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Abstract

This work presents a statistical recognition approach performing large vocabulary continuous sign language recognition across
different signers. Automatic sign language recognition is currently evolving from artificial lab-generated data to ’real-life’ data.
To the best of our knowledge, this is the first time system design on a large data set with true focus on real-life applicability is
thoroughly presented. Our contributions are in five areas, namely tracking, features, signer dependency, visual modelling and
language modelling. We experimentally show the importance of tracking for sign language recognition with respect to the hands
and facial landmarks. We further contribute by explicitly enumerating the impact of multimodal sign language features describing
hand shape, hand position and movement, inter-hand-relation and detailed facial parameters, as well as temporal derivatives. In
terms of visual modelling we evaluate non-gesture-models, length modelling and universal transition models. Signer-dependency
is tackled with CMLLR adaptation and we further improve the recognition by employing class language models. We evaluate on
two publicly available large vocabulary databases representing lab-data (SIGNUM database: 25 signers, 455 sign vocabulary, 19k
sentences) and unconstrained ’real-life’ sign language (RWTH-PHOENIX-Weather database: 9 signers, 1081 sign vocabulary, 7k
sentences) and achieve up to 10.0% / 16.4% and respectively up to 34.3% / 53.0% word error rate for single signer / multi-signer
setups. Finally, this work aims at providing a starting point to newcomers into the field.
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1. Introduction

Sign languages (SLs), the natural languages of the Deaf, are
known to be as grammatically complete and rich as their spoken
language counterparts. Science discovered SLs a few decades
ago and research promises new insights into many human lan-
guage related fields from language acquisition to automatic pro-
cessing.

SLs are not international and convey meaning by more than
just the moving hands. They make use of both ‘manual fea-
tures’ (hand shape, position, orientation and movement) and
linguistically termed ‘non-manual’ features consisting of the
face (eye gaze, mouthing/mouth gestures and facial expression)
and the upper body posture (head nods/shakes and shoulder ori-
entation). All of these language components are used in par-
allel to complement each other, but depending on the context
of an utterance, a specific component may or may not be re-
quired to interpret the sign. Sometimes, an individual compo-
nent plays an integral role within the sign, sometimes modifies
the meaning, and sometimes provides spatial or temporal con-
text. Furthermore, the different information channels do not
share a fixed temporal alignment, but are rather loosely cou-
pled.
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Computer vision methods exist to extract features for these
different channels. However, SL constitutes an extremely chal-
lenging test bed as it incorporates huge variations inherent to
natural languages. High signing speed, motion blur, different
lighting and view-point-dependent appearance have to be tack-
led. Furthermore, ambiguity is inherent to sign languages, as
each movement, each change in eye gaze or each appearance
of the tongue may or may not have a grammatical or semantic
function depending on the context. Thus, learning features and
training classifiers that can be applied to SL recognition must
cope with a natural variation seldom present in other tasks. At
the same time, it constitutes a very well-defined environment
for assessing gesture recognition techniques by providing rules
and boundaries for naturalness and intelligibility.

Historically, research on automatic sign language recognition
(ASLR) had mainly access to small data sets, limited number of
signers and a limited recognition vocabulary. Recently, a very
exciting era has started. SL research is moving out of the lab
into ’real-life’ scenarios.

In this paper, we present extensive results and thorough
analysis on, to our knowledge, the currently biggest pub-
licly available corpus of continuous sign language (RWTH-
PHOENIX-Weather). It covers only ’real-life’ signing recorded
on public TV broadcast that has been manually labelled by na-
tive speakers. To the best of our knowledge, this is the first
time, system design on a large data set with true focus on real-
life applicability is thoroughly presented. Our contributions are
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3-grams:
-0.728952 GUT ABEND AUSRICHTEN
-0.728952 GUT ABEND LIEB
-1.691098 HEUTE ABEND ACHT
-1.703925 HEUTE ABEND ALLGAEU
-1.457521 HEUTE ABEND KALT
-1.573223 HEUTE ABEND NORD
-1.160771 HEUTE ABEND REGEN
-1.691098 HEUTE ABEND SECHS
-1.587919 HEUTE ABEND

Figure 1: Areas tackled by this paper.

in five areas, namely tracking, features, signer dependency, vi-
sual modelling and language modelling.

We experimentally show the importance of tracking for sign
language recognition, with respect to the hands and facial land-
marks. We further contribute by explicitly enumerating the
impact of multimodal sign language features describing hand
shape, hand position and movement, inter-hand-relation and de-
tailed facial parameters, as well as temporal derivatives. Among
these, the combination of hand gesture features and face fea-
tures is novel, as well as the definition of the high-level face
features.

In terms of visual modelling we evaluate non-gesture-
models, length modelling and universal transition models.
Signer-dependency is tackled using constrained maximum like-
lihood linear regression (CMLLR) adaptation. Further, class
language models, CMLLR adaptation, as well as non-gesture-
models are the new aspects to ASLR.

In Section 2, we introduce the state-of-the-art in the context
of sign language recognition and its related sub-fields. In the
following two sections, we first present the employed data sets
used for evaluating this work (Section 3) and then, in Section 4,
the overall recognition system is explained in detail.

The subsequent sections tackle each of the five areas depicted
in Figure 1, giving first the technical details and then the exper-
imental evidences. This is meant to open up the field to new-
comers, who can estimate the impact of the most important de-
sign decisions. In Section 5, the employed tracking techniques
are discussed and their impact with respect to the hands and
facial landmarks is given. Section 6 presents the employed fea-
tures covering most important modalities for SL and shows the
impact on overall recognition results. Methods improving the
visual modelling are presented in Section 7. Our approach to
tackling multiple signers is presented in Section 8. The exper-
imental sections end with our contribution to language mod-
elling in Section 9. Finally, the paper closes with a conclusion
and discussion of future work in Sections 10 and 11.

2. Related Work

This section describes related work in ASLR and its related
disciplines. The field evolved from recognising isolated signs of
very limited number, articulated by only a single signer towards
more complex settings with continuous natural signing of mul-
tiple signers. Thereby, the scientific community advances three
tracks simultaneously:

1. The methods to extract relevant information become more
sophisticated and precise, moving from expensive glove-
and accelerometer-based setups to non-intrusive computer
vision techniques.

2. The modelling of SL evolves to accommodate both lin-
guistic and data-driven findings, aiming to fully reflect the
complexity of the visual language.

3. The available data sets become more challenging, bigger
and closer to real-life signing.

Although more recently ASLR is starting to tackle ’real-life’
continuous signing data, the majority of work in the commu-
nity still focuses on the recognition of isolated signs mostly in
artificial settings.

2.1. Sign Language Recognition
Tamura et al. [64] were the first to start exploring the world

of ASLR. They built a system to recognise isolated signs of
Japanese SL by modelling the shape, movement and location
of the hand using a simple colour segmentation. A lot of the
early ASLR systems then employed glove-based motion track-
ing systems to overcome difficulties with vision-based feature
extraction and tracking. This allowed to increase the recogni-
tion vocabularies while still achieving high accuracy on sim-
pler tasks. In this way, Kadous et al. [34] distinguished 95
Australian Sign Language (AUSLAN) signs with accuracies of
around 80% using decision trees as classifier. Two years later
Liang et al. [42] proved to recognise a lexicon of 250 different
signs of Taiwanese SL with a similar error rate. However, due
to high cost of motion capture systems and thus low real-world
applicability, coloured gloves and computer vision techniques
started emerging [13].

More advanced visual tracking methods allow to design non-
intrusive vision-based approaches that do not require the signers
to wear any sort of gloves [3, 76]. Starner et al. [60] mounted
a camera into a hat and used hidden Markov models (HMMs)
to recognise a data set of 40 different American Sign Language
(ASL) signs. A good overview of ASLR is given in [52]. Fur-
thermore, a number of researchers consider the problem as sign
spotting [54, 20], where the aim is not to recognise whole sen-
tences, but rather single instances of signs within sentences.

Sign Sub-Units. The need to break whole signs up into sub-
units in order to use limited training data more efficiently and
in order to allow scaling up of the vocabulary has been an un-
solved problem since the early work of Waldron et al. [70].
Inspired by grapheme-to-phoneme conversion, Pitsikalis et
al. [55] extract sub-unit definitions from linguistic annotation in
HamNoSys [31] to improve an HMM-based system recognising
isolated sign in Greek sign language. Cooper et al. [7] compare
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boosted sequential pattern trees to HMMs using linguistically
inspired sub-units and 3D tracking information finding that the
trees outperform HMMs for BSL. Koller et al. [39] employ an
open SignWriting [63] dictionary to produce and align linguis-
tically meaningful sub-units to signs in German Sign Language
(DGS).

Unsupervised approaches. To tackle limited or even no
available training data, several works [36, 6, 47, 53] aim at ex-
ploiting co-occurrences of weak cues to learn hand-based sign
language models.

Handling Co-articulation and Noise. Signs differ based on
the preceding and following sign leading to huge visual vari-
ability. To overcome these co-articulation issues, background,
noise and co-articulation modelling is needed. Lee et al. [41]
investigate adaptive thresholding for individual sign HMM and
report recognition improvements on a very limited corpus. An-
other approach to model co-articulation by Yang et al. [74] uses
nested dynamic programming to optimise the time sequence
of a co-articulation movement separate from the signs. The
method was evaluated on a 39 vocabulary continuous sign lan-
guage corpus and a drastic reduction in error rate by 70% is
reported. Kelly et al. [35] use a very similar threshold model
approach and report 5.2% improvement on an isolated data set
giving testament to the limitations of the corpus used in [41].

