

Neural modulation for multilingual speech recognition

Markus Müller, Sebastian Stüker and Alex Waibel

Institute for Anthropomatics and Robotics, Interactive Systems Lab

Introduction

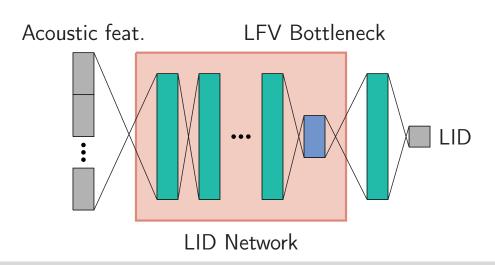
- Automatic speech recognition (ASR): Costly AI problem
 7,000+ living languages, each requires own acoustic model
- How to train a system for a language?
 - EN on EN (monolingual): best performance
 - L_x on EN (cross-lingual): worst performance
 - $L_1, L_2, \ldots L_n$ on EN (multilingual): mediocre performance
- Monolingual setup wins
- Multilingual training
 - Train model on multiple languages
 - Fine-tune on target language
- Want: Quick adaptation to languages
 Monolingual performance multilingually

Multilingual Neural Network Adaptation

- Multilingual acoustic model: Multilingual set of acoustic units
 - IPA: Same symbols across languages, language specific contexts
 - Multilinguality adds more ambiguity, performance loss
- Adaptation method: Networks modulated by language codes
 - Extracted via ancillary network
- Stimulate networks to learn features depending on language properties
- Optimized neural network architecture and application of language codes
- Achieved and exceeded parity with monolingual setups
- Instantly adapts to languages

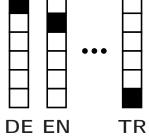
Neural Network Language Adaptation

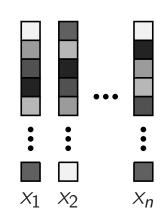
- Supply additional language code
- Language identity (LID)
 - One-hot encoding of identity
- Language Feature Vectors (LFV)
 - Encoding of language properties
 - Extracted via bottleneck layer



LID:

LFV:





4

Institute for Anthropomatics and Robotics Interactive Systems Lab

5 18.07.18 Markus Müller - Neural modulation for multilingual speech recognition

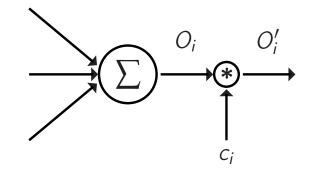
Additive language codes Multiplicative language codes

Output layer Image: Displayer Imag

Comparison of Network Architectures

Multiplicative Language Codes

- Language properties not as signal related as speaker properties
- Integrate language adaptation deeper into the network
- Neural network modulation related to modulation in Meta-PI
- Outputs weighted by language codes
 - Emphasized / attenuated based on language properties
 - Forces neural units to learn features depending on LCs
 - Network instantly adapts to languages



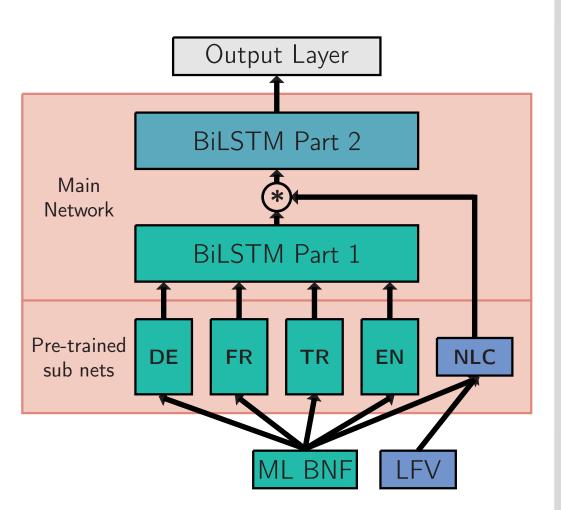
"The meta-pi network: Building distributed knowledge representations for robust multisource pattern recognition." Hampshire, John B., and Alex Waibel. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, no. 7 (1992): 751-769.

Network Superstructure for Multilingual ASR

- Modulation (already covered)
 - Apply weights to outputs of neural units
- Train smaller subnets on individual tasks
 - Language dependent subnets
- Learn mixture weights of subnets based on final task
 - Train adaptive neural language codes (NLCs) based on LFVs
- Joint training of entire network superstructure
 - Parameters of individual networks updated
 - Monolingual subnets adapted to multilingual speech recognition

Network Architecture

- Stack outputs of subnets
 - Language dependent
 - Remove output layers
 - Stack outputs of last hidden layers
- Main network
 - 2 BiLSTM blocks
- Joint training of all networks
 - Update pre-trained language dependent networks
 - Update NLCs



Experimental Setup BiLSTM/CTC Systems

- Trained on 4 languages (English, French, German, Turkish)
 - TV broadcast news (Euronews TV station)
 - 45h per language
- No pronunciation dictionaries used
 - Trained on characters only
 - \rightarrow Network has to infer pronunciations automatically
- Character based RNN language model
 - Trained on 0.5 million words of training transcripts
- Evaluation metrics
 - WER: Word error rate

Results

- Network superstructure and NLCs improve performance
 - Evaluation on English

Setup	WER LM1	WER LM2
Monolingual baseline	25.3%	24.2%
No adaptation	27.4%	_
LFV Modulation	26.3%	_
Phonetic pre-training	25.4%	_
Network Superstructure	24.2%	23.5%

LM1: Baseline

LM2: Optimized number of BiLSTM cells

Conclusion

- Language adaptation of neural networks
 - Language codes extracted by ancillary network
- Modulation stimulates neural networks to learn features depending on language properties
- Network superstructure with pre-trained sub nets
 - Joint optimization for best recognition performance
 - Multilingual acoustic model achieves and exceeds parity with monolingual counterpart
- Modulation enables mode dependent networks
 - Intelligent "dropout"
 - Apply method to other domains

Thank you.

More details can be found in "Neural Language Codes for Multilingual Acoustic Models" Accepted at Interspeech 2018 Pre-print available at: https://arxiv.org/pdf/1807.01956.pdf