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& 't takes a village

... and 250 more colleagues in the Speech team



Overview

The past: some recent history

he present: the “conventional” state-of-the-art,
from the perspective of Farfield / Google Home.

The future is already here”? End2End.

Longer-term: Deep Generative approach”



Google Speech Group
Early Days "Mobile”

Speech group started in earnest in 2005

Build up our own technology, first application
launched in April 2007 Google goog-411

Simple directory assistance

Early view of what a “dialer” could be
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Google Speech Group
Early Days You lube

Google /O 2009 Keynote, pt. 2 o &)

LaunChed early 201 O English (transcribed)

* automatic captioning
* translation

* editing, "time sync”
e navigation o ———
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The Revolution

* Early speech applications had some traction but
nothing like the engagement we see today

 The 2007 launch of smartphones (iPhone and
Android) was a revolution and dramatically
changed the status of speech processing

* Qur current suite of mobile applications is launched
iIn 100+ languages and processes several
centuries of speech each week



Mobile Application Overview

Context: contacts

Speech: A

Recognizer

Result: W, search, action, s
- , Result Processing

HotWord: OK Google

Web Search Text-To-Speech




Recognition Models

Multi-lingual

Deep Neural Networks
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App Context vs. Technology

Mobile makes use of Large volume use
accurate speech > improves statistical
recognition compelling models
% Z *.\* Technology of 1970s-2010 (GMM-HM:A)’
&; ig WMD (DNN)
2 14
l20 500 1,000 1,500 2,000 2,500

Training Data (hours)

Xuedong Huang, James Baker and Raj Reddy, A Historical Perspective of Speech Recognition,”
Communications of the ACM, January 2014, Vol. 57, No 1.



Accuracy Gains from Data
and Modeling

* |nitial results using DNNs in hybrid systems showed
arge gains (GMM 16.0% to DNN 12.2% with about 2k
nours on VoiceSearch task)

* Additional gains from larger models

* Application of sequence models and sequence
training

Model Type

Objective Seqguence

Sequence

WER 11.3 10.4 10.7 9.8




_ong Short Term Memory

 Facilitates BPTT compared to vanilla RNNSs.
* Trains efticiently.




Optimization with
TensorkFlow

{CE,CTC} + {sMBR,WMBR}

No observable differences between CE and CTC
On-the-fly decoding for sMBR/WMBR on CPU
driving LSTMs on GPU/TPU

WMBR based on M. Shannon’s sampling-based
approach ("EMBR”, Interspeech 2017).

CTC can learn without alignments (FwdBkwd),
but typically uses alignments as constraint for
better latency.

See “End-to-end training of acoustic models for
LVCSR with TensorFlow”, Variani, Bagby,
McDermott & Bacchiani, Interspeech 2017



Farfield

AR A

A new way for people to interact with the internet
More natural interface in the home
More social

Non-trivial engineering challenges: reverb, noise,
level differences



Data Approach

* New application, no prior data that is
* Multi-channel
* Reverberant
* Noisy

* |Lots of data from phone launched applications
(may be noisy/reverberant, but no control)

* Bootstrap approach to build a room simulator
(IMAGE method) to generate “room data” from
‘clean data”



w

Room Simulator

160 = 500ms, SNR = 10dB




Study on Multi-channel
processing with deep learning

* T. N. Sainath, R. J. Weiss, K. W. Wilson, B. Li, A.
Narayanan, E. Variani, M. Bacchiani, |. Shafran,
A. Senior, K. Chin, A. Misra and C. Kim
"Multichannel Signal Processing with Deep
Neural Networks for Automatic Speech
Recognition,” in IEEE Transactions on Speech
and Language Processing, 2017.



https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing
https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing
https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing
https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing

Training Data

2000 hour set from our anonymized voice search data set
Room dimensions sampled from 100 possible configurations
T60 reverberation ranging from 400 to 900 ms. (600ms. ave)

Simulate an 8-channel uniform linear mic array with 2cm mic
spacing

Vary source/target speaker locations, distances from 1 to 4 meters

Noise corruption with “daily life” and YouTube music/noise data
sets

SNR distribution ranging from 0 to 20 dB SNR



lest Data

Evaluate on a 30k voice search utterance set, about 20 hours

Lt
iﬁgg‘

One version simulated like the training set ‘9

Another by re-recording

* |n a physical room, playback the test set from a mouth simulator
* Record from an actual mic array

* Record speech and noise from various (different) angles

e Post mix to get SNR variations

The baseline is MTR trained: early work with the room simulator
(DNN models) showed

16.2% clean-clean -> 29.4% clean-noisy -> 19.6% MTR-noisy



baseline CLDNN

output targets

t  Added accuracy improvements from
ONN combining layers of different types.
! 2000 hour clean training set,

