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Abstract
With long-span neural network language models, considerable
improvements have been obtained in speech recognition. How-
ever, it is difficult to apply these models if the underlying search
space is large.

In this paper, we combine previous work on lattice decoding
with long short-term memory (LSTM) neural network language
models. By adding refined pruning techniques, we are able to
reduce the search effort by a factor of three.

Furthermore, we introduce two novel approximations for
full lattice rescoring, which opens the potential of lattice-based
speech recognition techniques. Compared to 1000-best lists, we
find that we can increase the word error rate improvements ob-
tained with LSTMs from 8.2 % to 10.7 % relative over a state-
of-the-art baseline, while the resulting lattices are even consid-
erably smaller. In addition, we investigate the use of LSTMs
for Babel Assamese keyword search, obtaining significant im-
provements of 2.5 % relative.
Index Terms: speech recognition, language modeling, recur-
rent neural networks, long short-term memory, word lattices

1. Introduction
In today’s speech recognition systems, the language model
(LM) estimates the probability p(wN

1 ) of a word sequence wN
1 ,

where a conditional dependence on the previous (n− 1) words
is assumed. This results in the factorization

p(wN
1 ) =

N∏

i=1

p(wi|wi−1
i−n+1).

Most commonly, the quantity p(wi|wi−1
i−n+1) is estimated using

a count-based model [1], and it is found that no improvements
can be obtained by going beyond n = 4 or n = 5.

More recently, language models based on neural networks
([2, 3, 4, 5]) have proven especially effective for speech recog-
nition. For this kind of model, much longer context depen-
dences are beneficial. E. g., in [6], a feedforward neural net-
work LM with n = 8 was used, and in case of recurrent neural
networks ([4, 6]), there is not even an explicit upper bound on
the context length that is used for the estimation of the word
posterior probabilities.

For efficiency reasons, neural network LMs are mainly ap-
plied in a second decoding pass. This means that a set of can-
didates for the correct word sequence is obtained using a count-
based LM. In a second pass, the neural network LM is evaluated
on the set of candidates, and the best hypothesis according to the
new LM is selected.

In this paper, we stick to the following terminology: By
decoding, we denote the process of obtaining the overall best
hypothesis from a set of candidate hypotheses. We refer to the
term rescoring in the case where we obtain updated probability
estimates for each hypothesis from the candidate set.

The mismatch in context length of the count-based LM for
the first pass and the neural network LM for the second pass
makes it difficult to apply the neural network in practice. More
precisely, if the set of hypotheses is encoded as an n-best list,
both decoding and rescoring are straightforward and can be car-
ried out without introducing approximations ([7, 8]). However,
only a small fraction of the overall search space can be covered.
Even for large n-best lists, most hypotheses will differ in a few
word positions only, such that there is little variation in the list.

If the set of hypotheses is encoded as a word lattice, the
underlying search space can be represented accurately. On the
other hand, for decoding, only an approximative approach is
possible, because evaluating the neural network LM for all the
unique (with respect to the neural network LM) paths in the
lattice is computationally too costly. In [9], a hill climbing so-
lution was used for lattice decoding. In [10], an efficient push
forward algorithm was presented to find the best path in a word
lattice in a machine translation setting.

To the best of our knowledge, no prior work has investi-
gated the problem of rescoring lattices with a long-span neural
network LM. This is important, because many speech recogni-
tion techniques rely on lattices, e. g., word confidence estima-
tion, confusion network based decoding, and keyword search.
In all these cases, using an n-best list instead of a lattice would
result in a severe degradation in performance. In particular, with
existing approaches, the improvements obtained with recurrent
neural networks (which were shown to outperform feedforward
models in [6, 11, 12]) cannot be transferred to any of the above
applications.

This paper introduces the following novelties: First, we ap-
ply the push forward algorithm from [10] to a speech recog-
nition setting, and we combine it with long-span recurrent long
short-term memory (LSTM) neural network LMs ([5, 13]). Sec-
ond, we investigate refined pruning techniques. Finally, we pro-
pose two novel approximation strategies for full lattice rescor-
ing with recurrent neural networks, and evaluate their effective-
ness for French speech recognition and Babel Assamese key-
word search.

