

Attention-based ASR utilizing Byte-Pair Encoding

Albert Zeyer, Ralf Schlüter

Human Language Technology and Pattern Recognition — Lehrstuhl Informatik 6 Fakultät für Mathematik, Informatik und Naturwissenschaften RWTH Aachen University

End-to-end

Current state-of-the-art: hybrid HMM/ANN approach

- usually based on initial Gaussian mixture HMM training
- operates on phone level using pronunciation lexica and full word forms
- end-to-end scheme possible:
 - lattice-free MMI [Povey⁺ 2016]
 - GMM-free incl. phonetic decision tree [Gosztolya⁺ 2016]

What is "end-to-end"?

- lower end: input features, e.g. MFCCs
- upper end: ouput labels, e.g. characters, words, subwords; here: byte-pair encoding (BPE)
- aim: homogeneous modeling, training and decoding
- (no pronunciation lexicon, no phone model and clustering)

Models:

- HMM, CTC, ASG, LF-MMI
- encoder-decoder with attention (here)
- \bullet inverted HMM / segmental RNN, recurrent transducer, recurrent neural aligner

Except for HMM, discriminative model: $p(y_1^N|x_1^T) = \prod_{i=1}^N p(y_i|[y_1^{i-1}], x_1^T)$

Model: Encoder-decoder with attention

Encoder

- high-level feature representation/transformation
- deep bi-directional LSTM network
- max-pooling in time: optional sub-sampling following each LSTM layer
- input feature vector sequence x_1^T ,
- encoder output:

$$h_1^{\mathcal{T}'} = \mathsf{LSTM}_{\# \mathrm{enc}} \circ \cdots \circ \mathsf{max}\operatorname{-pool}_1 \circ \mathsf{LSTM}_1(x_1^{\mathcal{T}}),$$

- $T' = \operatorname{red} \cdot \operatorname{T}$ with time reduction factor red ,
- #enc: number of encoder layers, $\#enc \ge 2$.

Model: Encoder-decoder with attention

Decoder

• attention energies for encoder time-step t and decoder step (output label position) i:

$$e_{i,t} = \mathbf{v}^{\top} \operatorname{tanh}(W[s_i, h_t, \beta_{i,t}]),$$

- with trainable vector v and trainable matrix W, current decoder state s_i , and encoder state h_t . **Note**: no dependence on symbol y_i to be hypothesized in position i!
- attention weight feedback: influence of attention used in earlier decoder steps

$$eta_{i,t} = \sigma(\mathbf{v}_{eta}^{ op} \mathbf{h}_t) \cdot \sum_{k=1}^{i-1} lpha_{k,t}, \text{ with trainable vector } \mathbf{v}_{eta}.$$

• attention weights: $\alpha_i = \operatorname{softmax}_t(e_i)$, normalized over time

• attention context vector: input to decoder

$$c_i = \sum_{t=1}^{r} \alpha_{i,t} h_t$$

T'

- decoder state: $s_i = \text{LSTMCell}(s_{i-1}, y_{i-1}, c_{i-1})$
- decoder output prediction probability:

$$p(y_i|y_1^{i-1}, x_1^T) = \operatorname{softmax}(\operatorname{linear} \circ \operatorname{maxout} \circ \operatorname{linear}(s_i, y_{i-1}, c_i))$$

Attention Example

"that's really interesting i've never heard of anybody making their own pudding before that's really neat "

• grayscale reflects attention weights for each time frame

4 of 14 Zeyer, <u>Schlüter</u>: Attention-based ASR utilizing Byte-Pair Encoding Human Language Technology and Pattern Recognition — Lehrstuhl Informatik 6 — RWTH Aachen University Listen Workshop — Bonn — July 17, 2018

Pretraining

Time reduction and pretraining

- input sequences are much longer than output sequences (e.g. 30 times)
- continuous input: downscaling / time reduction can work
- time reduction factors:
 - low, e.g. 8 or less: hard to get to convergence
 - (did not converge at all for us in most cases, or was very bad)
 - high, e.g. 16 or 32: converges fast and nicely
- deep hybrid LSTM models can benefit from layer-wise pretraining: start with 1 or 2 layers, add more and more layers
- same for the deep LSTM encoder
 - first we showed that it works for machine translation
 - also works for speech recognition
- pretraining in speech recognition with time reduction scheduling:
 - start with high time reduction (32), and then reduce (to 8)
 - get better performance with lower time reduction
- pretraining with other scheduling variants:
 - label smoothing (initially disabled)
 - dropout (initially disabled)

Experiments

Pretraining

• Pretraining study for machine translation (WMT 2017 German \rightarrow English task):

encoder	BLEU [%]			
num. layers	no pretrain	with pretrain		
2	29.3	_		
3	29.9	-		
4	29.1	30.3		
5	-	30.3		
6	-	30.6		
7	-	30.9		