-t D 20 hour clean test set

f Sequence

sm | ) 2000 hour MTR training set,

A 20 hour noisy test set

Sequence

20.3 18.8
19.4 17.4




Raw Wavetorm Models

output targets
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Frequency (kHz)

Raw Waveform Performance

8
- = mel (f;,... =700 Hz)
!/ —— gammatone untrained
—— random init, MTR train ,,
6 —— gammatone init, MTR train
gammatone init, clean train // Lo
Model 9 Raw
Mel
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Multi-channel Enhancement

Localization
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Multl-channel ASR

Common approach separates enhancement and
recognition

Enhancement commonly done in localization,
beamforming and posttiltering stages

Filter-and-sum beamtorming takes a steering delay from
localization for the c-th channel 7¢

C—1N-1

yitl =Y Y henlzcft —n— 7]

c=0 n=0

Estimation is commonly based on Minimum Variance
Distortionless Response (MVDR) or Multi-channel Wiener
Filtering (MWF)



Raw Waveform & Multi-Channel

tput target N
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Frequency (Hz)

| earnedq Filters
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Removing Phase

Train a baseline system with Log-mel features and feed
these as feature maps into the CLDNN

LOg'mel 2ch 4ch 8ch
(14cm) (4-6-4cm) (2cm)

Filters

128

256

Raw-waveform Filtare 2¢ch 4ch 8ch
(14cm) (4-6-4cm) (2cm)

128

256




| ocalization

e The multi-channel raw waveform model does both
beam forming as well as localization.

e Train a Delay-and-Sum

(D+S) single channel och seh ach
(14cm) (4-6-4cm) (2cm)

' - Filt ich
gnals with the oracle R

S
Time Delay of Arrival
(TDOA)

Oracle
D+S

23.5 22.8 22.5 22.4

Oracle

TAM 23.5 21.7 21.3 21.3

* [rain a Time Aligned Multi-
channel (TAM) system Raw
where we oracle TDOA o
align the channel inputs. tdoa

23.5 21.8 21.3 21.1
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Multi-Channel Raw
Waveform Summary

 Performance improvements Model WER-CE WER-Seq
remain after sequence
training

* The raw waveform models D+S, 8ch, oracle

without any oracle

information do better than MVg:élae"h’
an MVDR model that was
trained with oracle TDOA

and noise raw, 4ch

Raw 1ch

raw, 2ch

raw, 8ch

All systems 128 filters



Factored Multi-Channel Raw
Wavetorm

output targets

4 e |n a first convolutional layer,
CLDNN | ) apply filtering for P look-
Tzl e RIxFxP directions.
oo
boowf] e M-I e Small number of taps to
g € REXFXL | tconve I encourage learning of spatial
t X 1 X . .
s S R "y‘[']"g‘“""""'tb'o'r;\;_l". fllte”ng
R enN ht e RN |

* |n a second convolutional layer,
. use a larger number of taps for

. frequency resolution. Tie filter
hl e RY hl e RY - parameters between look
A 4 . directions



| earnedq Filters

Beampattern

Impulse responses
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Performance of Factored
Models

* Factored performance improves on unfactored with
increasing number of spatial filters

* Fixing the spatial filters to be D+S shows inferior

# Spatial Filters WER tConv1

2ch, unfactored fixed

trained

P=5 “look directions”




Multi-Channel Factored Raw
Waveform Summary

* Performance improvements remain after sequence training

Model WER-CE WER-Seq
unfactored, 2ch

factored, 2ch

unfactored 4ch

factored 4ch




Time-Frequency Duality

e So far, all models have been formulated in the time
domain

* (Given the computational cost of a convolutional
operator in time, the frequency dual of elementwise
multiplication is of interest.

* Early layers of the network, to be phase sensitive
use complex weights.



Factored Models in Frequency

Complex Linear
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Frequency Model Performance

Factored

Spatial Spectral

M+A M+A

Total
M+A

19.6M

WER Seq

10.3K 165.1K

19.1M 17.2

Factored increasing the model to 64

Spatial Spectral
M+A M+A

Ms/1024FFT

Total
M+A




Time vs. Frequency Fllters

(a) Factored model, time (b) Factored model, frequency
Beampattern Beampattern
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Re-recorded Sets

e Two test sets from re-recording with the mic array “on the
coffee table” or “on the TV stand”

* Only use 2-channel models as mic array configuration
changed (circular vs. linear)

Rev | Rev i
Noisy Noisy

Model Rev | Rev |l

1ch raw

2ch raw, unfactored

2ch raw, factored

2ch CLP, factored

2ch raw, NAB




Google Home recent setup

“Acoustic modeling for Google Home”, Li et al., Interspeech 2017

100 MTR room configurations = 4 million room configurations
(Kim et al., Interspeech 2017)

2000 hours — 18,000 hours Voice Search training data
Use of 4000 hours of Home real world traffic.

