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Overview
• The past: some recent history 

• The present: the “conventional” state-of-the-art, 
from the perspective of Farfield / Google Home. 

• The future is already here? End2End. 

• Longer-term: Deep Generative approach?



Google Speech Group 
Early Days “Mobile”

• Speech group started in earnest in 2005 

• Build up our own technology, first application 
launched in April 2007 

• Simple directory assistance 

• Early view of what a “dialer” could be



Google Speech Group 
Early Days Voicemail

Launched early 2009 as 
part of Google Voice 

Voicemail transcription: 
• navigation 
• search 
• information extraction 



Google Speech Group 
Early Days YouTube

Launched early 2010 
• automatic captioning 
• translation 
• editing, “time sync” 
• navigation 



The Revolution
• Early speech applications had some traction but 

nothing like the engagement we see today 

• The 2007 launch of smartphones (iPhone and 
Android) was a revolution and dramatically 
changed the status of speech processing 

• Our current suite of mobile applications is launched 
in 100+ languages and processes several 
centuries of speech each week



Mobile Application Overview

Model

Recognizer

Result Processing

Web Search Text-To-Speech

Context: contacts

Speech: A

Result: W, search, action, speech

argmax P(W | A)
W

HotWord: OK Google



Recognition Models
Language Model

Lexicon

Acoustic Model

Domain/Text Norm: 7:15AM $3.22

Dynamic Lexical Items: Contact Names

Size/Generalization: goredforwomen.org

Acoustic Units/Context/Distribution Estimation

P(W)

P(A | W)

Lexical                                  Acoustic 

Multi-lingual

Finite State Transducers

Deep Neural Networks



App Context vs. Technology
Mobile makes use of 

accurate speech 
recognition compelling 

Large volume use 
improves statistical 

models

Xuedong Huang, James Baker and Raj Reddy,"A Historical Perspective of Speech Recognition,"  
Communications of the ACM, January 2014, Vol. 57, No 1.



Accuracy Gains from Data 
and Modeling

• Initial results using DNNs in hybrid systems showed 
large gains (GMM 16.0% to DNN 12.2% with about 2k 
hours on VoiceSearch task) 

• Additional gains from larger models 
• Application of sequence models and sequence 

training

Model Type DNN LSTM

Objective CE Sequence CE Sequence

WER 11.3 10.4 10.7 9.8



Long Short Term Memory
• Facilitates BPTT compared to vanilla RNNs. 
• Trains efficiently.



Optimization with 
TensorFlow

• {CE,CTC} + {sMBR,WMBR} 
• No observable differences between CE and CTC 
• On-the-fly decoding for sMBR/WMBR on CPU 

driving LSTMs on GPU/TPU 
• WMBR based on M. Shannon’s sampling-based 

approach (“EMBR”, Interspeech 2017). 
• CTC can learn without alignments (FwdBkwd), 

but typically uses alignments as constraint for 
better latency. 

• See “End-to-end training of acoustic models for 
LVCSR with TensorFlow”, Variani, Bagby, 
McDermott & Bacchiani, Interspeech 2017



Farfield

• A new way for people to interact with the internet 
• More natural interface in the home 
• More social

• Non-trivial engineering challenges: reverb, noise, 
level differences



Data Approach
• New application, no prior data that is 

• Multi-channel 
• Reverberant 
• Noisy 

• Lots of data from phone launched applications 
(may be noisy/reverberant, but no control) 

• Bootstrap approach to build a room simulator 
(IMAGE method) to generate “room data” from 
“clean data”



Room Simulator
T60 = 500ms, SNR = 10dB



Study on Multi-channel 
processing with deep learning

• T. N. Sainath, R. J. Weiss, K. W. Wilson, B. Li, A. 
Narayanan, E. Variani, M. Bacchiani, I. Shafran, 
A. Senior, K. Chin, A. Misra and C. Kim 
"Multichannel Signal Processing with Deep 
Neural Networks for Automatic Speech 
Recognition," in IEEE Transactions on Speech 
and Language Processing, 2017.

https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing
https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing
https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing
https://drive.google.com/file/d/0ByfBg9vVsBJ-OHpycWV6VllxVGM/view?usp=sharing


Training Data
• 2000 hour set from our anonymized voice search data set 

• Room dimensions sampled from 100 possible configurations 

• T60 reverberation ranging from 400 to 900 ms. (600ms. ave) 

• Simulate an 8-channel uniform linear mic array with 2cm mic 
spacing 

• Vary source/target speaker locations, distances from 1 to 4 meters 

• Noise corruption with “daily life” and YouTube music/noise data 
sets 

• SNR distribution ranging from 0 to 20 dB SNR



Test Data
• Evaluate on a 30k voice search utterance set, about 20 hours 

• One version simulated like the training set 

• Another by re-recording
• In a physical room, playback the test set from a mouth simulator 
• Record from an actual mic array 
• Record speech and noise from various (different) angles  
• Post mix to get SNR variations 