- Time reduction for ASR (Switchboard), directly starting with:
 - time reduction factor 8, 2 layers, or
 - time reduction factor 32, 6 layers:

did not work

• might work with more careful tuning, not needed with pretraining

Optimal time reduction factor

- always with pretraining, starting with time reduction factor 32
- Switchboard 300h, Hub5'00 (SWB+CH) results:

factor	WER [%]			
4	(out of memory)			
8	20.4			
16	21.0			
32	21.9			

• (factors in between not straight forward with our max-pooling time reduction)

Byte-Pair Encoding

Goals: enable open vocabulary and avoid pronunciation lexicon

- character vocabulary:
 - small label set
 - enables open vocabulary
 - pronunciation ambiguous/context dependent
- word vocabulary:
 - large label set
 - fixed/limited vocabulary
 - pronunications well-defined

Byte-pair encoding:

- starts from character vocabulary and corresponding segmentation
- iteratively merges most frequent label bigrams ("byte-pairs")
- always keeps byte-pair constituents in vocabulary
- word internal processing only, word internal boundary symbol '@', attached to left character
- leads to intermediate size of label set

Experiments

• rank r vs. frequency N(r) in training corpus

9 of 14 Zeyer, <u>Schlüter</u>: Attention-based ASR utilizing Byte-Pair Encoding Human Language Technology and Pattern Recognition — Lehrstuhl Informatik 6 — RWTH Aachen University Listen Workshop — Bonn — July 17, 2018

Switchboard 300h

- 6 layer encoder attention model, 1 layer decoder
- ¹added noise from external data. ²added the lexicon, i.e. also additional data.

		label		WER[%]			
model	LM			Hub5'00		Hub5'01	
		un	IIT	SWB	СН		
JHU, LF MMI, 2016	4-gram	CDp		9.6	19.3		
hybrid (this work)	LSTM			8.3	17.3	12.9	
Edinburgh, attention, 2016	3-gram	words		25.8	46.0		
Toyota, attention, 2017	none	chars		23.1	40.8		
Stanford, CTC, 2015	DNN			21.4	40.2		
Baidu DeepSpeech, CTC ¹ , 2014				20.0	31.8		
Microsoft, CTC ² , 2017	word RNN			14.0	25.3		
	none	BPE	10K	13.5	27.1	19.9	
attention (this work)			1K	13.1	26.1	19.7	
	LSTM		1K	11.8	25.7	18.1	

LibriSpeech 1000h

• 6 layer encoder attention model, 1 layer decoder

	LM	label unit	WER[%]			
model			dev		test	
			clean	other	clean	other
JHU, hybrid, FFNN, 2015	1 (7)	CDp	4.90	12.98	5.51	13.97
JHU, LF MMI, LSTM, 2016	4-grain				4.28	
Baidu DeepSpeech2, CTC, 2015		ım chars			5.33	13.25
Facebook, ASG (CTC), 2017	4-gram				4.80	14.50
Salesforce, CTC, PL, 2017			5.10	14.26	5.42	14.70
	none	BPE	4.87	14.37	4.87	15.39
attention (this work)	4-gram		4.79	14.31	4.82	15.30
	LSTM		3.54	11.52	3.82	12.76

Beam Search Error Analysis

- on LibriSpeech, without language model
- reference-related search errors:

percentage of segments with recognition score worse than reference score:

beam	s d	earch errors [ev	%] (WER [%]) test			
size	clean	other	clean	other		
4	1.52 (4.87)	1.68 (14.53)	1.07 (4.87)	1.70 (15.49)		
8	0.96 (4.88)	0.98 (14.40)	0.76 (4.87)	1.02 (15.39)		
12	0.81 (4.87)	0.59 (14.37)	0.61 (4.86)	0.71 (15.39)		
16	0.70 (4.87)	0.52 (14.36)	0.50 (4.86)	0.58 (15.37)		
32	0.26 (4.87)	0.14 (14.34)	0.19 (4.86)	0.20 (15.34)		

Conclusion

- encoder-decoder-attention model for large-vocabulary speech recognition
- target labels: BPE subword units
- pretraining for encoder with time reduction scheduling
- joint beam search with a separately trained LSTM LM
- current experimental results:
 - 300h-Switchboard:

competitive results compared to other end-to-end models WERs are still higher than the conventional hybrid systems

- 1000h-LibriSpeech:

near to state-of-the-art

- open issues:
 - robustness of training process?
 - how to accomodate lower amounts of training data?
 - need for further model structuring
 - ightarrow as encoder is similar to networks used in hybrid approach: more robust attention model?

Thank you for your attention

Questions?

