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Abstract

This paper presents the progress of acoustic models for low-
resourced languages (Assamese, Bengali, Haitian Creole, Lao,
Zulu) developed within the second evaluation campaign of the
IARPA Babel project. This year, the main focus of the project
is put on training high-performing automatic speech recogni-
tion (ASR) and keyword search (KWS) systems from language
resources limited to about 10 hours of transcribed speech data.
Optimizing the structure of Multilayer Perceptron (MLP) based
feature extraction and switching from the sigmoid activation
function to rectified linear units results in about 5% relative
improvement over baseline MLP features. Further improve-
ments are obtained when the MLPs are trained on multiple fea-
ture streams and by exploiting label preserving data augmenta-
tion techniques like vocal tract length perturbation. Systematic
application of these methods allows to improve the unilingual
systems by 4-6% absolute in WER and 0.064-0.105 absolute
in MTWV. Transfer and adaptation of multilingually trained
MLPs lead to additional gains, clearly exceeding the project
goal of 0.3 MTWYV even when only the limited language pack
of the target language is used.

Index Terms: ASR, KWS, MTWYV, MLP, rectified linear units,
multilingual, low-resource

1. Introduction

Speech technologies are applied to a growing number of lan-
guages. Thus, there is a large interest for methods which ease
the training and improve the quality of the models, especially
in the first steps of the development phase where only lim-
ited amount of data is available. The Babel project funded by
IARPA is addressing these goals by the development of robust
speech technologies, focusing on spoken term detection, which
can be applied to any language with a limited amount of tran-
scription in a limited time [1]. With the progress of the project
the main focus is moved, this year the participants have to ac-
complish the desirable keyword search (KWS) performance us-
ing limited (about 10 hours of speech) transcription on the fol-
lowing languages: Assamese, Bengali, Haitian Creole, Lao, and
Zulu.

As has been already shown, Neural Networks (NN) play a
key role in achieving the project goals [2, 3] either by of the tan-
dem [4] or the hybrid acoustic modeling approach [5]. Applying
multilingual training of e.g. [6] to deep Multilayer Perceptrons
(MLP), [7, 8,9, 10] demonstrated that borrowing orders of mag-
nitude more data from other languages improves the ASR and
KWS performance enormously if only limited amount of data
is available in the target language.
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In previous years, novel non-linearities which are biolog-
ically more plausible than sigmoid have been proposed for
NN. For instance, maxout and Rectified Linear Units (ReLU)
have been successfully applied to machine learning problems
[11, 12]. In [13] the authors showed significant improvement
using ReLLU on a Large Vocabulary Continuous Speech Recog-
nition (LVCSR) task. Besides the different activation units
introduced recently, label preserving data augmentation tech-
niques — widely used in image recognition tasks — also show
consistent improvement for low-resource speech recognition
[14, 15]. Furthermore, exploiting multiple representation of
the speech signal, neural network based feature combination re-
sulted in considerable improvement on Spanish broadcast news
and conversation LVCSR task [16].

Therefore, in this paper we investigate the application of
data perturbation, feature combination, and ReLU activation
units to improve low-resourced ASR and KWS systems for a
diverse set of languages. The experiments are carried out with
the tandem approach. According to the primary goal of the Ba-
bel project we concentrate on unilingual systems, however, the
best MLP architectures and techniques are also tested with mul-
tilingual approaches as well.

The paper is organized as follows, Section 2 gives a short
corpus description and the overview of the keyword search task
of the Babel Program. We give a summary of the investigated
methods and the details on our experimental setups in Section
3. The ASR and KWS results are presented in Section 4. The
paper closes with conclusions in Section 5.

2. Task description

One of the main goals of the IARPA-Babel Program is to
reduce the performance gap of speech applications between
high-resource well-studied languages (like English) and low-
resource languages which have not yet been researched exten-
sively. The participants compete in keyword search evaluations.
The performance is measured in Actual Term Weighted Value
(ATWYV) based on the average value lost per term [17]. The loss
is a weighted linear combination of the probabilities of miss and
false alarm errors at the actual detection threshold. The thresh-
old is optimized on a development corpus with a development
keyword set by maximizing the term weighted value (MTWYV).
The performer should achieve a minimum of 0.3 ATWYV on the
evaluation set with the evaluation keyword set.