Modality Combination. As mentioned in Section 1, SLs
consist of multiple parallel information streams, also referred
to as modalities. The fusion of these modalities has been an
active field of research within the community. One approach
is to use parallel HMMs, which are reported to recognise iso-
lated signs in American and Chinese sign language achieving
recognition accuracies over 90% [12, 71]. Also the fact that
modalities can occur in a time asynchronous way has been con-
sidered during modelling [22]. Vogler and Metaxas [68] inves-
tigate parallel HMMs (PaHMM) for recognition of continuous
ASL using cyber-gloves for feature extraction. They report an
improvement from 6.7% to 5.8% word error rate (WER) for 22
signs using 400 training and 99 test sentences. Theodorakis et
al. [65] evaluated product HMMs for the recognition of 93 iso-
lated, Greek sign language signs and reported that an asyn-
chronous combination of features outperformed a synchronous
combination. Aaran et al. [1] implement a fusion technique for
hand shapes and facial expression/shoulder motion that only
considers the second feature when the decision based on the
first information stream has low confidence. Forster et al. [22]
investigate techniques to combine not perfectly synchronous in-
formation streams within an HMM-based ASLR system find-
ing that synchronisation just at word boundaries improves the
recognition performance. Ong et al. [51] use boosted hierarchi-
cal sequential pattern trees to recognise isolated and continuous
signs in British Sign Language (BSL), DGS and ASL. Their ap-
proach seems promising by allowing to combine partly parallel,
not perfectly synchronous features through feature selection by
the trees. However, on continuous data the approach faces dif-
ficulties.

Recognition and Translation. As SLs represent full lan-
guages with their own grammar and syntax, an additional trans-
lation step should follow recognition in order to bridge the com-

munication gap between deaf and hearing. Tokuda et al. [66]
mention an important problem: the SL word inventory is much
smaller than the spoken language counter part. However, this is
not due to a limited vocabulary, but rather remains an unsolved
problem of neglecting SL concepts (i.e. modifier, classifier, in-
dexing) and non-manual features in recognition. Schmidt et
al. [59] address this problem by linking a mouthing recognition
to the subsequent translation. Other works looking at recog-
nition and translation include Bauer et al. [2], who perform a
HMM-based recognition of 100 DGS signs with an accuracy of
over 90% and translate it into German text, and [61, 23].

2.2. Features

Feature extraction is an important step in a recognition sys-
tem. Over the last decades, different features emerged that
proved to be successful in the task of ASLR. This subsection
aims at depicting how the task of extracting relevant visual in-
formation evolved until now.

Basic Features. Humans can understand SL by looking at
a video sequence, thus the information must be present in the
images. As a naı̈ve descriptor, the rgb values of the full image,
patches of the tracked hand or the face can serve as features [10,
21].

Features are often chosen reflecting the knowledge of sign
linguists. It is known that the manual channel (hand shape, ori-
entation, position and movement) conveys a big part of the in-
formation in SLs. Tracking the hands and extracting advanced
features based on their positions is an important requirement
in order to focus feature extraction on relevant video/image
regions. Histogram of oriented gradients (HOG) by [11] and
other 2D feature point descriptors, such as scale invariant fea-
ture transformation (SIFT) [44] are frequently encountered
in ASLR approaches [8, 53]. HOG-3D [38], an extension
over time of HOG, has also shown to produce state-of-the-art-
performance [21]. Often trajectories of each single hand or of
the interaction of both hands are also used as features [30].
Gabor responses of the forehead have shown to capture non-
manual facial expression [43].

High-Level Features. 3D models of hands [45] or faces [58]
are used to find higher-level concepts within signing sequences,
such as opening the eyes, raising the eyebrows or turning a
hand. Recently, viseme patterns have been proposed [40] to
reflect mouthings performed during signing. Finally, inspired
by the success of neuronal-network-based features in automatic
speech recognition, the same concepts are tested for SL [29].

2.3. Sign Language Databases

Current publicly available video-based sign language cor-
pora can be grouped into one of three categories depending on
the scientific community they originated from.

1. lexical data sets for every day use
2. linguistic data sets
3. large data sets for pattern recognition purposes

First, there are corpora intended as video-based lexica for
sign languages allowing to track and analyse changes in the
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vocabulary of sign languages from a linguistic point-of-view.
’The American Sign Language Lexicon Video Dataset’ [48]
forms such a lexicon for American sign language (ASL), con-
taining more than 3000 signs in multiple video views. The
AUSLAN SignBank project1 provides annotations on a variety
of linguistic levels for 357 videos of Australian sign language.

Second, there are corpora intended for linguistic research on
isolated signs and continuous sign language allowing to tackle
questions like appearance of dialectic variances, differences in
pronunciation and sentence structures. Typically, such corpora
are created under lab-conditions focusing on certain aspect of
sign languages. Corpus NGT [9] contains 12 hours of sign-
ing in upper-body and front view totalling 64 000 annotated
glosses. Since 2008 the corpus has been extended by transla-
tions into various spoken languages. Rutkowski et al. [56] cre-
ated a corpus for Polish sign language containing about 300h
of video footage of 80 deaf signers performing predefined lan-
guage tasks. The CopyCat corpus [75] covers ASL spoken by
children in 420 phrases formed from a vocabulary of 19 signs.
For further reference, the University of Hamburg, Germany,
created a summary on available linguistic sign language cor-
pora2.

Third, there are corpora either explicitly created or adapted
for natural language processing and/or computer vision tasks.
In contrast to the linguistic resources, these corpora feature
smaller vocabularies of a couple of hundred signs instead of
thousands, higher type/token ratios and focus on a small num-
ber of closed language domains. The overall goal is to pro-
vide minimum statistics to allow for robust training of statis-
tical models while refraining from focusing on special con-
cepts of SLs. Dreuw et al. [17] give an overview on such
corpora. Included in this survey are the RWTH-BOSTON
corpora originally created for linguistic research at Boston
University and adapted for pattern recognition purposes by
RWTH Aachen University featuring multiple signers and up to
7, 768 running glosses with a vocabulary size of 483 glosses.
Some works [19, 4] present corpora for isolated and continu-
ous sign language recognition for German, Greek, British and
French sign language created in the course of the Dicta-Sign3

project. The corpora include sign language videos shot in
high-definition in frontal and side view under controlled lab-
conditions. Similar to Corpus NGT, the Dicta-Sign corpora
contain bird’s eye views of the signers allowing for the study of
hand movements in the signing space with regard to the distance
from the upper-body of the respective signer. The SIGNUM
corpus [69] has been explicitly created for pattern recognition
purposes foregoing linguistic considerations and consists of 25
signers and nearly 14, 000 running glosses in DGS. Moreover,
there is a recent efforts to develop an isolated sign language data
set providing depth information [73].

1www.auslan.org.au
2www.sign-lang.uni-hamburg.de/dgs-korpus/index.php/

sl-corpora.html
3www.dictasign.eu

3. Data Sets: Overcoming Artificial and Small Corpora

Statistical approaches to automatic speech recognition (ASR)
require large corpora of annotated text respective audio data to
learn robust models that generalise well to unseen data. There
is a lack of suitable video corpora to develop systems employ-
ing statistical methods targeting ASLR. SL corpora are mainly
recorded for linguistic research, not providing the type/token ra-
tios needed for statistical modelling. Typically, this kind of data
differs significantly from the real language encountered outside
the research lab. One concept used particularly in linguistic
corpora is the concept of staged communicative events trying
to elicit special aspects of SL communication. Staged commu-
nication events focus on the interaction between one or more
signers. While this makes the language encountered more nat-
ural, it raises automatic processing to a difficulty level not yet
in focus of the machine learning and pattern recognition com-
munity.

The difficulty of the corpora situation is further compounded
by the fact that SLs are purely visual languages lacking a writ-
ing system. The lack of a normed or at least agreed writing sys-
tem leads to a variety of different annotation schemes including
gloss notation, HamNoSys [31] and SignWriting [63].

In this work, two of the largest publicly available SL video
corpora are used to investigate statistical modelling and recog-
nition of SLs.

Both corpora feature DGS and use a gloss annotation
scheme. The gloss annotation scheme uses words from the en-
closing spoken language, e.g. written English in case of BSL, to
describe the meaning of a sign rather than its appearance. The
SIGNUM database [69] and the RWTH-PHOENIX-Weather
database [24] both come with defined recognition setups for
signer dependent ASLR as well as multi-signer setups.

The corpora statistics of the single signer setups for both
corpora are subsumed in Table 1, the corpora statistics for
the multi-signer setup of SIGNUM and RWTH-PHOENIX-
Weather are presented in Table 2.

SIGNUM PHOENIX
Train Test Train Test

#duration [h] 3.85 1.05 0.51 0.075
# frames 416,620 114,230 46,282 6751
# sentences 1809 531 304 47
# running glosses 11,109 2805 3309 487
vocabulary size 455 - 266 -
# singletons 0 0 90 -
out-of-vocabulary [%] - 0.1 - 1.6

Table 1: Corpus statistics: single signer subsets of SIGNUM and RWTH-
PHOENIX-Weather.

The SIGNUM database has been created for pattern recog-
nition purposes and aims at reducing the overall complexity of
SL and the associated recognition task. Native signers were
asked to sign predefined sentences from the domain of every
day life, e.g. going to the cinema, waiting for a bus, and are
wearing black long-sleeved clothes while standing in front of
an dark blue background. The dataset is carefully controlled
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SIGNUM MS PHOENIX MS
Train Test Train Dev Test

# signers 25 25 9 9 9
#duration[h] 33.5 9.2 10.71 0.84 0.99
# frames 3,618,630 996,270 963,664 75,186 89,472
# sentences 15,075 4,425 5,672 540 629
# unique sentences 603 177 5,672 540 629
# running glosses 92,575 23,350 65,227 6,032 7,089
vocabulary size 455 - 1,081 467 500
# singletons 0 0 329 148 167
out-of-vocabulary [%] - 0.1 – 0.50 0.54

Table 2: Corpora statistics: multi-signer setups of SIGNUM and RWTH-PHOENIX-Weather.

w.r.t. the signer’s position towards the camera, the lighting and
the signing speed. In the signer dependent subset of SIGNUM,
the signer was asked to sign each of the 603 predefined sen-
tences for training and the 177 test sentences 3 times. In the
multi-signer setup there are 25 signers performing the sentences
only once. Due to the overall staged character and the con-
trolled conditions, the SIGNUM database must be considered
to contain artificial lab data limiting the expressiveness of re-
sults obtained on the signer dependent but also on the multi-
signer setup. Results obtained on this database are not expected
to easily carry over to more challenging data containing uncon-
strained SL recorded outside the research lab.

