Robust Statistical Processing of TDOA Estimates for Distant Speaker Diarization

- Pablo Peso Parada¹ Nuance Communications Toon van Waterschoot - KU Leuven

 - Dushyant Sharma Nuance Communications
 - Patrick A. Naylor Imperial College London

Bonn, Germany LISTEN Project Workshop

July, 2018

¹ now with Cirrus Logic

Introduction

- Speaker diarization \Rightarrow segment audio into homogeneous sections with only one active speaker
 - "who spoke when?"

Applications of diarization

- Annotation of meeting transcripts with speaker labels
 - Attorney meetings, corporate/business meetings
- Improve performance of Automatic Speech Recognition (ASR) systems by allowing effective speaker acoustic model adaptation

Speaker diarization approaches

Distant speech diarization

- Can we use signal characteristics of the voice?
- Can we use the position of the sound source?
 - $\circ\;$ both are affected by noise, reverberation and non-speech

Two main approaches

- Single-microphone approaches are usually based on spectral differences
- Multi-microphone approaches include spatial information

Clustering

- either start with many clusters which are then merged successively until a stopping criteria is reached
- or start with only one cluster and split into new clusters until a stopping criteria is reached

Multichannel approaches

Diarization can exploit spatial information in the multichannel case either by

- estimating TDOAs time delay of the same signal at two different microphones, or
- estimating DOAs by maximizing e.g. steered response power

TDOA Estimation

$$G_{PHAT}(f) = \frac{Y_1(f) \cdot Y_2^*(f)}{|Y_1(f) \cdot Y_2^*(f)|}$$

 $Y_{1,2}(f)$ are the Fourier transforms of input signals. TDOA at frame l is found from

$$\tau_l = \operatorname*{argmax}_{\tau} R_{PHAT}(\tau)$$

where $R_{PHAT}(\tau)$ is the inverse Fourier transform of $G_{PHAT}(f)$

Problem Addressed

TDOA estimation performance for distance speech diarization is degraded by

- reverberation
- noise
- VAD errors
- overlapping talkers
- non-speech (e.g. door closing)

Aim to build statistical models of the source TDOAs robust to erroneous data

Proposed method

TDOA computation

- N_{mic} microphones: $J = 0.5 \cdot N_{mic} \cdot (N_{mic} 1)$ TDOA streams
- The TDOA for frame l and stream j is denoted au_l^j

o frames of 500 ms with 87.5% overlap

- A TDOA stream $\pmb{\tau}^j$ is created by concatenating all per-frame TDOAs τ_l^j

Speaker modeling

Speaker modeling

• Gaussian Mixture Model (GMM) for each mixture i, stream j

$$\boldsymbol{\theta}_i^j = (\lambda_i^j, \mu_i^j, \sigma_i^j)$$

- N_{spk} + 1 mixtures are considered
 - $\circ~N_{spk}$ mixtures to model the speakers' TDOAs
 - An additional mixture $oldsymbol{ heta}_B^j$ to model the noisy estimates

Problem

The Expectation Maximization (EM) can be used to obtain θ , however in common applications, τ^{j} can be inaccurate due to reverberation, noise, non-speech acoustic events

Proposed solution

Linear constraints on the mean and the standard deviation in the EM algorithm are included to estimate θ robustly to these erroneous TDOA estimates

Speaker modelling - Constraints on the mean

- Linear constraints on the distribution means:
 - The mean of the noise mixture, μ_B , is **independent** of the speakers' means (defined with matrix \mathcal{M})
 - The speakers' means are separated by a minimum distance to avoid them being determined unreasonably close to each other (defined with vector C)

$$\boldsymbol{\mu} = \boldsymbol{\mathcal{M}}\boldsymbol{\beta} + \boldsymbol{C} \Rightarrow \begin{bmatrix} \mu_B \\ \mu_1 \\ \mu_2 \\ \dots \\ \mu_{N_{spk}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ \dots & \dots \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ C_2 \\ \dots \\ C_{N_{spk}} \end{bmatrix}$$

Speaker modeling - Constraints on the standard deviation

- Linear constraints on the standard deviation:
 - The variance of the noise mixture is **greater** than the variance of the speakers' mixtures (defined with matrix \mathcal{G})
 - Variance of all speakers TDOAs (e.g. due to head movements) assumed to be similar \Rightarrow the standard deviation of every speakers' mixture is the same (defined with matrix \mathcal{G})

$$\boldsymbol{\iota} = \boldsymbol{\mathcal{G}} \boldsymbol{\Upsilon} \Rightarrow \begin{bmatrix} 1/\sigma_B \\ 1/\sigma_1 \\ \dots \\ 1/\sigma_{N_{spk}} \end{bmatrix} = \begin{bmatrix} \iota_B \\ \iota_1 \\ \dots \\ \iota_{N_{spk}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ \dots & \dots \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \Upsilon_1 \\ \Upsilon_2 \end{bmatrix}$$