2. LSTM Neural Network LMs
There exist multiple variants of neural network LMs. In this
work, we make use of an architecture that is depicted in Fig. 1,



consisting of four layers (including input and output layer). This
results in the following equations for the forward pass of the
neural network:

yi−1 = A1xi−1

zi−1 = ξ(yi−1;A2, y
i−2
1 )

p(c(wi)|wi−1
1 ) = ϕc(wi)(A3zi−1)

p(wi|c(wi), w
i−1
1 ) = ϕwi(Ac(wi)zi−1)

p(wi|wi−1
1 ) = p(wi|c(wi), w

i−1
1 ) · p(c(wi)|wi−1

1 )

Here, by xi−1 we denote the one-hot encoded vector represen-
tation of the most-recent history word wi−1, and yi−1 and zi−1

are the outgoing activation values of the projection layer and
the hidden layer, respectively. The matricesA1, A2, A3, Ac(wi)

contain the weights of the corresponding neural network layers.
By ξ(· ;A2, y

i−2
1 ) we denote the LSTM formalism that we plug

in at the third layer. As the LSTM layer is recurrent, we explic-
itly include the dependence on the previous layer activations.
The equations corresponding to ξ can be found e. g. in [14]. Fi-
nally, ϕ is the widely-used softmax function to obtain normal-
ized probabilities, and c denotes a word class mapping from any
vocabulary word to its (unique) word class that we use to speed
up the computations ([15, 16]). Word classes can be trained
based on a perplexity criterion ([17, 18]).

p
(
c(wi)|wi−1

1

)
p
(
wi|c(wi), w

i−1
1

)
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Figure 1: Architecture of the recurrent LSTM neural network
LM used throughout this work.

3. Lattice Decoding
3.1. Push Forward Algorithm

As our work builds on the push forward algorithm from [10],
we shortly sketch the idea of this approach: In a first step, the
nodes of a lattice are sorted in topological order. Then the neu-
ral network language model is evaluated, starting from the first
node, computing the probability for each word label on the out-
going arcs of the current node, then iterating over the successor
nodes.

As the order of the neural network LM is higher than that of
the LM which was used to create the lattice, paths in the lattice
may be recombined even though they would need to be kept
separate in terms of the neural network LM. Therefore, a set of
partial hypotheses is associated with each lattice node, where
a hypothesis keeps track of the full LM context. To limit the
number of hypotheses during decoding, out of those hypotheses
where the (n−1) predecessor words of the LM contexts match,
only the best hypothesis is retained at a lattice node (n-gram

recombination). In addition, only the m-best hypotheses are
retained at each node (cardinality pruning).

3.2. Refined Pruning Strategies

We found that we can easily transfer pruning techniques from
standard speech recognition decoders to the case of the push
forward algorithm.

This relates to the fact that in a speech recognition lat-
tice, multiple nodes share a common time stamp, unlike in
the case of machine translation. Sorting the lattice nodes by
time and traversing them in this order leads to a (topologi-
cal) time-synchronous expansion of the search graph. A time-
synchronous processing was found to be very efficient for beam
pruning in case of first pass speech decoding ([19]).

Consequently, for a given time stamp in the lattice, we com-
pute the best score of all related hypotheses. Afterwards, we
discard those hypotheses whose score exceeds the current best
score augmented by a fixed threshold. (By score we denote the
negative logarithm of the corresponding probability.)

In first pass decoding, it is also common to use some kind
of look ahead technique regarding scores that will be computed
in the future. For example, in first pass decoders relying on
a prefix tree representation of the lexicon, the best reachable
LM score is added to the scores computed for the current time
frame ([19]). By contrast, for transducer-based decoders, the
sum over all reachable scores is taken into account instead, and
it is even found that a look ahead based on the single best path
can decrease performance ([20]).

From this perspective, the single-best look ahead and the
sum look ahead seem promising in case of lattice decoding, and
we investigate both in the experimental section. In either case,
we make use of the scores from the acoustic model as well as
from the count-based LM, which both are already available at
lattice decoding time.

It should be added that beam pruning is a necessary require-
ment for look ahead techniques. When using cardinality prun-
ing instead, only the scores of hypotheses attached to a single
node are compared with each other. As a result, look ahead does
not have any effect because it is the same for all hypotheses.

4. Lattice Rescoring
During lattice decoding, we keep track of all partial paths that
have been considered as potential candidates for the overall best
path by using a so-called traceback data structure as is used in
conventional first pass decoding ([19]). In this way, we build up
a tree structure that represents all hypotheses considered dur-
ing decoding. An example is shown in Fig. 2, where arcs from
the lattice are shown in black, and arcs from the corresponding
traceback tree are drawn in red.
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Figure 2: Example lattice and hypothetical traceback tree (indi-
cated in red). Dashed lines correspond to pruned paths.



Our goal is to make use of the probabilities computed dur-
ing decoding to obtain a lattice that incorporates the neural net-
work LM probabilities.