Video recordings belonging to the SIGNUM corpus are
recorded at 780 × 580 pixels and 30 frames per second. Ex-
ample frames from the corpus are presented in Figure 2.

Figure 2: Example frames from SIGNUM corpus.

In contrast to the SIGNUM corpus, the RWTH-PHOENIX-
Weather corpus contains SL aired by the German public TV
station PHOENIX in the context of weather forecasts as part of
the daily news broadcast. Hearing SL interpreters perform live
and on-the-fly interpretation of the spoken weather forecast into
DGS. This setup leads to SL content that follows the content
of the spoken weather forecast and is influenced by the gram-
matical structure of the spoken weather forecast while featuring
speech effects found in unconstrained sign language conversa-
tions. Among these speech effects are false starts, hesitations
and the use of dialectic pronunciation variants.

Lighting conditions and the positioning of the signer in front
of the camera are controlled by the TV studio. All videos have
a resolution of 210 × 260 pixel and 25 interlaced frames per
second. The low temporal and spatial resolution is due to the
broadcast method used by the TV station.

Figure 3 shows an example frame from the original video

Figure 3: RWTH-PHOENIX-Weather Example of original video frame. The
sign language interpreter is shown in an overlay on the right of the original
video frame.

stream broadcast by PHOENIX. The broadcast of the weather
forecast is overlayed with the sign language interpreter leading
to the aforementioned spatial resolution of 210 × 260 pixels.

Figure 4 shows the distribution of produced signs per signer
in the PHOENIX MS corpus. This also underlines the uncon-
strained signer coverage in the corpus as Signer 1 features more
than 25% of the corpus, while Signer 2 just produces less than
1% of the signs (measured by annotated glosses).

For the RWTH-PHOENIX-Weather single signer setup vari-
ous annotations are available, such as annotated hand and face
tracking positions, annotated hand shapes, manual variant an-
notation and a manually restricted vocabulary to join visually
identical signs. For details refer to [24] and visit our website 4

for download instructions. Methods developed for RWTH-
PHOENIX-Weather are expected to carry over to other real-life
corpora.

Table 3 shows all previously published results on the RWTH-
PHOENIX-Weather and SIGNUM datasets for comparison. Up
to now, the best results have been 10.7% WER by [22] and
22.1% by [21] on SIGNUM single and multi-signer and 38.6%
WER by [21] on RWTH-PHOENIX-Weather single signer. No
results have been published for the recent RWTH-PHOENIX-
Weather multi-signer subset.

4http://www-i6.informatik.rwth-aachen.de
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Figure 4: Portion of PHOENIX MS corpus in % per signer based on number of
glosses.

SIGNUM SIGNUM MS PHOENIX
Von Agris et al. [69] 12.7 - -
Gweth et al. [29] 11.9 - -
Forster et al. [22] 10.7 - 41.9
Forster et al. [21] - 22.1 38.6

Table 3: Published WERs in [%] on SIGNUM single and multi-signer and
RWTH-PHOENIX-Weather single signer subsets.

4. Statistical Modelling for Automatic Sign Language
Recognition

Statistical approaches to ASR have matured to a point where
they are used in daily life by millions of people around the
globe. The great benefit of statistical approaches is their ability
to learn from data foregoing the need for hand crafted recogni-
tion and grammar rules. Due to the ability to learn from data,
statistical approaches lend themselves to ASLR because rules,
lexica and even basic concepts such as sentence boundaries are
not (yet) defined in the area of sign language linguistics.

The ASLR system used in this work is based on the freely
available state-of-the-art open source speech recognition sys-
tem RASR [57] and follows the system schematic in Figure 5.
Given a sequence of features xT

1 = x1, . . . , xT , the system
searches for an unknown sequence of words wN

1 = w1, . . . ,wN

for which the sequence of features xT
1 best fits the learned mod-

els. To this end, the posterior probability Pr(wN
1 |x

T
1 ) over all

possible word sequences wN
1 with unknown number of words

N is maximised. Using Bayes’ decision rule, casting the visual
model Pr(xT

1 |w
N
1 ) as the marginal over all possible HMM tem-

poral state sequence sT
1 = s1, . . . , sT for word sequence wN

1 , as
well as assuming a first order Markov dependency and maxi-
mum approximation,

Global Search:

Language Model

Visual Model

Word Model Inventory

Recognized
Word Sequence

Video Input

Tracking Feature Extraction

XT
1

xT1

Pr(xT1 |wN
1 )

argmax
wN

1

{
Pr(wN

1 ) · Pr(xT1 |wN
1 )

}

Pr(wN
1 )

ŵN
1

XT
1 uT1

xT1 := f (XT
1 , u

T
1 )

Figure 5: Continuous Recognition System Overview

xT
1 → [wN

1 ]opt =

argmax
wN

1

Pr(wN
1 ) max

sT
1

{
Pr(xt |st,wN

1 ) · Pr(st |st−1,wN
1 )

} (1)

where Pr(wN
1 ) is the language model. Pr(·) denotes the true

probablity density function (PDF) of the investigated entities.
In reality, the true PDFs of the system are unknown and must
be estimated from data. We denote, PDFs estimated from data
by p(·). Considering Equation (1), the visual, the language,
as well as the state transition model Pr(st |st−1,wN

1 ) need to be
estimated. The state transition model can be estimated from
a lattice of HMM alignments using the extended Baum-Welch
algorithm but for speech related tasks it is typically sufficient
to pool the model over all words w and assign fixed values (see
Equation (2)) [57] without losing recognition performance.

p(st |st−1,wN
1 ) = p(st − st−1) =


f0/

∑2
i=0 fi : st − st−1 = 0

f1/
∑2

i=0 fi : st − st−1 = 1
f2/

∑2
i=0 fi : st − st−1 = 2
−∞ : otherwise

,

(2)

where state sequence variables si denote the state with number
y at time i. Thereby st − st−1 = 0 defines a loop in the HMM
(stay in the same state) while st − st−1 = 1 describes a forward
transition.

The visual model forms the core of the HMM for each word
w, modelling for each state s of a word w how on average w
is represented in the feature space. As the amount of available
data for ASLR is not large enough to benefit from recent ad-
vancements in the field of artificial neural network (ANN) for
ASR, Gaussian mixture models (GMMs) are used in this work.
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In particular, for state s of word w

p(x|s,w) =

M∑
m=1

cm · N(x, µm,Σ) (3)

M∑
m=1

cm = 1 (4)

where N(x, µ,Σ) is a multi-variate Gaussian with mean µ, co-
variance matrix Σ and M is the number of mixture components
(can differ between states of the same word). The proposed
system uses a globally pooled covariance matrix Σ (see Equa-
tion (3)) to cope with the low amount of training samples per
state and word. The expectation maximization (EM) algorithm
is used to estimate the sufficient statistics of the GMMs. The
number of EM iterations is optimised during the training phase
of the system. The language model forms a distribution over
the target sequence of words wN

1 and is learned form text se-
quences. In this work, a n-gram language model (n = 3 and
n = 4) is constructed using modified Kneser-Ney discounting
[5]. Discounting allows to shift probability mass from seen n-
grams in training such as HEUTE REGEN STARK to lower-
order n-grams such as REGEN STARK and especially unseen
words. The standard toolbox SRILM [62] is used to estimate a
3-gram language model for all databases used in this work.

Moving from modelling towards decoding, time-
synchronous word-conditioned tree search with dynamic
programming is used expanding all state hypotheses Qv(t, s)
in all trees for each time step t to decode an unknown SL
sequence in a video.

Qv(t, s) = max
σ
{p(xt, s|σ) · Qv(t − 1, σ)} (5)

denoting the joint probability for the best partial path up to time
t ending in state s with the best predecessor state σ and prede-
cessor word v. In case of a word end state the state hypotheses
of the previous time step are weighted by the language model
to obtain new state hypotheses for the next word.

Qv(t, s = 0) = max
u
{p(v|u) · Qu(t, S v)}, (6)

where u is the predecessor word at the previous time step, v is
the predecessor of the new state hypothesis, S v is the ending
state of word v, s = 0 is the virtual starting state, and p(v|u) is
a 2-gram language model for simplification. A new state tree
with predecessor word v and virtual starting state s = 0 is then
started and the whole process repeated until the end of the cur-
rent sentence is reached.

The resulting system is implemented in C++ under
Linux/Unix making use of multi-threaded linear algebra pack-
ages such as BLAS (Intel MKL and similar implementations),
and ffmpeg for video processing. A typical recognition exper-
iment in ASLR has a real time factor of 3 ( 1 minute of video
footage takes 3 minutes to process) which can be brought down
to close to real-time by pruning of the search space leading
to reduced performance in recognition metrics. While model

training is parallelised over a computing cluster of 200 com-
puting nodes featuring up to 64GB of memory and I4 Intel
CPUS, decoding is not parallelised as time-synchronous word-
conditioned tree search is not parallelisable.

5. Tracking

When looking at a deaf person signing, it is immediately
apparent that information is conveyed through several moving
body parts. But how important is accurate tracking of body
parts for ASLR? How much does it contribute to the recogni-
tion of SL and how does it compare to just using the whole
image for feature extraction?

In the following subsections we describe the tracking meth-
ods used to create a state-of-the-art ASLR system capable of
handling sign language data recorded outside the research lab.
In particular, Sections 5.1 and 5.2 detail the algorithms for ro-
bustly tracking the signer’s hands and face.

5.1. Tracking Hands

The hands of a signer convey the majority of information
when signing in any given SL. Information is encoded in the
appearance, shape and movement of the hands. Therefore, it is
a necessity to track a signer’s hands to extract movement infor-
mation as well as to be able to extract features representing the
appearance and shape of a particular hand.

State-of-the-art tracking systems mainly follow the tracking-
by-detection paradigm in which a complex model of the ob-
ject to be tracked is learned, the object is detected in every
frame, and detections are linked between frames. Drawbacks
of the tracking-by-detection paradigm are the taking of poten-
tially wrong local decisions, limiting the context of a tracking
decision to the detection result in the current video frame or
preceding frames only, as well as additional image segmenta-
tion steps to aid the detection of the object of interest. These
drawbacks often lead to a tracking loss of the object if the ob-
ject is occluded, undergoes a change in appearance or shape
(i.e. non-rigid object), or moves in a fast and unexpected way.