- Additionally, variance upper and lower bounds (1.25 ms and 0.03125 ms respectively) are applied to avoid unlikely values
- Parameter estimation is performed using Expectation Constrained Maximization and Minorization-Maximization²

 $^{^2}$ Didier Chauveau, David Hunter. "ECM and MM algorithms for normal mixtures with constrained parameters", 2013. Available Online: https://hal.archives-ouvertes.fr/hal-00625285v2 $_{11/18}$

Decoding

Decoding

• The aim of the decoding block is to find, for each frame l, the speaker index i that maximizes the posterior probability of the speaker model $\boldsymbol{\theta}_i^j$ given the TDOA sample τ_l^j as $\arg\max_i P(\boldsymbol{\theta}_i^j|\tau_l^j)$, where,

$$P(\boldsymbol{\theta}_{i}^{j}|\boldsymbol{\tau}_{l}^{j}) = \frac{P(\boldsymbol{\tau}_{l}^{j}|\boldsymbol{\theta}_{i}^{j}) \cdot P(\boldsymbol{\theta}_{i}^{j})}{\sum_{e=1}^{N_{spk}} P(\boldsymbol{\tau}_{l}^{j}|\boldsymbol{\theta}_{e}^{j}) \cdot P(\boldsymbol{\theta}_{e}^{j})}$$

Decoding - Approaches

 Stream selection approach selects the optimal TDOA stream to employ for decoding based on the Bayesian Information Criterion (BIC) by maximizing

BIC
$$(\boldsymbol{\theta}^{j}, \boldsymbol{\tau}^{j}) = -2 \log \mathcal{L}(\boldsymbol{\theta}^{j} | \boldsymbol{\tau}^{j}) + N_{fp} \cdot \log(N_{TDOA})$$

where:

- $\circ \ \mathcal{L}(m{ heta}^j|m{ au}^j)$ is the likelihood of the model $m{ heta}^j$ given the data $m{ au}^j$
- $\circ~N_{fp}$ is the number of free parameters to be estimated in ${m heta}$
- 2. **Stream combination** approach computes the average of the probabilities over all *J* streams and selects *i* as

$$\operatorname*{argmax}_{i} \frac{1}{J} \sum_{j=1}^{J} P(\boldsymbol{\theta}_{i}^{j} | \tau_{l}^{j}), \text{ where } i = \{1, \cdots, N_{spk}\}$$

Decoding - HMM

- A Hidden Markov Model (HMM) is introduced to avoid very unlikely short utterances
- Each state of the HMM represents one speaker and all the states are interconnected
- Transition probabilities for speakers q and r are chosen as

$$1/(1 - a_{qq}) =$$
 average duration in frames of speaker q
 $a_{qr} = (1 - a_{qq})/N_{spk} - 1)$

- Observation probabilities are set to $P(\theta_i | \tau_l)$ for speaker i at frame l
- Viterbi algorithm is applied to extract the speaker label estimate at frame *l*

Evaluation

- Evaluated on distant multi-microphone partition of NIST RT-05
- The baseline used to compare the performance is DiarTK³
 - Open source toolkit where the clusters are merged depending on a mutual information loss
 - $\circ\,$ It was given TDOA streams from all microphone pairs au
- In both systems N_{spk} is set to 10
- The scoring is restricted to speech active regions
 - The relative reduction of the speaker error (RRSE) time is used

$$\mathsf{RRSE} = \frac{SE_{baseline} - SE_{proposed}}{SE_{baseline}} \cdot 100(\%)$$

³D. Vijayasenan, F. Valente, and H. Bourlard (2011). "An Information Theoretic Combination of MFCC and TDOA Features for Speaker Diarization". In: *IEEE Trans. Audio, Speech, Lang. Process.* 19.2, pp. 431–438.

Results

• Summary of the performance in terms of RRSE for the two proposed approaches

Meeting	N_{spk}	N_{mic}	Stream	Stream
			Selection	Combination
AMI1	4	8	54.1	85.6
AMI2	4	8	-6.0	31.3
CMU1	4	3	75.2	77.1
CMU2	4	3	77.4	38.0
ICSI1	7	6	84.6	70.8
ICSI2	9	6	50.1	49.9
NIST1	10	7	-54.3	-56.9
NIST2	4	7	0.0	31.2
VT1	5	2	8.3	8.3
VT2	5	2	25.9	25.9
Mean RRSE(%)			31.5	36.1

Conclusions

- A speaker diarization method was presented that uses:
 - Spatial features in the form of TDOAs
 - Features modelled to include **linear constraints** to increase robustness
- The evaluation of the proposed method was carried out on a distant multi-microphone database achieving 36.1% RRSE with respect to DiarTK
- Further improvements can be gained when the number of speakers is known a priori (RRSE of 51.9%)