4.1. Replacement Approximation

For the first approximation, we keep the lattice structure fixed,
i. e., we only exchange the LM probability estimates them-
selves. Furthermore, we choose the approximation in such a
way that in case where the lattice would be fully expanded (i. e.,
correspond to an n-best list, be it compressed as a prefix tree or
not) it would result in an exact rescoring.

To this end, we sort all traceback hypotheses decreasingly
by time, and increasingly by their score. Afterwards, starting
from the final node, we follow the best path back to the start
node, assigning the neural network probabilities for the individ-
ual words as new LM scores to the visited arcs. In the example
of Fig. 2, this would be, say, the path i–g–f–c. We continue to
follow back the other traceback paths from the final node, leav-
ing unchanged the scores of lattice arcs that have already been
rescored before. Then, we continue in the same manner with the
hypotheses that, due to pruning, ended at an earlier node (paths
g–e, b, and d in the example lattice). We enforce that at each
lattice node at least one hypothesis survives pruning. Like this,
we are guaranteed that we can fully rescore the original lattice.

4.2. Traceback Lattice Approximation

A disadvantage of the replacement approximation is that only
a part of the neural network probabilities is actually kept for
building the rescored lattice. Instead, we can also allow the
final lattice to have a structure different from the original one.
We choose our approximation in such a way that the overall best
path in the rescored lattice must be the same as the one that is
found by lattice decoding.

To achieve this goal, we directly convert the traceback tree
back into a lattice. However, there is a huge difference in the
number of paths in the lattice and its decoding traceback: A
typical lattice in our setup contains 1035 different paths from
the start node to the final node. By contrast, the traceback tree
only contains about 100 of such paths. All missing paths in the
traceback have been pruned, and we recover them by recombin-
ing pruned paths with surviving (but not necessarily complete)
paths in the traceback tree. To do so, for each pruned traceback
path ending at a lattice node, we determine the worst traceback
path surviving this node which is still better than the pruned
path. (Due to recombination pruning (see Section 3.1), a sur-
viving path is not necessarily better than a pruned path.) Then
we recombine the pruned and the surviving path. In the exam-
ple in Fig. 2, this means that the distinct paths e–g and c–f–g
will meet after the former path was pruned, and they continue
as one path starting from node 4.

The resulting lattice has the exact same number of paths
as the original lattice. In contrast to the situation of the push
forward algorithm, it is not expanded to a unique context up to
a certain length.

5. Experimental Results
5.1. French Speech Recognition

The LM training data are summarized in Table 1. The acoustic
model for the French experiments was trained on 350 hours of
broadcast conversational and broadcast news data. In addition,
we incorporated multilingual multi-layer perceptron (MLP) fea-

Corpus Running Words Vocabulary
Train 100 M

Quaero French Dev 35 K 188 K
Test 41 K

Babel Assamese Train 406 K 22 KDev 66 K

Table 1: Training data for the French and Assamese languages.

tures ([22]) in a tandem ([23]) approach. The features were
trained on a total of 840 hours of English, French, German,
and Polish speech data. The system made use of discrimina-
tive training with the minimum phone error criterion ([21]). In-
cluding rescoring 100-best lists with an LSTM with 300 hidden
nodes, this system obtained the best word error rate in the final
evaluation of the Quaero project1.

It seems interesting to analyze the explicit context depen-
dence of a recurrent LSTM neural network LM for lattice de-
coding. Fig. 3 depicts the word error rate dependence on the
recombination order at a constant, loose beam pruning thresh-
old. We observe that at an order of 9 (i. e., a 10-gram), the
improvement in log-probability saturates. The behaviour of the
word error rate is a bit more noisy, but essentially reflects the
tendency of the log-probability curve. For the subsequent ex-
periments, we thus stick to a 10-gram recombination pruning.

From the results shown in Figure 4 we conclude that beam
pruning for lattice decoding can significantly reduce the search
space. When combining beam search with look ahead, we find
that, for obtaining the best word error rate, we can reduce the
search space as well as decoding time by more than a factor of
three compared to cardinality pruning. In this case, the real time
factor is 0.5 on one Intel Westmere CPU core.