In this work, we employ a model-free tracking system that is
based on dynamic programming allowing to adapt the system
to arbitrary tracking tasks by choosing adequate local scoring
functions. The dynamic programming tracking (DPT) system
is part of the open-source, automatic large vocabulary speech
recognition system RASR [15, 16, 14].

DPT avoids potentially wrong local decisions by optimising
tracking decisions over time and tracing back the best (partial)
sequence of tracking decisions at the end of a video sequence
thus finding the optimal tracking path w.r.t. to a chosen opti-
misation criterion. The actual decision on the movement of
the object over time is made by tracing back the best, in the
sense of accumulated scores, sequence of decisions from the
end of the video on. Using this two step procedure of first ac-
cumulating scores over time and second tracing back the best
sequence of decisions, DPT avoids taking possibly wrong lo-
cal decisions and yields the optimal solution for the tracking
problem at hand [50, 49] guaranteeing a smooth tracking path.
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Optimising over the whole video sequence mitigates the prob-
lem of self-occlusion unless the self-occlussion continues for a
prolonged period of time (typically 1 second for a 25 fps video).

Taking inspiration from the time alignment problem that
needs to be solved in ASR, DPT uses dynamic programming
to break down the complex tracking problem in a set of smaller
sub-problems. These sub-problems correspond to tracking the
object of interest in a certain time window,e.g. from time t to
t + 1, and lead to a series of decision steps over time. As de-
picted in Figure 6, DPT is composed of a forward and back-
ward step. In the forward step, every possible area of interest
is associated with a score which is maximised over time in the
dynamic programming framework. In the backward step, the
best object path is created by tracing back the decisions that led
to the best overall score after the forward step.

In the following, let Xt denote a video frame of size I × J,
I, J ⊂ N, Pixel at time t and lt = (i, j) : i ∈ I, j ∈ J denote
a location at time t in Xt. Finding the best tracking path lT1 =

l1, . . . , lt, . . . , lT , 1 < t < T , for an object in the image sequence
XT

1 = X1, . . . , Xt, . . . , XT corresponds to maximising the log-
likelihood of lT1 given XT

1 :

[lT1 ]opt = argmax
lT1

 T∑
t=1

log p(lt |lt−1
1 , XT

1 )

 (7)

Assuming a first-order Markov process, i.e. the location of the
object to be tracked at time t depends only on its location at
time t − 1, Equation (7) is simplified to

[lT1 ]opt = argmax
lT1

 T∑
t=1

log p(lt |lt−1, Xt
t−1)

 (8)

In the DPT framework, Equation (8) is reformulated by
expressing p(lt |lt−1, Xt

t−1) via a relevance scoring function
q̃
(
lt, lt−1, Xt

t−1

)
depending on the object’s position in the current

and previous video frame. Normalising to fulfil the require-
ments of a probability density function and dropping the log-
arithm because of its monotonicity, Equation (9) describes the
final optimisation criterion of the used DPT framework

[lT1 ]opt = argmax
lT1


T∑

t=1

q̃
(
lt, lt−1, Xt

t−1

)
∑

l q̃
(
l, lt−1, Xt

t−1

)
 , (9)

where q̃
(
lt, lt−1, Xt

t−1

)
is split into an image-independent

smoothness function T (lt, lt−1) called jump penalty and an
image-dependent scoring function q

(
lt, lt−1, Xt

t−1

)
.

q̃
(
lt, lt−1, Xt

t−1

)
= q

(
lt, lt−1, Xt

t−1

)
− T (lt, lt−1) (10)

Dropping the normalisation term in Equation (9)5 and using
Equation (10) it is straight forward to define the necessary aux-
iliary quantities to define the dynamic programming recursive
equations. Let D(t, lt) be the score of the best partial tracking

5constant with regard to argmax function

path that starts at time t = 1 and ends at time t at location lt and
B(t, lt) the predecessor location corresponding to D(t, lt). Then
the dynamic programming equations are defined by

D(t, lt) = max
l′∈M(l)

{
D(t − 1, l′) − T (lt, l′) + q(lt, l′, Xt

t−1)
}

(11)

B(t, lt) = argmax
l′∈M(l)

{
D(t − 1, l′) − T (lt, l′) + q(lt, l′, Xt

t−1)
}

(12)

whereM(l) is the set of possible predecessor locations of l ac-
cording to a chosen dynamic model.

While Equations (11) and (12) describe the forward step of
DPT, the backward step is accomplished by tracing back the
locations belonging to the best, in the sense of maximal score,
tracking path found in the forward step. In particular starting
with the location at time T

lT,opt = argmax
l
{D(T, l)} (13)

belonging to the best tracking path, the remaining locations are
found by iteratively looking up

lt,opt = B(t + 1, lt+1) (14)

for t = 1, . . . ,T − 1.
Please note that if M(l) is small and the image dependent

scoring function considers only a small area around a loca-
tion or only the locations themselves, DPT can be considered
an instance of correlation-based optical flow [32] or zero-order
warping between images [37, 26, 27].

Considering real-world sign language videos with complex
object interactions, it is very difficult to consistently describe
and track an object using only one relevance scoring function.
Therefore, the DPT framework allows to use a weighted sum of
local scoring functions to track an object of interest.

q(lt, lt−1, Xt
t−1) =

N∑
n=1

αn · qn(lt, lt−1, Xt
t−1) (15)

The local scoring functions qn(lt, lt−1, Xt
t−1) cover different as-

pects of an object and can be calculated on dense probability
images calculated from the original video frames. Examples of
such dense probability images are skin-colour probability im-
ages or face probability images computed from responses of
the Viola & Jones face detector [67].

In the following, Qt denotes the tracking window and it con-
tains all locations within a rectangle of size w×h centred on the
image location lt.

Qt := {lt + l : l ∈ Q} (16)
Q := {(i, j) : −w ≤ i ≤ w, −h ≤ j ≤ h} (17)

The size of the tracking window is fixed and equal for all local
scoring functions used within the DPT framework and is a cru-
cial parameter to be adjusted to the video sequence at hand. If w
or h is chosen too small tracking performance degrades because
the object of interest is not enclosed in the tracking window.
Conversely, if w or h is chosen too large the score reflects the
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t=2 t=10 t=15 t=20 t=25

Score Calculation
Decision Traceback

Figure 6: Tracking principle: Tracing back the best tracking path on the RWTH-PHOENIX-Weather database; yellow rectangles visualise tracked window.

background rather than the object of interest. X[l] denotes the
feature vector (can be as simple as a single gray-scale value) at
Pixel l = (i, j) in image X. If X[l] describes a vector of size m in
the following equations the mathematical operations are carried
out channel-wise, i.e. X[l] − X[u] =

∑
m(X[l]m − X[u]m) but the

channel-wise notation is dropped for readability.
The majority of scoring functions used in this work are based

on the assumption that the object of interest moves more than
every other object within the sequence of images under consid-
eration. This assumption holds even in the context of complex
and cluttered backgrounds as long as the background remains
static. Scoring function used in this work are:

5.1.1. Constant Object Appearance:
Assuming a high enough frame rate, i.e. temporal sampling,

the object of interest is nearly constant in its appearance lead-
ing to a scoring function dubbed constant-object-appearance,
implying a small distance between the appearance of the same
object in consecutive video frames

q(lt, lt−1, Xt
t−1) = −

∑
l∈Q

(Xt[lt + l] − Xt−1[lt−1 + l])2 (18)

Equation (18) describes a negative distance in order to fit into
the maximisation framework of Equation (9). The taken as-
sumption is similar to the base assumption of optical-flow [32]
and a prerequisite for particle filtering techniques [33].

5.1.2. Constant Background:
Following the high frame rate assumption, we assume that

the background of the object to be tracked is constant or nearly
constant between consecutive video frames. This implies that
only those regions change between consecutive frames where
the object is in the current frame Xt and where it has been in
the previous frame Xt−1. Accordingly, the difference between
all other parts of the consecutive video frame pair should be
minimal.

q(lt, lt−1, Xt
t−1) =

∑
l∈Qt

(
X′t [l]

)2
+

∑
l∈Qt−1

(
X′t [l]

)2

−
∑

l∈Qt∩Qt−1

(
X′t [l]

)2 (19)

where X′t = Xt − Xt−1.

5.1.3. Soft Spatial Pruning:
The human body has certain kinematic constraints with re-

gard to where in a video frame e.g. the right hand of a person
can be when facing the camera. We encode a soft form of this
constraint into the tracking framework via

q(lt = (i, j), lt−1, Xt
t−1) =


bλ · τic : i > bλ · τic

i − τi : τi ≤ i ≤ bλ · τic

− f (τi − i) : 0 ≤ i < τi

(20)

where 0 < τi < I and λ ≥ 1 are constants, and f : N 7→
[0,∞) ⊂ R is a continuous function on [0, τi] ⊂ N. τi denotes
the horizontal axis which the object of interest should not cross
due to kinematic constraints. λ governs the width of the linear
part of the scoring function.

Considering the problem of tracking both hands of a signer,
soft spatial pruning is used to partition the video frame in a re-
gion for the dominant hand and one for the non-dominant hand
by choosing τi accordingly. Adjusting Equation (20) for the
non-dominant hand is straight-forward.

5.1.4. Face Suppression:
In the context of tracking a person’s hand while the person is

signing the issue of the tracker getting stuck at the person’s face
arises. This happens primarily when the tracker utilises non-
skincolour suppression to increase tracking performance. To
reduce the probability of the tracker getting stuck at the signer’s
face we use a spring-like function centered on the face position
to reduce the score of the hand tracker in the face region.

q(lt, lt−1, Xt
t−1) =

∑
l∈Qt

1 − f f p (Xt) [l] (21)

where f f p(X) : RI×J 7→ [0, 1]I×J ⊂ RI×J denotes the face prob-
ability image of X which is obtained via probabilistic face de-
tectors [67, 59] or the face tracker described in Section 5.2.

