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Introduction

e Speaker diarization = segment audio into homogeneous
sections with only one active speaker
o “who spoke when?”
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Applications of diarization

e Annotation of meeting

transcripts with speaker
labels

o Attorney meetings,
corporate/business
meetings

Improve performance of
Automatic Speech
Recognition (ASR) systems
by allowing effective
speaker acoustic model
adaptation
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Speaker diarization approaches

Distant speech diarization
e Can we use signal characteristics of the voice?
e Can we use the position of the sound source?
o both are affected by noise, reverberation and non-speech
Two main approaches

e Single-microphone approaches are usually based on spectral
differences

e Multi-microphone approaches include spatial information
Clustering
e either start with many clusters which are then merged
successively until a stopping criteria is reached
e or start with only one cluster and split into new clusters until
a stopping criteria is reached
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Multichannel approaches
Diarization can exploit spatial information in the multichannel case
either by

e estimating TDOAs - time delay of the same signal at two
different microphones, or

e estimating DOAs by maximizing e.g. steered response power

TDOA Estimation

_ () Y5 ()
Gpuar(f) = m

Y1.2(f) are the Fourier transforms of input signals.
TDOA at frame [ is found from

7 = argmax Rpgar(T)
T

where Rpar(7) is the inverse Fourier transform of Gpgar(f)
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Problem Addressed

TDOA estimation performance for distance speech diarization is
degraded by

e reverberation

e noise

e VAD errors

e overlapping talkers

e non-speech (e.g. door closing)

Aim to build statistical models of the source TDOAs robust to
erroneous data
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Proposed method
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TDOA computation

TDOA computation
Mic 1 =
GCC-PHAT H
Mic 2 H Tt
'] ccopraTr  HI

Mic 3 [+ o

Mic (Npmie — 1) [ :
Mic V... gi GCC-PHAT -
® Npic microphones: J = 0.5 Nyic - (Npmic — 1) TDOA streams
e The TDOA for frame [ and stream j is denoted le
o frames of 500 ms with 87.5% overlap

e A TDOA stream 74 is created by concatenating all per-frame
TDOAs le
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Speaker modeling
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Speaker modeling
e Gaussian Mixture Model (GMM) for each mixture i, stream j
6; = (X}, 17, 07)

® Ny + 1 mixtures are considered
o Ngpr, mixtures to model the speakers’ TDOAs
o An additional mixture 6% to model the noisy estimates

Problem

Proposed solution

Linear constraints on the mean and the standard deviation in the
EM algorithm are included to estimate 6 robustly to these

erroneous TDOA estimates
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Speaker modelling - Constraints on the mean

e Linear constraints on the distribution means:
o The mean of the noise mixture, up, is independent of the
speakers’ means (defined with matrix M)
o The speakers’ means are separated by a minimum distance to

avoid them being determined unreasonably close to each other
(defined with vector C)

LB 1 0 0
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Speaker modeling - Constraints on the standard deviation

e Linear constraints on the standard deviation:
o The variance of the noise mixture is greater than the variance
of the speakers’ mixtures (defined with matrix G)
o Variance of all speakers TDOAs (e.g. due to head movements)
assumed to be similar = the standard deviation of every
speakers’ mixture is the same (defined with matrix G)

1/03 LB 1 0
t=GY = 1/o1 = h _ |11 [ Tl}
T,
1/0’]\]517,c l,]\]sp,C 1 1

o Additionally, variance upper and lower bounds (1.25 ms and
0.03125 ms respectively) are applied to avoid unlikely values
e Parameter estimation is performed using Expectation
Constrained Maximization and Minorization-Maximization?

Didier Chauveau, David Hunter. "ECM and MM algorithms for normal mixtures with
constrained parameters”, 2013. Available Online: https://hal.archives-ouvertes.fr/hal-00625285v2  11/18



Alignment between streams
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Alignment between streams

e Alignment to ensure that the N, speaker indexes represent
the same speaker across the different J streams for frames .
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Alignment between streams

e Alignment to ensure that the N, speaker indexes represent
the same speaker across the different J streams for frames .
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Alignment between streams

e Alignment to ensure that the N, speaker indexes represent
the same speaker across the different J streams for frames .
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Alignment between streams

e Alignment to ensure that the N, speaker indexes represent

the same speaker across the different J streams for frames .
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Alignment between streams

e Alignment to ensure that the N, speaker indexes represent

the same speaker across the different J streams for frames .
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Decoding

Decoding |-
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Decoding

e The aim of the decoding block is to find, for each frame [, the
speaker index ¢ that maximizes the posterior probability of
the speaker model OJ given the TDOA sample le as

arg max P(8!|77), where,
i

P(r}|0}) - P(67)

P(#l|r]) = :
Sns p(ri|6d) - P(6))
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Decoding - Approaches

1. Stream selection approach selects the optimal TDOA stream
to employ for decoding based on the Bayesian Information
Criterion (BIC) by maximizing

BIC(87,79) = —2log L(67|77) + Ny, - log(Nrpoa)

where:
o L(67]77) is the likelihood of the model 6 given the data 77
o Ny, is the number of free parameters to be estimated in 0
2. Stream combination approach computes the average of the
probabilities over all J streams and selects ¢ as

argmax
i

0]\7'1 , where ¢ = {1,--+ | Ny}

”M“
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Decoding - HMM

e A Hidden Markov Model (HMM) is introduced to avoid
very unlikely short utterances

e Each state of the HMM represents one speaker and all the
states are interconnected

e Transition probabilities for speakers ¢ and r are chosen as

1/(1 — agq) = average duration in frames of speaker g
agr = (1 — aqq)/Nepr — 1)

¢ Observation probabilities are set to P(0;|7;) for speaker i at
frame [

e Viterbi algorithm is applied to extract the speaker label
estimate at frame [
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Evaluation

Evaluated on distant multi-microphone partition of NIST
RT-05
The baseline used to compare the performance is DiarTK3

o Open source toolkit where the clusters are merged depending
on a mutual information loss

o It was given TDOA streams from all microphone pairs T

In both systems N is set to 10

The scoring is restricted to speech active regions
o The relative reduction of the speaker error (RRSE) time is used

SEbaseline - SEproposed

RRSE =
SEbaseline

- 100(%)

3D. Vijayasenan, F. Valente, and H. Bourlard (2011). “An Information
Theoretic Combination of MFCC and TDOA Features for Speaker Diarization”.
In: IEEE Trans. Audio, Speech, Lang. Process. 19.2, pp. 431-438.
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Results

e Summary of the performance in terms of RRSE for the two

proposed approaches

. Stream Stream
Meeting | Nopk | Nemic Selection | Combination
AMI1 4 8 54.1 85.6
AMI2 4 8 -6.0 31.3
CMU1 4 3 75.2 77.1
CMU2 4 3 77.4 38.0
ICSI1 7 6 84.6 70.8
ICSI2 9 6 50.1 49.9
NIST1 10 7 -54.3 -56.9
NIST2 4 7 0.0 31.2
VT1 5 2 8.3 8.3
VT2 5 2 25.9 25.9
| Mean RRSE(%) 31.5 36.1
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Conclusions

e A speaker diarization method was presented that uses:
o Spatial features in the form of TDOAs
o Features modelled to include linear constraints to increase
robustness
e The evaluation of the proposed method was carried out on a
distant multi-microphone database achieving 36.1% RRSE
with respect to DiarTK

e Further improvements can be gained when the number of
speakers is known a priori (RRSE of 51.9%)
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