closest to. A chunk of text can have multiple tags. Please
generate comma-separated, plain-text tags, e.g. natural,social (no need to add space after the
comma separators and do NOT repeat your tags). Below, you will be presented with some examples.
Each example is formatted as:
# text
<text to be tagged>
# tags
<natural|economic|social>...
Examples will follow "=== example ===" and the text to be tagged will follow "=== to be tagged
===".

=== example ===
# text
5.2.3.5 Sulphur dioxide and aerosols Uncertainties in SO2 and carbonaceous aerosol (BC and OC)
emissions have been estimated by Smith et al. (2011) and Bond et al. (2004, 2007). Sulphur
dioxide emissions uncertainty at the global level is relatively low because uncertainties in fuel sulphur
content are not well correlated between regions. Uncertainty at the regional level ranges up to
35%. Uncertainties in carbonaceous aerosol emissions, in contrast, are high at both regional and
global scales due to fundamental uncertainty in emission factors. Carbonaceous aerosol emissions
are highly state-dependent, with emissions factors that can vary by over an order of magnitude
depending on combustion conditions and emission controls. A recent assessment indicated that
BC emissions may be substantially underestimated (Bond et al., 2013), supporting the literature
estimates of high uncertainty for these emissions.
# tags
natural

=== example ===
# text
The energy intensity of the industry sector could be directly reduced by about 25% compared to
the current level through the wide-scale upgrading, replacement and deployment of best available
technologies, particularly in countries where these are not in use and in non-energy intensive
industries (high agreement, robust evidence). Additional energy intensity reductions of about 20%
may potentially be realized through innovation (limited evidence, medium agreement). Barriers
to implementing energy efficiency relate largely to initial investment costs and lack of information.
Information programmes are a prevalent approach for promoting energy efficiency, followed by
economic instruments, regulatory approaches and voluntary actions. [10.7, 10.9, 10.11]
# tags
economic

=== example ===
# text
Reduction of subsidies to fossil energy can achieve significant emission reductions at negative social
cost (very high confidence). Although political economy barriers are substantial, many countries
have reformed their tax and budget systems to reduce fuel subsidies that actually accrue to the
relatively wealthy, and utilized lump-sum cash transfers or other mechanisms that are more targeted
to the poor. [15.5.3]
# tags
social

=== example ===
# text
No single factor explains variations in per-capita emissions across cities, and there are significant
differences in per capita GHG emissions between cities within a single country (robust evidence,
high agreement). Urban GHG emissions are influenced by a variety of physical, economic and social
factors, development levels, and urbanization histories specific to each city. Key influences on urban
GHG emissions include income, population dynamics, urban form, locational factors, economic
structure, and market failures. Per capita final energy use and CO2 emissions in cities of Annex I
countries tend to be lower than national averages, in cities of non-Annex I countries they tend to be
higher. [12.3]
# tags
economic,social

=== to be tagged ===
# text
<Text Chunk To Be Tagged>
# tags

Figure 6: Prompt used for retrieval database tagging with the OpenAI gpt-3.5-turbo text
completion API.
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A.9 Full Automatic Evaluation Results

Table 23 shows the performance of the models on the individual climate-specific tasks grouped
under ClimaBench and Pira benchmarks.

Models CDP-
QA

Clima-
Text

Climate-
Eng

Climate-
Stance

Fever-
Boolean

Fever-
Evidence

Pira-
MCQ
(no ctx)

Pira-
MCQ
(with ctx)

Weights 1.0 0.5 0.5 0.5 1.0 1.0 1.0 1.0

Stability-3B 74.7 57.1 61.1 80.6 72.2 74.9 40.5 56.8
Pythia-6.9B 67.8 52.8 36.6 78.0 63.1 71.6 21.6 24.2
Falcon-7B 78.7 57.7 48.2 75.8 50.5 63.0 21.1 18.5
Mistral-7B 79.3 66.7 65.4 78.0 71.7 72.9 67.0 93.0
Llama-2-7B 73.1 55.8 61.1 72.7 66.3 74.0 45.8 56.4
Jais-13B 67.1 62.9 60.8 56.9 70.6 73.0 19.8 33.0
Jais-13B-Chat 71.3 72.8 35.8 40.0 70.5 80.0 58.1 74.4

Llama-2-Chat-7B 77.4 72.1 60.8 70.1 62.0 64.2 63.0 81.1
Llama-2-Chat-13B 72.2 74.7 52.7 62.3 69.7 72.0 68.3 90.3
Llama-2-Chat-70B 77.0 78.1 59.4 69.9 70.8 75.7 83.3 94.3

ClimateGPT-7B 81.2 70.5 65.1 59.4 73.5 81.0 81.1 93.0
ClimateGPT-13B 83.0 76.3 68.5 56.6 77.6 76.1 82.4 95.6
ClimateGPT-70B 83.2 78.3 68.7 50.1 69.9 74.3 85.5 94.3

ClimateGPT-FSC-7B 43.7 46.5 53.0 77.7 63.5 70.9 18.1 16.3
ClimateGPT-FSG-7B 35.1 50.0 45.4 77.7 45.2 72.3 20.3 14.5

Table 23: Five-shot performance on climate-specific automatic evaluation tasks. Task-specific
weights are used to compute the weighted-average score in Table 11.
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A.10 MT Glossary Examples

In Table 24, we share a few examples of Glossary entries that are were used during the MT
inference.

Original Adjustment/Correction (if applicable)
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�
HAm�'.



@

Paris Agreement ��
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�
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K @
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Table 24: Example climate-related glossary used during machine translation inference.
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