5.1.5. Other Hand Suppression:
An issue unique to hand tracking for humans shown in frontal

pose in a video frame is that both hands are nearly indistinguish-
able from an algorithmic point of view. Using a spring-like
function, we can utilise the tracked position of e.g. the right
hand to reduce the search space when tracking the e.g. left hand
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since it is unlikely that both hands overlap for a prolonged pe-
riod of time when a person is signing.

λ(lt, lt−1|lΞt = (u, v)) = −
∑

l=(i, j)∈Qt∩QΞ
t

1.0 −

√
(u − i)2 + (v − j)2

min(wΞ, hΞ)

(22)

q(lt, lt−1, Xt
t−1|l

T,Ξ
1 )) =

{
λ(lt, lt−1|lΞt ) : λ(lt, lt−1|lΞt ) ≥ 0.0

0.0 : otherwise
(23)

where lΞt is the hand location detected in the first tracking pass
with tracking window QΞ

t of size wΞ · hΞ.
Using other hand suppression, DPT processes the video se-

quence twice by first tracking the dominant hand and then us-
ing the resulting tracking locations as an additional information
source in tracking the non-dominant hand.

5.2. Tracking Facial Landmarks
Active Appearance Models (AAMs) were introduced by Ed-

wards et al. [18] in 1998 and notably reformulated by Matthews
et al. [46] in 2004. They attempt to recover an object’s shape
s by generatively fitting a deformable shape model to the im-
age data. s is defined as a vector of v 2-dimensional landmark
points representing a meaningful part of the object, such as an
eye corner in the human face:

s = (x1, y1, x2, y2, . . . , xv, yv)ᵀ (24)

AAMs model shape deformation using a point density model
(PDM), which is a parametric linear subspace model learned
statistically by principal components analysis (PCA) on a set of
training shape examples, such as shown in Figure 7. Thereby,
any shape s of the deformable object can be expressed as a lin-
ear combination of a base shape s0 and n shape vectors si:

s = s0 +

n∑
i=1

pisi (25)

AAMs propose to model the coupling between the PDM and
the image data, i.e. the predictions on the PDM’s landmarks
locations given a target image, using an appearance model rep-
resenting the object. This is also a parametric linear subspace
model, obtained by applying PCA to shape-normalised train-
ing example images, which involves the warping to a reference
frame. This is typically done by piece-wise affine warping func-
tions defined between each example shape and the base shape
s0. The generative appearance model is then used to express
any object’s appearance A(x) as a base appearance A0(x) plus a
linear combination of m appearance images Ai(x):

A(x) = A0(x) +

m∑
i=1

λiAi(x) ∀x ∈ R(s0) (26)

where R(s0) denotes the set of pixel locations within the region
defined by the base shape s0, i.e. the reference frame for the
object’s appearance.

Figure 7: Visualisation of facial annotations

Given these two generative models and following the inde-
pendent AAM formulation proposed in [46], registration can
be seen as an image matching problem between the synthetic
model image and the shape-normalised target image; the fit-
ting goal can therefore be expressed as finding the parameters
p = (p1, p2, . . . , pn)ᵀ and λ = (λ1, λ2, . . . , λm)ᵀ that minimise

∑
x∈R(s0)

A0(x) +

m∑
i=1

λiAi(x) − I(W(x; p))

2

(27)

where I is the target image and W(x; p) is a piece-wise affine
warping function which projects a pixel location x from the
reference frame to the target image frame, depending on the
PDM’s parameters p. The minimisation of this quantity is non-
linear in the parameters p and must be solved iteratively by
linear approximation, typically using the Gauss-Newton algo-
rithm.

AAM variants mostly differ in the way they parametrise the
linear approximation to derive the parameters’ update equa-
tion. We chose to use the efficient version of the simultane-
ous inverse-compositional AAM (SICAAM) proposed in [28],
which is more robust to large variations in shape and appear-
ance. Moreover, we follow [72] in order to cope with large
off-plane head rotations, which are also common in sign lan-
guage and can lead a 2D AAM to failure. Thus, in the present
work a 3D PDM is estimated using a non-rigid structure-from-
motion algorithm on the training shapes, and is then involved
in the optimisation process which incorporates a regularisation
term encouraging the 2D shape controlled by the 2D PDM to
be a valid projection of the 3D PDM. Similar to the 2D PDM,
the 3D PDM expresses any 3D shape S as a 3D base shape S0
plus a linear combination of n̄ 3D shape vectors Si:

S = S0 +

n̄∑
i=1

p̄iSi (28)

Note that the 3D PDM is also involved in the calculation of the
high-level facial features described in Section 6.

5.3. Tracking Experiments
In SLs, the dominant hand of a signer carries more infor-

mation than the non-dominant hand. In our datasets, the ma-
jority of signers is right hand dominant. Hand-patch features
based on tracked locations of the hands allow to put more em-
phasis on the signs themselves. Hand and face locations have
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been tracked using the scoring functions detailed previously on
lighting and contrast normalised video frames (unless a scoring
function requires probability images). In the following exper-
iments, for RWTH-PHOENIX-Weather, hand-patches of size
50 × 70 have been cropped around the tracked position where
50 × 70 pixel is the average size of an hand in the RWTH-
PHOENIX-Weather database. Three consecutive hand-patches
are concatenated and each colour channel (red, green and blue)
is reduced to it’s 70 most discriminative components. For the
SIGNUM database, gray-scale hand-patches of size 30 × 30
have been cropped centred on the tracked location. A temporal
context of ±1 frame is applied before reducing the feature to
its 200 most discriminative components. To gauge if tracking is
necessary for ASLR in contrast to taking the whole video frame
as feature, we down-scale the original full video frame from
210 × 260 to 53 × 65 for the RWTH-PHOENIX-Weather cor-
pus (see Table 1) and apply the same feature extraction pipeline
as for the tracking based features (channel-wise PCA to 70 di-
mensions). For the SIGNUM database, gray-scale full images
down-scaled from 575× 575 (cropped from the original resolu-
tion 578 × 776) to 32 × 32 are used. Baseline results for both
databases are reported in Table 4.

In the face related experiments the face patches represent
down-sampled face crops (RWTH-PHOENIX-Weather 22x35
pixels and SIGNUM 32x32 pixels), 3 frames temporally con-
catenated and PCA reduced to 200 dimensions. The AAM-
face features represent 15 shape and 15 texture AAM coeffi-
cients originating from the AAM described in Section 5.2. For
RWTH-PHOENIX-Weather 5 temporal frames have been con-
catenated and PCA reduced to 210 dimensions, for SIGNUM 9
frames have been reduced to 200 dimensions.

Table 4 clearly shows that full video image features are
outperformed by hand-patch features. In case of RWTH-
PHOENIX-Weather the overall result is improved by 22%
WER absolute and on the SIGNUM database the result is im-
proved by 12% WER where WER measures the the required
numbers of deletions, insertions and substitution operations to
transform the recognised word sequence into the correct word
sequences. Results in Table 4 show that full image features
contain too much variation to be effectively handled by the cur-
rent prototype. Furthermore, the necessary down-scaling of the
full images reduces the information contained in the images and
renders the identification of individual signs difficult.

PHOENIX SIGNUM
del/ins WER del/ins WER

Full Frame 25.3/5.5 77.0 7.2 / 2.3 28.2
Tracked Hand-patch 20.3/5.7 55.0 2.2 / 3.2 16.0
Face-patch 53.6/1.2 95.1 37.2 / 2.6 83.1
Tracked Face-points 23.4/3.5 62.6 19.5/2.7 56.2

Table 4: Impact of using tracking. First two lines present hand tracking instead
of full frames, second two lines present AAM landmark tracking instead of face
patches for RWTH-PHOENIX-Weather and SIGNUM single signer subsets.
Error rates in [%].

Tracking based features like hand-patches suffer from error
propagation in the overall pipeline. If the tracked position of

the object deviates too far from the real position, the corre-
sponding hand-patch either does not match the trained model
of the recogniser or introduces strong variation in the training
process, severely limiting the model’s ability to generalise over
unseen data. Table 5 shows the influence of the tracking perfor-
mance measured in TrackEr(τ = 20) (Equation 29) against the
recognition performance measured in WER.

TrackEr is the tracking error, measured as the average dis-
crepancy between an annotated ground truth object location and
the location found by automatic tracking:

TrackEr =
1
T

T∑
t=1

δτ(lt, l̂t), δτ(l,m) :=
{

0 ‖l − m‖ < τ
1 otherwise

(29)

where l and m are two 2D coordinates in a video frame and τ is
the deviation threshold.

To measure the impact of the tracking performance, the pa-
rameters of the DPT framework have been adjusted to reach
a specific TrackEr. For all experiments the parameters of the
proposed ASLR system have been kept fixed for training and
testing being optimised of the best result obtained at TrackEr
of 11.6. For each TrackEr level the whole system has been re-
trained using features extracted based on a tracking achieving
the performance level in question. The first row of the table
showing a TrackEr of 0 is based on ground-truth annotation for
the whole training and testing set for the RWTH-PHOENIX-
Weather signer specific subset.

TrackEr del/ins WER
0 13.1/7.6 48.3

11.6 20.3/5.7 55.0
20.0 13.0/6.5 56.2
25.0 22.6/6.2 63.0
30.0 24.8/5.5 68.4
40.0 24.0/9.4 76.6

Table 5: Influence of tracking performance measured in TrackEr at τ = 20 on
recognition for RWTH-PHOENIX-Weather single signer subset. Error rates in
[%].

Results depicted in Table 5 show a clear connection between
TrackEr and WER for continuous sign language recognition.
The higher the TrackEr gets the worse the recognition result
is. An improvement of the used tracking method in order to
achieve better and more consistent tracking results will have
a positive impact on sign language recognition performance.
The result of 48.3% of the perfect tracking result indicates the
limit of performance reachable with hand-patch features alone
and should not be interpreted as the overall gain possible with
improved tracking on the used database. It stands to reason
that features capturing the overall shape of hand while being
invariant to the majority of noise present in the video frame
(e.g. motion blur) will benefit from better tracking in the same
manner as hand-patch features.
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6. Features

SLs convey meaning by several information streams in paral-
lel: besides the hand shape, orientation and position, the upper
body pose, and also facial expression, such as mouthing, eye
brows and eye gaze are important. The goal of this section is to
assess the impact of each feature adding up to a state-of-the-art
recognition system.