On each language more than 100 hours of data are collected
— full language pack (FLP) —, however, a considerable portion is
non-speech, and in the current period about 75% of the corpus
is transcribed. The limited language pack (LLP) comprises only
about 10 hours of speech. The ASR and KWS tasks are chal-
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lenging because the data sets contain speech originating from
various sources covering several environments and dialects, and
most of the data is narrow-band telephony speech. The pro-
vided pronunciation lexicons use a variant of X-SAMPA and
cover the words appearing in transcribed training data [18]. In
the base period (BP) of the project, Cantonese (CAN), Tagalog
(TAG), Pashto (PAS), Turkish (TUR), and Vietnamese (VIE)
as surprise language pack were released. In the second period
(OP1) five other languages — Assamese (ASM), Bengali (BEN),
Haitian Creole (HAI), Lao (LAO), Zulu (ZUL) — were given to
the performers. Table 1 shows the phone set overlap between
the languages. Cantonese, Vietnamese, Lao are tonal languages
and Zulu phoneset has the distinctive attribute of having click
consonants.

In our experiments we concentrate on LLPs of OP1. Ac-
cording to the primary submission condition, the acoustic and
language model training is based on the transcription of the
limited corpus. Not surprisingly, this result in a high out-of-
vocabulary (OOV) rate and also in large number of OOV terms
(at least one word of the query is OOV).

For the multilingual experiments the data is borrowed from
the BP FLPs, a total of approx. 350 hours of speech. Using
non-target language data from the project corresponds to the
”BabelLR” condition, where all Babel resources of non-target
languages can be used.

Table 2 summarizes the corpus statistics, and shows the
amount of speech retained for acoustic model and MLP training
after segmentation and silence removal steps. Our training cor-
pus is based on the reference segmentation. The segmentation
of the 20 hours of test set was prepared by our project partner
IBM. As can be seen, Zulu is the most difficult one of the OP1
languages. It has the highest number of unique phones (Table 1)
and due to the rapid vocabulary growth almost 2/3 of the queries
are OOV terms (Table 2).

Since evaluation keywords and data were not available,
the spoken term detection efficiency was measured in terms of
MTWY on the test set using the development keyword list [17].
The ASR performance is reported in WER on the development
sets of the Babel corpora.

Table 1: Phone set overlap across the Babel languages without
splitting di- or triphthongs and without differentiating between
tones of the phonemes

Lang| CAN PAS TAG TUR VIE; ASM BEN HAI LAO ZUL| Unique
CAN| 37 19 21 19 13 | 15 15 15 18 12 8
PAS 45 29 29 22,28 29 24 22 20 5
TAG 49 27 21,29 29 25 21 22 8
TUR 42 21 127 27 23 24 20 6
VIE 68 123 22 22 23 20 35
ASM| T T T T T T T T T T U5l 43 7207237 25 | T4
BEN I 53 29 22 25 5
HAI ‘ 32 20 21 1
LAO ‘ 42 20 7
ZUL ‘ 47 19

3. Experimental setup
3.1. Vocal tract length normalization and perturbation

The differing vocal tract sizes of different speakers lead to fre-
quency shift of the formants. In order to reduce the influence
of these shifts on the Gaussian Mixture Model (GMM) based
acoustic models Vocal Tract Length Normalization (VTLN)
could be applied [19]. As was shown in [20], using a generic
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Table 2: Statistics of IARPA-Babel training and testing corpora
and development keyword lists

Set (el0)Y
Lang Training | Test Lexicon| KW
" |amount of | running OOV | size [%]
speech [h] words [%]
ASM 9.2 73k | 66k | 8.6 8.7k | 28
BEN 94 82k | 70k | 8.9 9.5k | 31
HAI 10.0 |103k | 95k | 5.8 59k | 16
LAO 9.3 |101k | 90k | 1.8 4.0k | 10
ZUL 10.0 68k | 59k |16.0 | 16.2k | 61

text-independent speech model the normalization step can be
performed already before the first pass recognition. Speaker
normalized features could also improve the performance of
MLP [21, 22]. In our experimental setups the factor of piece-
wise linear warping is quantized between 0.88 and 1.12 with
0.02 step.