Table 2 summarizes the results for decoding and rescoring,
where the pruning parameters are kept fixed at loose values. In
the following, we discuss the results from the table row by row.
Regarding the Kneser-Ney baseline, we see that we obtain good
improvements of 0.3 % absolute on the dev data and 0.5 % abso-
lute on the test data by using confusion network (CN) decoding
instead of Viterbi (V) decoding. We can significantly reduce
this error rate by rescoring 100-best lists with an LSTM, but
no additional gain is observed with CN decoding. Even when

1http://www.quaero.org
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Type Development Data Test Data

Dens. Decode Repl. Appr. Traceback Appr. Dens. Decode Repl. Appr. Traceback Appr.
V CN Dens. V CN V CN Dens. V CN

KN4 124 14.4 14.1 166 16.4 15.9
100-best 128 13.4 13.4 103 14.8 14.8
1000-best 1289 13.2 13.1 1100 14.7 14.6
Lattice-1 124 13.1 13.2 12.9 592 13.1 12.6 166 14.6 14.8 14.4 828 14.6 14.2
Lat.-4 dep. 392 12.8 12.9 12.6 880 12.8 12.5 523 14.4 14.7 14.3 1209 14.4 14.1

Table 2: Word error rate results for Quaero. If no error rate is given, it is identical to the corresponding Decoding/CN result of the same
row. The Kneser-Ney 4-gram (KN4) was trained on 1.6 B running words. Lattice density (Dens.) is measured in arcs per reference
word. Lattices after rescoring with the replacement approximation do not increase in size, as opposed to the traceback approximation.
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Figure 4: Tradeoff between the number of neural network prob-
ability calculations and word error rate performance for various
pruning and look ahead (LA) techniques.

switching to large n-best lists of size 1000, the improvement by
CN decoding is negligible.

For lattices, we distinguish between direct Viterbi decoding
with an LSTM, and two step decoding with an intermediate lat-
tice rescoring, either with the replacement or with the traceback
approximation. We see that the Viterbi word error rate of the
replacement approximation falls a bit behind the error rate of a
direct Viterbi decoding, but with CN decoding, in spite of the
approximation we can even improve over direct decoding.

For traceback rescoring, by construction we obtain the same
Viterbi word error rate as for direct decoding, and with CN
decoding, we improve by 0.5 % absolute on the dev data and
0.4 % absolute on the test data, while the resulting lattices are
still considerably smaller than the corresponding 1000-best lists
(99 % confidence intervals as in [24]: (0.2 %, 0.7 %) and (0.1 %,
0.6 %), respectively).

The RWTH speech decoder [25] generates lattices which
are not expanded by default. Expanding the lattices to a unique
4-gram context, and re-using the LSTM history of the last
speech paragraph for the current one in an inter-dependent fash-
ion results in the lowest overall word error rate, an 11.3% rel-
ative improvement over the Kneser-Ney model with CN de-
coding (from 14.1 % to 12.5 % on the development data, and
from 15.9 % to 14.1 % on the test data).

We did not optimize the pruning parameters such that the
size of the traceback lattices is minimized. For loose pruning
parameters without look ahead, the traceback lattices were al-
ways smaller than 1000-best lists (except for traceback lattices
created from the lattices expanded to a unique 4-gram context.)

5.2. Babel Assamese Keyword Search

We also investigated the potential improvements in keyword
search by lattice rescoring with LSTM LMs. It is state-of-the-
art to use a bigram count-based LM ([26]) for keyword search.
Furthermore, best results are obtained for extremely huge lat-
tices. Therefore we only investigate the replacement approxi-
mation here.

We took our current best system for Babel Assamese key-
word search system trained on the full language pack according
to the ‘BaseLR’ conditions as a baseline for this experiment.
The lattices had 7900 arcs per second. Details can be found
in [27]. For the baseline system, we obtained a maximum term-
weighted value (MTWV) score of 0.4936 (cf. Tab. 3). By inter-
polating with four bigram MLP neural network language mod-
els (which would reflect the order of the original count-based
LM), we improve this MTWV score to 0.5001. If we exchange
the MLP by an LSTM instead, we can finally increase this value
to 0.5060, improving the baseline score by 2.5 % relative.

LM MTWV Score
KN Bigram 0.4936
+4 x Bigram MLP 0.5001
+4 x LSTM 0.5060

Table 3: Keyword search results for Babel Assamese.

6. Conclusion
In this work, we investigated a lattice decoding algorithm on
two speech recognition setups. We refined previous pruning
techniques, leading to a three times reduction in search effort.
With the introduction of two novel approximation techniques
for lattice rescoring, we were able to reduce the word error rate
of a state-of-the-art French speech recognition system with an
LSTM by 10.7 % relative, instead of 8.2 % when using 1000-
best lists, and our rescored lattices are still considerably smaller.
Finally, our rescoring approach also helps improving Assamese
keyword search.
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Schlüter, R., and Ney, H., “The RWTH Aachen University Open
Source Speech Recognition System”, Proc. of Interspeech 2009,
pp. 2111–2114

[26] Knill, K. M., Gales, M. J. F, Rath, S. P., Woodland, P. C., Zhang,
C., Zhang, S.-X., “Investigation of multilingual deep neural net-
works for spoken term detection”, Proc. of ASRU 2013, pp. 138–
143
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