Instead of PCA-reduced hand patches as in Section 5.3, we
employ HOG-3D Features [45], which explicitly capture the
edges of the hands spatially and also temporally and are there-
fore much more robust against illumination differences. The
HOG-3D histograms are computed using a temporal context of
7 frames. A large part of the information in SL is contained in
the temporal sequence. We thus add more temporal context by
stacking together ±4 video frames for SIGNUM and ±2 frames
for PHOENIX. Subsequently, we perform a PCA reduction to
200 and 210 dimensions for SIGNUM and PHOENIX respec-
tively. HOG-3D are used for ASLR in this work and not for
tracking.

Trajectories with Position constitute a second important
manual feature. The trajectory motion is understood as a main
direction and a shape. Given the hand position ut = (x, y) at a
time t, the velocity vector mt = ut − ut−δ points in the direction
of the movement. However, a more robust method is used in
this work. It is based on the estimation of the covariance ma-
trix within a time window 2δ + 1 around time t, as shown in
Equation (30),

Σt =
1

2δ + 1

t+δ∑
t′=t−δ

(ut′ − µt)(ut′ − µt)T (30)

with µt = 1
2δ+1

∑t+δ
t′=t−δ ut′ .

Σt · vt,i = λt,i · vt,i, i ∈ {1, 2} (31)

The eigenvector vt,i with the larger corresponding eigenvalue
points towards the direction of highest variance. The eigen-
values λt,i characterise the motion. If both values are similar,
it is a curved motion, otherwise a line. In order to capture
temporal variation on different levels, the feature vectors are
composed of the eigenvalues and main eigenvectors, calculated
over the tracked trajectory points of three different temporal
windows with δ ∈ {4, 5, 6} for RWTH-PHOENIX-Weather and
δ ∈ {8, 9, 10} for SIGNUM. Additionally, the position of the
dominant hand w.r.t. the signer’s nose is added to the feature
vector.

In DGS there are one- and two-handed signs. Two-handed
signs either have a symmetric or anti-symmetric movement or
the non-dominant hand serves as location for the dominant
hand. In either case, the relative movement of the hands to-
wards each other is a good indicator for this behaviour. We
define Handedness features as the eigenvectors and eigenval-
ues of the movement of both hands relative to each other over
multiple time windows of δ video frames. This corresponds to
Equation (30), with the relative distance between both hands
rather than the hand position. δ has been optimised to be 4, 5, 6
for RWTH-PHOENIX-Weather and 8, 9, 10 for SIGNUM.

Semantic description Related point distances
mouth vertical openness {18, 24, 25, 21} {18, 26, 27, 21}
mouth horiz. openness {18} {21}
lower lip to chin distance {26, 27} {32, 33}
upper lip to nose distance {16, 15, 17} {18, 24, 25, 21}
left eyebrow state {0, 1, 2} {6, 8}
right eyebrow state {3, 4, 5} {10, 12}
gap between eyebrows {2} {3}

Table 6: High-level facial features and the related lower-level points (refer to
Figure 7 for the landmark indexes)

High-Level Face Features consist of seven continuous dis-
tance measurements across landmarks around the signer’s face,
as described by Table 6. They correspond to key locations on
the cheeks and chin outlines, the nose ridge and nose base,
the eyelids and eye corners, the eyebrow outlines and the lip
and mouth corners. These measurements are based on the
tracked landmarks as described in Section 5.2 and are expected
to capture the information encoded in the non-manual parame-
ters used in SL. To estimate the high-level mouth distances we
project the registered shape and remove its global translation
and rotation by means of the 3D PDM (refer to Section 5.2).
Then, for each point subset given in Fig. 6, we estimate the
corresponding local area-based measurement and normalise it
between 0 and 1 according to the minimum and maximum val-
ues obtained during training. See Figure 8 for a visualisation of
these features.

Temporal Derivatives constitute a well known feature in
ASR. They capture additional context being the temporal
change of the features they are applied to. The derivatives de-
noted in the following as ∆ for the first derivatives and ∆∆ for
the second derivatives are calculated around the current frame
Xt as:

∆(Xt) = Xt+1 − Xt−1 (32)
∆∆(Xt) = Xt+2 − 2Xt + Xt−2 (33)

As discussed previously in this section, the system uses HOG-
3D as well as other trajectory-based features to describe the dif-
ferent information channels of SL. Handedness, hand trajectory
as well as high-level face features implicitly contain temporal
derivatives and are therefore not used to extract additional delta
features. HOG-3D features on the other hand, contain only
quantised temporal information but do not encode the speed of
the temporal change. Thus, ∆ and ∆∆ features are only ex-
tracted from the HOG-3D features.

6.1. Discussion of Experimental Feature Impact
In Table 7 we present results using the advanced features in-

troduced in the previous section. The features’ impact is evalu-
ated on the signer dependent subsets of both corpora presented
in Section 3. We can clearly see the positive impact of each
added feature, which all help to reduce the WER from 43.5%
with only HOG-3D to 38.6% with added dominant (right) hand
trajectory and position, handedness, high-level face features
and first and second order derivatives on the PHOENIX corpus.
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mouth vertical openness
mouth horizontal openness
chin-to-lower-lip
upper-lip-to-nose
left eye brow state
right eye brow state
eye brow horizontal distance

Figure 8: High-level feature extraction, left: the grid of fitted AAM points, center: rotated and normalised AAM points, right: high-level feature values over time

On SIGNUM the features reduce the error rate from 12.5% to
10.0% outperforming previous approaches (see Table 3). How-
ever, the derivatives do not improve the recognition. This may
be explained by the controlled signing speed in SIGNUM as de-
scribed in Section 3. Due to the staged nature of the corpus the
artificial signing can be observed as rhythmic with consistent
speed. Thus, features capturing this speed do not add additional
discriminative information.

Comparing HOG-3D only results to the results obtained by
PCA reduced hand-patch features (see Tables 4 and 5), HOG-
3D features extracted from tracked locations outperform the
PCA hand-patch features extracted from ground-truth annota-
tion. This clearly shows the importance of noise robust fea-
tures. HOG-3D features consist of spatial and temporal edges
focusing on the shape of the hands.

The fact that each of the other individual features improves
the recognition is important, as it underlines the multimodal-
ity of SL. This corresponds to sign linguists’ findings: The in-
formation in SL is perceived through manual and non manual
channels simultaneously. The question how to best combine
the features is still unsolved, a thorough analysis can be found
in [22]. Only minor gain from asynchronous modelling is re-
ported there. This is why we preferred a feature combination by
stacking in the scope of this work. Stacking features together in
a HMM framework bears a difficulty with respect to the feature
weight. Each feature dimension adds to the final decision and
its scaling w.r.t. to the other dimensions is a detailed, but crucial
factor determining possible reduction of WER. This constitutes
a big difference to ASR systems, where the set of features is
quite standard and lower dimensional. Feature Preprocessing
plays, thus, a key role in our HMM approach. Therefore, we
apply a global variance normalisation per dimension. Adaptive
feature transformations (such as constrained maximum likeli-
hood linear regression (CMLLR) presented in Section 8), linear
discriminant analysis (LDA) or discriminative feature learning
approaches, such as neural networks also help controlling this
problem. The employed statistical modelling approach uses the
Mahalanobis distance and diagonal covariance matrices (refer
to Section 4 for details). This makes it crucial that the features
are decorrelated, for which we use PCA.

PHOENIX SIGNUM
Feature Del / Ins WER Del / Ins WER
HoG-3D 19.5 / 4.9 43.5 2.8 / 2.4 12.5
+ RH Traj / Place 14.6 / 8.2 42.5 3.0 / 1.5 11.9
+Handedness 22.0 / 3.3 39.4 2.1 / 2.1 11.7
+ Highlvl-Face 22.4 / 3.6 39.2 1.7 / 1.7 10.0
+ 50 ∆ + 1∆∆ 17.7 / 4.9 38.6 1.1 / 2.8 10.2

Table 7: Recognition results on RWTH-PHOENIX-Weather and SIGNUM sin-
gle signer subsets showing the impact of the features. Error rates in [%].

7. Visual Modelling

The way we model the features crucially influences the sys-
tem’s performance. An often neglected aspect of building sta-
tistical models for sign language recognition tasks is how to
model non-speech. Modelling non-speech in the context of
ASLR, i.e. non-gesture, is a challenging task because it is not
clear which parts of the temporal signal are not part of a sign.
While in ASR the transition between words may be marked by a
decline in speech volume, the transition between signs depends
on both enclosing signs. For example consider the case of a
sign ‘A’ ending its manual part with the dominant hand raised
to the eye level of the signer and the following sign ‘B’ starting
its manual component at waist height. In this case neither the
movement from the ending location of sign ‘A’ to the starting
location of sign ‘B’ nor the hand’s change in shape and orien-
tation are part of either signs. Thus, the transition part called
movement epenthesis should not be part of the learned statis-
tical models for signs ‘A’ and ‘B’. If the movement epenthesis
spans only a couple of time frames it can be compensated for
by HMMs but in ’real-life’ video footage this is often not the
case.

Besides movement epenthesis effects, signers tend to switch
hands while signing causing non-gesture effects for the models
trained to recognise the manual aspects of the respective other
hands.

In this section we provide insights about the question of how
to model sign language on three levels:

• Improving the HMM state-alignment by non-gesture
garbage models,

• Length model HMMs to account for length in whole sign
models,
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• Account for co-articulation effects by adding threshold or
transition model.