Recently, it has been shown that data augmentation using
label preserving transformations could further improve the neu-
ral network training [14]. We implemented the Vocal Tract
Length Perturbation (VTLP) in a similar way as [15]. Instead of
choosing the warping factor randomly, the perturbation was per-
formed in a deterministic manner around the estimated warping
factor. The data augmentation was then carried out by creating
other replicas. Based on initial experiments the warping fac-
tor perturbation step was set to 0.04, and 4 additional slightly
different copies of the original feature streams were generated.

Only the MLPs were trained on the perturbed data, the
GMMs were always estimated on the original feature set. It
should be noted that application of perturbation in the described
way could become infeasible with larger amount of data due to
the five times longer MLP training.

3.2. Feature extraction
3.2.1. Short-term features

In this paper, we investigate three different short-time speech
representations for MLP based combination of multiple feature
streams. The standard feature pipelines were slightly modified
to extract the critical band energies (CRBE) for MRASTA fil-
tering, see Section 3.2.2.

Similar to our previous study [10], we use the Gamma-
tone features (GT) [23] when no feature combination is per-
formed. The pipeline is based on an audiologically motivated
Gammatone filterbank implemented as a cascade of infinite im-
pulse response filters. In the post-processing step the features
are smoothed by a Hanning window in time and in frequency
followed by 10th root compression.

In addition, we also extracted PLP features [24], the
pipeline applies cubic-root compression and all-pole model fit-
ting before restoring the critical band energies. Our third feature
extraction method is the standard MFCC features [25].

In short, the main differences between the features refer to
the shape of the critical band filters: gammatone, trapezoid, or
triangular. Further difference concerns the distinction how the
decreasing frequency resolution of the human ear is modeled
with higher frequencies: Greenwood, Bark, or Mel-scales.

Moreover, fundamental frequency (FO) and voicedness fea-
tures [26, 27] were always extracted independent of the lan-
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3.2.2. Hierarchical BN-MLP features

The 101 frames of the CRBEs were smoothed by two-
dimensional bandpass filters to cover the relevant modulation
frequency range (MRASTA) [28]. Following the work of
[29, 30], the modulation spectrum is processed by hierarchical
bottleneck (BN) MLPs and concatenated with LDA transformed
GT features. The input of the first MLP contains the fast modu-
lation part of the MRASTA filtering. The second MLP is trained
on the slow modulation components and the windowed BN out-
put of the first MLP. In a third step, the joint training of the two-
level NN was performed, similar to [31]. Due to windowing
function in the middle the hierarchical MLP corresponds to a
time-delay NN [32]. The modulation features were augmented
by the single frame of the actual CRBE and 17 frames of FO
and voicedness features. In order to have a consistent feature
extraction pipeline — as required by multilingual MLP training
— FO features were always used.

The MLPs are initialized by discriminative pretraining [21]
and trained using the frame-wise cross-entropy criterion only.
The MLPs estimated 1500 tied-triphone states posterior proba-
bilities per language. We adjusted the learning rate parameter
on 10% of the training corpus.

The BN layer consisted of 60 units and was placed before
the last hidden layer. The other hidden layers contained 2000
neurons. Due to the limited amount of training data mostly shal-
low networks are trained for unilingual acoustic modeling (see
Section 4.1). The deep BN-MLP experiments were carried out
with MLPs with 6 non-BN hidden layers. Based on prior ex-
periments, the BN layer was kept sigmoidal when we switched
from sigmoid activations to ReLU of [12]. The ReLU MLPs
were trained using L, regularization and momentum.

The multilingual training of the BN features was performed
on fully randomized feature vector set of the joint corpora of
the languages. Although the transcriptions are available in X-
SAMPA format, this paper applies language dependent output
layers [6] instead of using a single softmax layer and the joint
phone set [33, 34]. According to [31] the former results usu-
ally in lower word error rates. All hidden layers were shared
between the languages. The multilingual training was carried
out on the BP languages with deep MLPs. Then the networks
was transferred and adapted to OP1 language. Depending on
the experimental setup, adaptation was done on the original or
the augmented corpus.

To carry out the training of different MLPs we extended the
Quicknet toolkit with the following features [35]: arbitrary deep
MLP structure, availability of input features at each level, L,
regularization, time-delay element, ReLU activation function,
and multilingual training of [6].