• The baseline is MTR trained: early work with the room simulator 
(DNN models) showed  
16.2% clean-clean -> 29.4% clean-noisy -> 19.6% MTR-noisy



baseline CLDNN
• Added accuracy improvements from 

combining layers of different types.

tConv

fConv

LSTM

LSTM

LSTM

DNN

output targets

raw waveform
M samples

xt ∈ ℜ
P

CE Sequence
LSTM 14.6 13.7

CLDNN 13.0 13.1

CE Sequence
LSTM 20.3 18.8

CLDNN 19.4 17.4

2000 hour clean training set,  
20 hour clean test set

2000 hour MTR training set,  
20 hour noisy test set



Convolution 
N x P weights 

Input 
M samples 

Max pooling 
M+N-1 window 
 

Nonlinearity 
log(ReLU(...)) 
1 X P 

convolution output 
(1 x P) 
 
 

nonlinearity output 
(1 x P) 

tConv

fConv

LSTM

LSTM

LSTM

DNN

output targets

raw waveform
M samples

xt ∈ ℜ
P

Raw Waveform Models



Model Log
Mel Raw

C1L3D1 16.2 16.2
L3D1 16.5 16.5

D6 22.3 23.2

Raw Waveform Performance



Multi-channel Enhancement
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Multi-channel ASR
• Common approach separates enhancement and 

recognition 

• Enhancement commonly done in localization, 
beamforming and postfiltering stages 

• Filter-and-sum beamforming takes a steering delay from 
localization for the c-th channel                                       

• Estimation is commonly based on Minimum Variance 
Distortionless Response (MVDR) or Multi-channel Wiener 
Filtering (MWF)

⌧c

y[t] =
C�1X

c=0

N�1X

n=0

hc[n]xc[t� n� ⌧c]



Raw Waveform & Multi-Channel

• Implicitly model steering delay 
with P multi-channel filters 

• Optimize the filter parameters 
directly on ASR objective akin 
to raw waveform single 
channel model.

fConv

LSTM

LSTM

LSTM

DNN

output targets

x1[t] 2 <M x2[t] 2 <M xC [t] 2 <M

pool + 
nonlin

z[t] 2 <1⇥P

y1[t] 2
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tConv

CLDNN
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Learned Filters

Filters 2ch
(14cm)

4ch 
(4-6-4cm)

8ch
(2cm)

128 21.8 21.3 21.1

256 21.7 20.8 20.6

512 - 20.8 20.6



Removing Phase

Filters 2ch
(14cm)

4ch 
(4-6-4cm)

8ch
(2cm)

128 22.0 21.7 22.0

256 21.8 21.6 21.7

Filters 2ch
(14cm)

4ch 
(4-6-4cm)

8ch
(2cm)

128 21.8 21.3 21.1

256 21.7 20.8 20.6

Train a baseline system with Log-mel features and feed 
these as feature maps into the CLDNN

Log-mel

Raw-waveform



Localization
• The multi-channel raw waveform model does both 

beam forming as well as localization.

Filters 1ch 2ch
(14cm)

4ch 
(4-6-4cm)

8ch
(2cm)

Oracle 
D+S 23.5 22.8 22.5 22.4

Oracle 
TAM 23.5 21.7 21.3 21.3

Raw, 
no 

tdoa
23.5 21.8 21.3 21.1

• Train a Delay-and-Sum   
(D+S) single channel 
signals with the oracle 
Time Delay of Arrival 
(TDOA) 

• Train a Time Aligned Multi-
channel (TAM) system 
where we oracle TDOA 
align the channel inputs.  



WER and Filter Analysis
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Multi-Channel Raw 
Waveform Summary

Model WER-CE WER-Seq

Raw 1ch 23.5 19.3

D+S, 8ch, oracle 22.4 18.8

MVDR, 8ch, 
oracle 22.5 18.7

raw, 2ch 21.8 18.2

raw, 4ch 20.8 17.2

raw, 8ch 20.6 17.2

• Performance improvements 
remain after sequence 
training 

• The raw waveform models 
without any oracle 
information do better than 
an MVDR model that was 
trained with oracle TDOA 
and noise

All systems 128 filters



Factored Multi-Channel Raw 
Waveform

CLDNN

output targets

x2[t] 2 <M

pool + 
nonlin

x1[t] 2 <M

. 

. 

h1
1 2 <N

h2
1 2 <N

. 

. 

h1
2 2 <N

h2
2 2 <N

tConv2

z[t] 2 <1⇥F⇥P

w[t] 2 <M�L+1⇥F⇥P

g 2 <L⇥F⇥1

y[t] 2 <M⇥1⇥P

hP
1 2 <N hP

2 2 <N tConv1

• In a first convolutional layer, 
apply filtering for P look-
directions. 