7.1. Non-Gesture Garbage Modelling

Figure 9 shows the video frame to HMM state alignments for
one sentence of the RWTH-PHOENIX-Weather corpus. On the
left side without non-gesture models and on the right side using
non-gesture models. The time in video frames is depicted on
the x-axes with the ground truth glosses including the gloss/sign
boundaries overlayed on the axis. The y-axis depicts the states
of the individual HMM models. The blue circles represent that
the frame in question has been aligned to this HMM state where
the colour change in the background illustrates the time period
that is aligned to the same state. The red straight line linking
the origin of the plot to the top right corner is an optical aid
not related to the alignment but illustrates the theoretical ideal
alignment.

Comparing the left part to the right part in Figure 9 one can
see that the depicted alignment on the right side is closer to
the optical aid representing an ideal alignment when the length
modelling is perfect. Furthermore, the large ’plateau’ areas in
the alignment on the left side have vanished from the alignment
indicating a better distribution of the data to the learned models.
Finally, the non-gesture block on the left side of Figure 9 in-
dicated by the white blank in the ground truth gloss annotation
has correctly been assigned to a non-gesture block. Non-gesture
blocks for RWTH-PHOENIX-Weather have been inferred from
ground truth annotation accounting for hand changes and non-
gesture facial expressions, such as mimics.

Applying non-gesture garbage models to a recognition sys-
tem using HOG-3D and movement trajectory features extracted
from ground truth annotation of the hand positions, the recog-
nition system result is improved from 42.1% to 39.8% WER
for the signer dependent sub set of RWTH-PHOENIX-Weather.
This underlines the importance of modelling non-gesture for
ASLR.

The used non-gesture garbage modelling makes use of the
fact that a subset of the RWTH-PHOENIX-Weather database
is annotated on the sentence and the sign level. This allows
to identify temporal gaps between signs and assign a garbage
tag to these gaps. Furthermore, annotations include tags for
the left vs. right hand, also allowing to add offhand specific
tags for modelling. These kind of annotations are not available
for the SIGNUM database, preventing the use of he proposed
garbage models to the SIGNUM database. Nevertheless, re-
sults on SIGNUM are expected to improve, if a similar kind of
garbage modelling is applied to it.

7.2. Length Modelling

Length modelling is analysed to account for the variability of
sign duration. Models incorporating the average length of signs
corresponding to a certain gloss are compared to models having
a constant length for all glosses.

In Table 8 the impact of length modelling can be verified. To
evaluate the impact of length modelling, it is compared to the
baseline system using a standard 3-2 Bakis HMM. The number

of states S is determined by half of the median of the total num-
ber N of running lengths l belonging to a certain gloss i. Only
if this value is bigger than the shortest length li,min reduced by
20%, then the number of states has to be adapted to ensure all
training samples can reach the end state of the model. Refer to
Equation 34 for a mathematical description.

S i = min
(
0.8 · li,min,

1
2
· l̃i

)
(34)

l̃i :=

 li,d N
2 e

n odd
1
2

(
li, N

2
+ li,d N

2 e

)
n even

, li,n ≤ li,n+1 ∀ n

(35)

Referring to Table 8, on the single signer subset of RWTH-
PHOENIX-Weather an absolute gain of more than 5% can be
observed by using length modelling and basic PCA-reduced
hand-patch features for the tracked dominant hand. SIGNUM
does not show this behaviour, here the WER increases from
16.0% to 17.5% with length modelling. Similarly, for RWTH-
PHOENIX-Weather multi-signer, the error rate increases with
length modelling. Within the single signer setup of RWTH-
PHOENIX-Weather gloss lengths have been manually an-
notated (all gloss boundaries throughout the corpus are an-
notated), whereas within SIGNUM and RWTH-PHOENIX-
Weather 2014 multi-signer they have been estimated from the
recogniser state alignment. This fact is likely to account for the
difference. It can be concluded that an accurate length mod-
elling helps to improve recognition performance. Similar ob-
servations have been made in the early times of ASR before the
transition from whole-word models to phoneme-based models.

7.3. Universal Transition Model
SLs, particularly when looking at natural signing, contain a

lot of variability. The preceding and following signs influence
the starting position and the execution of the current sign. Also,
noises in the recording material and errors in the manual anno-
tation render the learning of clean and accurate models difficult.

In this subsection, we evaluate a method to better cope
with noise in the data, particularly originating from move-
ment epenthesis in SL. Similar to Yang [74], we implemented
a threshold model to account for outliers in the data, when-
ever they do not match the gloss model well enough. During
Viterbi training, when searching for the optimal alignment be-
tween features xT

1 and the HMM state sequence sN
1 , we allow

a threshold garbage model to account for the input features by
upper-bounding the log-likelihood score to the threshold value
λ. However, the model showed no significant improvement in
our large scale recognition pipeline.

Improvement could be achieved by learning a universal tran-
sition model, being a background HMM with a single state and
separately optimised transition probabilities. During Viterbi
training, this model has an empty pronunciation and can thus
be inserted in between two signs to account for the movement
epenthesis. As can be seen in Table 9, an improvement by 1.9%
WER (58.3% → 56.4%) on the development set and 1.4% on
the PHOENIX MS test set could be achieved.
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Figure 9: HMM state alignment visualisation for RWTH-PHOENIX-Weather single signer sub set using non-gesture garbage modelling for the same video sequence.
Left: without non-gesture modelling, Right: with non-gesture modelling. The alignment on the right is superior to the left as it is close to the theoretical optimal
alignment (red line from origin to upper right corner) and the number of state ’plateau’ areas is reduced. See Section 7.1 for detailed discussion.

PHOENIX manual PHOENIX MS auto SIGNUM auto
Test Dev Test Test

Length modelling Del / Ins WER Del / Ins WER Del / Ins WER Del / Ins WER
Yes 20.3 / 5.7 55.0 25.7 / 4.4 59.2 23.4 / 4.6 56.7 3.1/2.8 17.5
No 22.6 / 6.0 60.8 23.4 / 4.4 58.3 22.0 / 4.3 55.5 2.2 / 3.2 16.0

Table 8: Influence of Length Modelling on Recognition Performance for RWTH-PHOENIX-Weather both single and multi signer and SIGNUM single signer
subset. Both single signer setups employ hand-patch features, while the multi signer setup employs HOG-3D + trajectory + handedness + highlevel face. ’manual’
refers to manually annotated sign boundaries, whereas ’auto’ denotes automatic length estimation. Error rates in [%].

8. Generalising to Multiple Signers

ASLR is currently transitioning from signer specific systems
trained on a single signer to systems capable of dealing with
multiple signers. A requirement for building systems for mul-
tiple signers or even signer independent systems is a suitable
amount of annotated training data for each of the signers in
question.

Considering the multi-signer setups of SIGNUM and
RWTH-PHOENIX-Weather (see Section 3), they benefit from
the increased amount of training data. However, on the other
hand, the varying signing styles of the different signers con-
tribute to a higher inter-signer variability in addition to the
strong intra-signer variability present also in the single signer
corpora.

In the area of large vocabulary speech recognition, a common
technique to address intra-signer variability is speaker adaptive
training and speaker adaptation. Speaker adaptive training is a
two pass training procedure in which the model trained in the
first pass is adapted to the data. Constrained maximum likeli-
hood linear regression (CMLLR) [25] allows to adapt the fea-
tures to the learned model from the first pass and to re-train the
whole system using the adapted features. To learn the necessary
linear transformation one needs to know which speaker/signer
performed which sentence and a time alignment of the indi-
vidual feature frames to the states of the learned HMM. Both
information is available for RWTH-PHOENIX-Weather and
SIGNUM.

For this experiment, the feature evaluation from Table 7
has been re-evaluated using the multi-signer corpora. Ta-
ble 10 subsumes the results for RWTH-PHOENIX-Weather and
SIGNUM multi-signer for adding each additional feature, in
a standard approach (column ‘no CMLLR’) and with speaker
adaptive training and CMLLR (column ‘CMLLR’). All param-
eters have been optimised on the development set only. HOG-
3D, movement trajectory and handedness features have been
extracted using tracking results obtained via the DPT system
(Section 5). All features have been variance normalised and
individually PCA reduced to maintain 99.5% of their variance.
This decorrelation has been seen to be crucial in order to suc-
cessfully apply CMLLR.

Standard no-CMMLR results obtained on RWTH-
PHOENIX-Weather multi-signer improve from 58.1% WER
with the HOG-3D features to 55.6% with added trajectory,
handedness and highlevel face features on the test set. Reported
single signer results (refer to Table 7) have been more than 20%
absolute better. However, recognition results on both sets are
not comparable as a) annotated ground truth object locations
are used for signer-dependent experiments in Table 7 instead of
automatic DPT tracking, and b) length modelling is done using
annotated gloss lengths for signer dependent experiments while
they are estimated from training state alignments in this sec-
tion. While these error sources are difficult to avoid, it gives a
realistic estimate of the system performance when deployed in
a TV studio (e.g. providing automatic subtitling). Furthermore,
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PHOENIX MS SIGNUM MS
Development Test Test

Setup Del / Ins WER Del / Ins WER Del / Ins WER
no transition model 23.4 / 4.4 58.3 22.0 / 4.3 55.5 12.7 / 16.2 62.0
universal transition model 22.4 / 4.6 56.4 22.3 / 4.3 54.1 5.5 / 2.2 16.5

Table 9: Recognition results RWTH-PHOENIX-Weather multi signer: HOG-3D + trajectory + handedness + high-level face - 4-gram for PHOENIX and 3-gram
LM for SIGNUM. Error rates in [%].

no CMLLR CMLLR
Development Test Development Test

Setup Del / Ins WER Del / Ins WER Del / Ins WER Del / Ins WER
Righthand HoG3D 25.8 / 4.2 60.9 23.2 / 4.1 58.1 24.1 / 4.1 58.9 22.0 / 4.7 57.3
+ RH Traj / Place 30.2 / 2.6 60.9 27.6 / 3.0 58.8 24.4 / 3.8 60.6 22.9 / 4.6 58.6
+ handedness 25.7 / 3.2 58.6 24.1 / 4.0 56.9 24.9 / 3.4 58.3 22.3 / 5.1 57.4
+ highLvl Face 23.6 / 4.0 57.3 23.1 / 4.4 55.6 21.8 / 3.9 55.0 20.3 / 4.5 53.0
+ 50∆ +1∆∆ 24.1 / 4.0 57.5 23.5 / 4.9 56.1 21.5 / 4.6 57.4 20.3 / 5.5 55.6

Table 10: Recognition results RWTH-PHOENIX-Weather multi signer with 4-gram lm. Error rates in [%].

no CMLLR
Test

Setup Del / Ins WER
Righthand HoG3D 6.0 / 3.1 19.1
+ RH Traj / Place 5.5 / 2.8 18.8
+ handedness 6.4 / 2.2 18.3
+ highLvl Face 5.0 / 2.7 16.4
+ 50∆ +1∆∆ 5.8 / 2.4 17.3

Table 11: Recognition results on SIGNUM multi-signer with 3-gram lm. Error
rates in [%].

the signers present in RWTH-PHOENIX-Weather are trained
hearing interpreters hailing from different areas of Germany.
They differ in pronunciation and show dialectic differences.