3.3. Acoustic and language modeling

The acoustic model uses up to 2500 triphone context-dependent
states clustered by decision trees and GMM with a globally
pooled diagonal covariance matrix and less than 800k densities.
In the following, the training procedure of the baseline acoustic
models is outlined. First, monophone models are trained based
on a linear alignment, without MLP features. In the second
step, the triphone acoustic model training is performed on the
same features. Then the MLP features and the speaker inde-
pendent/adapted GMM models are trained iteratively including
a realignment in each step until the WER converges. Unless
stated otherwise, the alignment of the last iteration step was
used in our experiments. Speaker adaptive training was ap-
plied using constrained maximum likelihood linear regression
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[36, 37]. The initial GMMs were trained according to the max-
imum likelihood criterion. Minimum Phone Error (MPE) train-
ing was performed on the final speaker adapted acoustic models
[38]. The speech recognition was carried out with 4-gram lan-
guage models (LM). According to the "BaseLR” submission
condition, no additional resources were used during the esti-
mation. In order to smooth the language models, the discount
parameters were optimized [39].

3.4. Keyword search systems

The speech recognition experiments are conducted with the
publicly available RASR toolkit [40]. The weighted finite state
transducer based keyword search system was provided by our
project partner IBM. On most of the languages, the spoken term
detection task is carried out on word lattices. The in-vocabulary
queries are searched in the graph directly, whereas the OOV
terms are looked for in the phonetic form of the lattice. After
the grapheme-to-phoneme (G2P) conversion of the query, its
phonetic form was further expanded with a transducer model-
ing phone confusions [41]. The phone confusion estimation is
derived from the Viterbi alignment of the reference transcrip-
tion and the first best hypothesis of unigram recognition of the
training corpus [42].

Due to the high OOV query rate on Zulu, an alternative
morpheme-graph based OOV search was also implemented.
The morphologically segmented queries, training and devel-
opment data were provided by the Columbia University mor-
phology team. By the help of sublexical modeling 43% of the
OOV queries are covered. These were searched as in-morph-
vocabulary queries in the morph graph similar to the search
of in-vocabulary queries in a word-graph. The OOV queries
not covered by morphological segmentation are searched in the
morpheme lattice after the G2P and P2P expansion steps.

In all cases, the lattices were obtained by decoding with a
bigram word/morpheme LM. The lattices contained over 10000
arcs/sec on average, the P2P expansion of the phonetic form of
the queries was limited to 5000 best paths. A sum-to-one score
normalization was also applied per keyword.

4. Experimental results
4.1. Improving unilingual BN features

In the first set of experiments we investigated the optimal struc-
ture of BN-MLP on Assamese. Because of the great suc-
cess of deep neural networks in acoustic modeling and fea-
ture extraction, hierarchical MRASTA BN-MLP structure op-
timized previously for LVCSR tasks was revisited. Besides the
MRASTA features we also experimented with 17 neighboring
CRBE frames directly. The BN features were extracted in hi-
erarchical and classical, furthermore, deep and shallow struc-
tures. The effect of VTLN normalization of the input features
was only partially tested. Finally, rectified linear units were ap-
plied to the best structure.

Results in Table 3 indicate that if only limited data is avail-
able for BN-MLP training both VTLN and phychoacoustically
motivated MRASTA processing are crucial. Thus, in the fol-
lowing experiments the BN features were fixed to hierarchical
MRASTA. It can also be seen that training a hierarchy of shal-
low BN features — which is a deep time delay NN — outper-
formed the classical deep structures (6-7th rows). Application
of ReLU improved the best results by 2.1% absolute.

In the second set of experiments the effect of VTLN, ReLU,
MRASTA processing of multiple streams, and VTLP were



Table 3: Optimization of NN features for Assamese LLP. Word
Error Rate (WER) was measured after SAT w/o MPE.

Features | VILN | NNstueture | ypp

hier. | deep | activation

no o 67.4

MRASTA os sigmoid 66.4

y yes 68.1

yes o ReLU 64.3

68.9

CRBE no yes sigmoid 68.8

yes no 67.5

tested on several languages (Table 4). We consider the recog-
nition and KWS results obtained by a discriminatively trained
MRASTA based GMM as the baseline. The results show that
successive application of VTLN, ReLU, and feature combi-
nation significantly improves the acoustic models on all lan-
guages. In the next step, we investigated whether the better
acoustic model leads to a better alignment. As can be seen, on
Assamese, Bengali, and Haitian the better alignment resulted
in measurable improvement in WER. Additional experiments
revealed, that VTLN, ReLU and feature combinations are not
fully additive, and the same recognition performance could be
achieve without VTLN (6th row in Table 4). Finally, the data
augmentation technique was applied. Replicating the training
data consistently improved the results on all languages. Exper-
iments (results not presented here) with deep hierarchical MLP
structures and the artificially increased VTLP corpus did not
show further improvement. After the MPE training of the best
acoustic model we also measured KWS performance (Table 5).
In summary, the optimized BN-MLP features show 20-37% rel-
ative MTWYV and 5-8% relative WER improvement.