Online Weighted Prediction Error (WPE) (based on Yoshioka &
Nakatani)

factored CLP; CLDNN — GridLSTM



Google Home recent results

WERs on Home eval set
Noise Type
Model Full || Clean Speech | Music | Other
prod 6.1 5.1 8.5 6.2 6.0
home 5.1 4.9 6.3 5.1 5.0
home(adapt) | 4.9 4.7 6.1 4.9 4.8

Most utterances are simple/low-perplexity:
- weather

- play XY/
- change volume

- efc.




Fnad-to-End Models

* Modeling string to string directly avoids any independence
assumptions and allows joint optimization of the whole model.

P(y.tlx-l,,xt) P(ytl y1,!yt_1ax1,sxt) P(y||y1,,y|_1sx155XT)
Softmax Softmax Softmax
| ?
T Decoder
Y.
Joint Network -1 f T
Attention
Y % ¥
Encoder Plrlee?\i,\cl:(t)i&n Encoder Encoder
y
f t1_ 1§ ! f
X —-————-- X X —-————-- X X —-————--



Implications/Limitations

- PROS

e Simplicity: no lexicon design, no tuning

 No Independence assumptions, joint optimization

- CONS

 Need “complete data”; speech/text pairs

 Not an online/streamable model

No clear input for manual design/“biasing”

e Performance is poor on proper nouns / rare words.



The new state-of-the art”

 CC Chiu et al., “State-of-the-art speech recognition with
seguence-to-sequence models”, Interspeech 2017.

* Reaching/surpassing results for standard hybrid model,
e.g. CE + LSTM

* But issues with comparing results, details matter...

* .. and ongoing issues with streamabillity, LM biasing,
rare words.

* Large number of topics to explore.



The path not (yet) taken:
Waking up from the supervised,
discriminative training dream?

* |s training on vast amounts of labelled training data
really the future” Cost, freshness issues.

* Clearly a far vaster amount of unlabeled data is out
there.

e Cf. Yan Le Cun’s plenary at ICASSP: use of
poredictive models, getting ground truth from the
world.



ASR & TTS have grown closer,
but are still quite distinct

 ASR: Limited generative models & discriminative
training — Much richer discriminative models

| Though Hybrid Model fakes generative character at
some level |

 [TS: Limited generative models = Much richer
generative models

* How about a deep generative model for ASR?



Discriminative vs. generative models for ASR

e Discriminative “end-to-end” model, e.g. LAS

P(w|x) = | [ P(wk|wi, ..., wi—1, Ai(x))
k

e Combine with separate language model & sequence training;:

Blend(x,w) = P(w|x)® % P(w)' ™
e Cf. generative model:

p(x, w) = p(x|w) * P(w)
P(w) =[], P(wg|wiy ooy wi—1)

p(x|w) = HP(-’Dtkﬂla ceey Tt—15 W)
t



Deep generative model for TTS

e WaveNet (van den Oord et al. 2016):

— Probability of a waveform (unconditioned):

p(x) = Hp(wt|331a ey Tp—1), (6)

where observed samples x; are targets of N-way quantized
softmax trained with CE, using e.g. a DNN with dilated
convolutions.

— Conditional WaveNet:
p(x|h) = Hp(:ctkz:l, ey Ty_15 h), (7)
t

where the input h represents e.g. speaker and text info.

e Mixture density networks (Zen & Senior, 2014; Schuster 1997)
p(x¢|h) = Z w(Z1:4—1, h) N (ze|p(T1:4—1, h), 0 (T1:4-1, h)) (8)



Deep generative model for ASR

e Define predictive, generative likelihood of observation feature vector

ax; conditioned on all previous x; and symbol sequence w:

p(x|w) = Hp(wtlwla ceey Tt—1y W),
t

e Combine with LM for decoding & sequence training:

p(x,w) = p(x|w) * P(w)
P(w) =[], P(wg|wiy .oy wi—1)

e Cf. hybrid model for LSTMs:
p(xlw) = H P(wtlmla ceey mt)/f)('wt)
t

e Cf. ideal discriminative model

P(w|x) = H P(wg|wiy eeey Wr—15 T1y eees TT)
k



Deep Mixture Density Nets for TTS, Zen & Senior, 2014
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RNN Generative Transducer
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Speech Remains Exciting

e Speech technology is becoming remarkably
mainstream

 Many opportunities and research gquestions remain to
e answered to make it truly ubiquitous: devices,
anguages, people, applications

* Thinking is not dead: model structure vs. parameter
optimization

* Wide adoption means large data opening a very large
opportunity for research using machine learning
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