The overall trend found in the previous section with regard
to the impact of individual features is preserved with the ex-
ception of adding the derivatives. Both the development and
the test set show similar performance while the results on the
test set are slightly better than the results obtained on the devel-
opment set showing that the learned models are able to gen-
eralise to unseen data. This also applies to comparable ‘no
CMLLR’ results on the SIGNUM multi-signer set as shown
in Table 11. Here, the WER decreases from 19.1% to 16.4%
on the 25 signer corpus. This underlines the fact that the
RWTH-PHOENIX-Weather database represents a bigger chal-
lenge than the SIGNUM database. This is because the data
in the RWTH-PHOENIX-Weather database constitutes natural
signing, which has not been controlled particularly for research
purposes.

The CMLLR results shown in Table 10 denote the improve-
ment achieved by this linear speaker-based transformation. The
lowest error rate with HOG-3D, trajectory, handedness and
high-level face features reaches 53.0% on the PHOENIX MS
test set, while being 2.6% better than without CMLLR. Note
that the speakers have been manually identified during recog-
nition. Apparently, CMLLR doesn’t work as well with the tra-

jectory and handedness features. The added trajectory features
show only an improvement of 0.2%, reaching a higher WER
than the HOG-3D alone and adding handedness increases the
error by 0.5% on the test set after the transformation. However,
55.0% on the dev set and 53.0% on the test set represent the
best results published so far.

Figure 10 shows the WERs per signer of the best
RWTH-PHOENIX-Weather multi-signer setup (being 55.6%
vs. 53.0%). Note that the error rate decreases in all cases but
for Signers #2 and #6. The reason is that those two signers oc-
cur seldomly in the training set (< 1%) (see Figure 4) and thus
CMLLR transformation matrices cannot be reliably estimated.

On the SIGNUM data set CMLLR improved the HOG-3D
result from 19.1% (see Table 11) to 18.6%.
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Figure 10: WER per signer, comparing PHOENIX MS test set ‘no CMLLR’
(55.6%) and ‘CMLLR’ (53.0%) results. Employed features are HOG-3D +

traj/place + handedness + highlevel face with a 4-gram lm.
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9. Language Modelling

ASLR systems employ a statistical language model (LM)
in addition to the HMM-based visual models as a knowledge
source. The LM models the probability of a sign or word oc-
curring in the context of other signs and is learned from text
data. In ASR the LM is learned from millions of running sen-
tences in the target language and domain of the recognition sys-
tem. Since SLs are purely visual languages without a normed or
even agreed writing system, the LM can only be learned from
the annotated trained data of the corpus under consideration.
The low amount of training data for the LM reduces the power
of the language model during ASLR because the majority of
glosses will only be seen once or twice in any given context.

9.1. Class Language Models
Statistical language modelling of SLs suffers from the low

amount of available textual training data, and high sparsity in
the sense of a low frequency of the vocabulary entries being
seen in any given SL sentence. One way to improve the consis-
tency and frequency in which a specific gloss is seen in context
of other glosses is to introduce gloss classes. During training
of the LM, the gloss in question is replaced by its class effec-
tively pooling all occurrences of class members into one context
n-gram. For example, the gloss sequences MORGEN 22 GRAD,
MORGEN 4 GRAD, and MORGEN 12 GRAD result in different 3-
grams with a support of one each. Conversely, using a class
for numbers the three gloss sequences transform into MORGEN

<number> GRAD leading to one 3-gram with a support of three.
These classes can be inferred automatically from training

data by clustering glosses according to context. Creating
classes automatically suffers from the underlying data sparse-
ness problem preventing it’s application to current SL corpora.

Another way to define classes is by performing a manual
analysis of the recognition errors of any given recognition sys-
tem. In case of the system setup described in Section 7.1
achieving 39.4% (HOG-3D + RH Traj/Place + Handedness),
3.8% absolute WER of all recognition errors are due to wrongly
recognised numbers. Numbers occur in the description of tem-
peratures, dates and altitudes. Furthermore, 2.2% absolute of
all errors can be attributed to falsely recognised orientation de-
scriptions such as NORD or NORDWEST (north and north-west).

Table 12 shows the impact of augmenting a 3-gram LM us-
ing Kneser-Ney discounting by classes for numbers and ori-
entations for the single signer subset of RWTH-PHOENIX-
Weather. The domain of weather forecasts featured in the
RWTH-PHOENIX-Weather corpus is structured and lends it-
self well to the class LM approach.

Adding classes to the LM improves in both cases the per-
plexity of the LM. The perplexity, as defined in Equation (36),
is an inverse probability between how many classes the model
chooses on average to hypothesise every word of a text of length
N.

Perplexity = p(wN
1 )−

1
N =

 N∏
n=1

(p(wn|hn)

−
1
N

(36)

Class Perplexity Del / Ins WER
None 34.9 22.0/3.3 39.4
Orientations 31.2 18.1/5.3 39.2
Numbers 29.3 19.3/4.1 38.8

+ Orientations 25.7 16.2/6.2 38.6

Table 12: Effect adding classes to a 3-gram LM on ASLR performance on the
single signer subset of the RWTH-PHOENIX-Weather. Perplexity measured
on the test set for a 3-gram. Error rates in [%].

Adding only numbers or orientations to the LM improves
the LM perplexity by more than 10% relative leading to im-
provements in the ASLR performance. Adding both classes
to the LM improves the perplexity by more than 25% relative
leading to an overall recognition improvement of 1.2%. Ap-
plying the class LM (numbers and orientations) on top of the
proposed system using high-level face features, 34.3% WER
(20.5% deletions / 1.8% insertions) is achieved. In case of
added temporal derivatives no further gain is observed.

Repeating the same process for the multi-signer setup of
RWTH-PHOENIX-Weather the LM perplexity is again reduced
from 47.9 without gloss classes to 38.2 using a class for num-
bers and finally to 33.8 by using both numbers and orienta-
tions as classes. In contrast to the signer dependent subset,
no improvement in recognition performance is observed for the
multi-signer setup. Inspecting the errors made by the system
with and without class LM it is observable that while the right
class (e.g. orientations) from LM perspective is predicted by the
ASLR system, the visual model proposes the wrong sign (e.g.
NORTH instead of SOUTH). Thus, potential improvements by
the class LM are obscured by the lower discriminative power of
the visual model.

Class LMs are not considered for the SIGNUM database be-
cause the of the artificial nature of the sentence construction.

10. Summary and Conclusion

In this paper we have shown our recent advances in sys-
tem design for ASLR. We evaluated our approach on two large
publicly available continuous sign language data sets represent-
ing lab-data (SIGNUM database: 25 signer, 455 sign vocabu-
lary, 19k sentence) and unconstrained ’real-life’ sign language
(RWTH-PHOENIX-Weather database 9 signer, 1081 sign vo-
cabulary, 7k sentences) reflecting the community’s moving
from artificial lab-generated data to ’real-life’ data. Compared
to the current best published results, we are able to improve
recognition on lab-data from 10.7% WER to 10.0% for a single
signer and from 21.4% down to 16.4% for a multi-signer setup.
On the challenging ’real-life’ data set we improve the previ-
ously best known result of 38.6% WER to 33.4% for a single
signer and set a new best result for the PHOENIX multi-signer
setup at 53.0% WER.

In numerous detailed ASLR experiments targetting features,
visual modelling, signer-dependency and language modelling,
we show the impact and benefit of

• tracking of the hands and facial landmarks,
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• multimodal sign language features describing hand shape,
hand position and movement, inter-hand-relation and de-
tailed facial parameters, as well as temporal derivatives,

• tackling ASLR jointly with hand and face features

• non-gesture-models, length modelling and universal tran-
sition models,

• CMLLR as strategy to cope with inter-signer variation in
multi-signer corpora and

• class language modelling.

To sum up, we showed that the statistical approach works for
sign language recognition and that the results remain consistent
with what is expected, even on larger corpora of continuous
’real-life’ signing. Applying techniques from speech recogni-
tion is useful, as long as the particularities of sign language are
being taken care of. We present guidelines to open up the field
for newcomers who can benefit from the insights presented here
jointly with public access to our large-vocabulary continuous
sign language corpus RWTH-PHOENIX-Weather.

11. Future Work

ASLR is still a brittle technology in the sense of the used
amounts of data and modelling techniques. Developments in
the area of consumer cameras and the advent consumer priced
2.5D camera systems such as Microsoft’s Kinect 2.0 system
promise to benefit ASLR systems greatly by reducing the com-
plexity of object tracking and feature extraction. Accessing
depth information as an additional knowledge source, ASLR
can be used to analyse the usage of the signing space in front of
a signer allowing to improve recognition performance.

The increase in sign language corpora size over the last years
makes findings for ASLR more reliable fostering research into
multi-signer and even signer independent ASLR. Furthermore,
advances in sign language linguistics coupled with bigger cor-
pora will allow to investigate sub-sign units comparable to the
idea of phonemes for spoken languages. Such sub-sign units
will allow the application of modelling techniques from con-
ventional ASR that are currently not transferable to ASLR.

In terms of features for sign languages, neural networks and
especially deep neural networks show promising results in the
area of conventional ASR allowing to automatically learn opti-
mal features for a given language.
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