Table 4: Improving unilingual acoustic models (AM) by rectified
linear units (ReLU), feature combination, and data augmenta-
tion (VTLP). Recognition results are measured after speaker
adaptive (SA) training optionally followed by discriminative
training (DT) and are in Word Error Rate (WER [%])

AM ASM BEN HAI LAO ZUL

Baseline DT | 66.7 | 705 | 63.2 | 609 | 73.8
+VTLN 664 | 69.0 | 61.8 | 60.6 | 73.9
+RelLU 643 | 66.7 | 59.9 | 58.8 | 72.7
+fea.comb.| SA | 63.8 | 66.1 | 589 | 58.0 | 72.0
+realign. 63.1 | 658 | 584 | 58.0 | 72.0
623 | 650 | 582 | 573 | 714

TVILP DT | 619 | 644 | 581 | 565 | 70.1

Table 5: Keyword search performance comparison of the base-
line and the improved systems. Results are measured in MTWV
(more is better) after MPE training of the acoustic models.

ASM BEN HAI LAO ZUL

. 0.180
Baseline 0.288 | 0.295 | 0.461 | 0.408 02445

+ReLU, +fea.comb., 0.234
+realign., +VTLP 0.358 [0.400 [0.552 |0.496 0.316%

*using morpheme-graph based keyword search for OOV queries

4.2. Initialization with multilingual MLP

As can be seen in Table 5, Assamese and Zulu are the two most
difficult languages wrt. spoken term detection performance. In
the next experiment we investigated the effect of transfer and
adaptation of multilingually trained MLPs for these languages.
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The first multilingual MLP was trained on GT pipeline based
MRASTA features of five BP languages, and was adapted with
only 10 hours of speech of the LLP corpus without using VTLN,
this experimental setup is similar to the baseline in Table 4. In
the second multilingual experiment, the transferred MLP was
trained on three streams of MRASTA features (GT, MFCC,
PLP) and was adapted to the target languages using the per-
turbed LLP corpora. These features could be compared to the
best features in Table 4, except for the application of the sig-
moidal non-linearities in multilingual case. As can be seen in
Table 6, the first type of multilingual MLP resulted in 16% and
12% relative KWS improvement for Assamese and Zulu over
the best unilingual systems. Comparison to the baseline results
in Table 5 shows even larger, over 40% relative MTWYV increase
which agrees with our previous investigations in [10] regardless
of word- or morpheme-graph based keyword search pipeline.

Application of the novel techniques on multilingual MLP
features improves the Assamese results even further resulting in
20% relative MTWYV improvement over the best unilingual sys-
tem. On Zulu we observed only slight gains related to data aug-
mentation and feature combination methods if the OOV query
search was performed on word lattice.

Table 6: Boosting speech recognition (WER) and keyword
search results with multilingually trained BN-MLP features for
Zulu and Assamese. MTWVy and MTWYV), indicate word- and
morpheme-graph based OOV query search performance

ASM ZUL
WER [%] | MTW V| WER [%] | MTW V] MTWVy,
best unilingual 61.9 0.358 70.1 0.234 | 0.316
multilingual 59.1 0.416 68.2 0.263 | 0.334
+fea.comb. +VTLP| 58.4 0.433 68.3 0.265 | 0.344

5. Conclusions

We showed experimentally that acoustic models for low-
resource speech recognition task can be significantly improved
by MLPs with rectified linear activation units, MLP based fea-
ture combination, and vocal tract length perturbation. With the
help of these approaches the unilingual query term detection
performance for all IARPA-Babel OP1 languages increased by
20-30% relative. And as has also been shown, adaptation of
multilingual, multistream MLP with artificially augmented cor-
pus to the target language resulted in 20% and 9% relative gain
over the best unilingual system for Assamese and Zulu, respec-
tively.
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