• Small number of taps to 
encourage learning of spatial 
filtering 

• In a second convolutional layer, 
use a larger number of taps for 
frequency resolution. Tie filter 
parameters between look 
directions  



Learned Filters



Performance of Factored 
Models

• Factored performance improves on unfactored with 
increasing number of spatial filters 

• Fixing the spatial filters to be D+S shows inferior

# Spatial Filters WER

2ch, unfactored 21.8

1 23.6

3 21.6

5 20.7

10 20.8

tConv1 WER

fixed 21.9

trained 20.9

P=5 “look directions”



Multi-Channel Factored Raw 
Waveform Summary

Model WER-CE WER-Seq
unfactored, 2ch 21.8 18.2

factored, 2ch 20.4 17.2
unfactored 4ch 20.8 17.2

factored 4ch 19.6 16.3

• Performance improvements remain after sequence training



Time-Frequency Duality
• So far, all models have been formulated in the time 

domain 

• Given the computational cost of a convolutional 
operator in time, the frequency dual of elementwise 
multiplication is of interest. 

• Early layers of the network, to be phase sensitive 
use complex weights.



Factored Models in Frequency
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Frequency Model Performance

Model Spatial
M+A

Spectral
M+A

Total
M+A WER Seq

CLP 10.3k 655.4k 19.6M 17.2
LPE 10.3k 165.1k 19.1M 17.2

Model Spatial
M+A

Spectral
M+A

Total
M+A

WER Seq

Raw 906.1k 33.8M 53.6M 17.1
CLP 20.5k 1.3M 20.2M 17.1
LPE 20.5k 329k 19.3M 16.9

Factored

Factored increasing the model to 64ms/1024FFT



Time vs. Frequency Filters
(a) Factored model, time (b) Factored model, frequency



Re-recorded Sets
• Two test sets from re-recording with the mic array “on the 

coffee table” or “on the TV stand” 

• Only use 2-channel models as mic array configuration 
changed (circular vs. linear)

Model Rev I Rev II Rev I
Noisy

Rev II
Noisy Ave

1ch raw 18.6 18.5 27.8 26.7 22.9

2ch raw, unfactored 17.9 17.6 25.9 24.7 21.5

2ch raw, factored 17.1 16.9 24.6 24.2 20.7

2ch CLP, factored 17.4 16.8 25.2 23.5 20.7

2ch raw, NAB 17.8 18.1 27.1 26.1 22.3



Google Home recent setup
• “Acoustic modeling for Google Home”, Li et al., Interspeech 2017 

• 100 MTR room configurations → 4 million room configurations 
(Kim et al., Interspeech 2017) 

• 2000 hours → 18,000 hours Voice Search training data 

• Use of 4000 hours of Home real world traffic. 

• Online Weighted Prediction Error (WPE) (based on Yoshioka & 
Nakatani) 

• factored CLP; CLDNN → GridLSTM



Google Home recent results
WERs on Home eval set

Most utterances are simple/low-perplexity: 
- weather 
- play XYZ 
- change volume 
- etc.



End-to-End Models
• Modeling string to string directly avoids any independence 

assumptions and allows joint optimization of the whole model.

CTC RNN-T LAS

Softmax

P(y | x , …, x )t t1

Encoder

Softmax

Joint Network

Prediction 
Network Encoder Encoder
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Decoder
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Implications/Limitations
• PROS

• Simplicity: no lexicon design, no tuning 

• No independence assumptions, joint optimization 

• CONS

• Need “complete data”; speech/text pairs 

• Not an online/streamable model 

• No clear input for manual design/“biasing” 

• Performance is poor on proper nouns / rare words.



The new state-of-the art?
• CC Chiu et al., “State-of-the-art speech recognition with 

sequence-to-sequence models”, Interspeech 2017. 

• Reaching/surpassing results for standard hybrid model, 
e.g. CE + LSTM 

• But issues with comparing results, details matter… 

• .. and ongoing issues with streamability, LM biasing, 
rare words. 

• Large number of topics to explore.



The path not (yet) taken: 
Waking up from the supervised, 
discriminative training dream?

• Is training on vast amounts of labelled training data 
really the future? Cost, freshness issues. 

• Clearly a far vaster amount of unlabeled data is out 
there. 

• Cf. Yan Le Cun’s plenary at ICASSP: use of 
predictive models, getting ground truth from the 
world.



ASR & TTS have grown closer, 
but are still quite distinct

• ASR: Limited generative models & discriminative 
training → Much richer discriminative models 

[ Though Hybrid Model fakes generative character at 
some level ] 

• TTS: Limited generative models → Much richer 
generative models 

• How about a deep generative model for ASR?











RNN Generative Transducer



Speech Remains Exciting
• Speech technology is becoming remarkably 

mainstream 

• Many opportunities and research questions remain to 
be answered to make it truly ubiquitous: devices, 
languages, people, applications 

• Thinking is not dead: model structure vs. parameter 
optimization 

• Wide adoption means large data opening a very large 
opportunity for research using machine learning
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