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Introduction

• Speaker diarization ⇒ segment audio into homogeneous
sections with only one active speaker

◦ “who spoke when?”
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Applications of diarization

• Annotation of meeting
transcripts with speaker
labels

◦ Attorney meetings,
corporate/business
meetings

• Improve performance of
Automatic Speech
Recognition (ASR) systems
by allowing effective
speaker acoustic model
adaptation
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Speaker diarization approaches

Distant speech diarization

• Can we use signal characteristics of the voice?

• Can we use the position of the sound source?

◦ both are affected by noise, reverberation and non-speech

Two main approaches

• Single-microphone approaches are usually based on spectral
differences

• Multi-microphone approaches include spatial information

Clustering

• either start with many clusters which are then merged
successively until a stopping criteria is reached

• or start with only one cluster and split into new clusters until
a stopping criteria is reached
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Multichannel approaches

Diarization can exploit spatial information in the multichannel case
either by

• estimating TDOAs - time delay of the same signal at two
different microphones, or

• estimating DOAs by maximizing e.g. steered response power

TDOA Estimation

GPHAT (f) =
Y1(f) · Y ∗

2 (f)

|Y1(f) · Y ∗
2 (f)|

Y1,2(f) are the Fourier transforms of input signals.
TDOA at frame l is found from

τl = argmax
τ

RPHAT (τ)

where RPHAT (τ) is the inverse Fourier transform of GPHAT (f)
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Problem Addressed

TDOA estimation performance for distance speech diarization is
degraded by

• reverberation

• noise

• VAD errors

• overlapping talkers

• non-speech (e.g. door closing)

Aim to build statistical models of the source TDOAs robust to
erroneous data



7/18

Proposed method
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• Nmic microphones: J = 0.5 ·Nmic · (Nmic− 1) TDOA streams

• The TDOA for frame l and stream j is denoted τ jl
◦ frames of 500 ms with 87.5% overlap

• A TDOA stream τ j is created by concatenating all per-frame
TDOAs τ jl
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Speaker modeling
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• Gaussian Mixture Model (GMM) for each mixture i, stream j

θji = (λji , µ
j
i , σ

j
i )

• Nspk + 1 mixtures are considered
◦ Nspk mixtures to model the speakers’ TDOAs

◦ An additional mixture θjB to model the noisy estimates

Problem

The Expectation Maximization (EM) can be used to obtain θ,
however in common applications, τ j can be inaccurate due to
reverberation, noise, non-speech acoustic events

Proposed solution

Linear constraints on the mean and the standard deviation in the
Expectation-Maximization (EM) algorithm are included to estimate
θ robustly to these erroneous TDOA estimates
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Speaker modelling - Constraints on the mean

• Linear constraints on the distribution means:

◦ The mean of the noise mixture, µB , is independent of the
speakers’ means (defined with matrix M)

◦ The speakers’ means are separated by a minimum distance to
avoid them being determined unreasonably close to each other
(defined with vector C)

µ = Mβ+C ⇒


µB
µ1

µ2

...
µNspk

 =


1 0
0 1
0 1
... ...
0 1

·
[
β1
β2

]
+


0
0
C2

...
CNspk


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Speaker modeling - Constraints on the standard deviation

• Linear constraints on the standard deviation:

◦ The variance of the noise mixture is greater than the variance
of the speakers’ mixtures (defined with matrix G)

◦ Variance of all speakers TDOAs (e.g. due to head movements)
assumed to be similar ⇒ the standard deviation of every
speakers’ mixture is the same (defined with matrix G)

ι = GΥ⇒


1/σB
1/σ1
...

1/σNspk

 =


ιB
ι1
...

ιNspk

 =


1 0
1 1
... ...
1 1

·[ Υ1

Υ2

]

◦ Additionally, variance upper and lower bounds (1.25 ms and
0.03125 ms respectively) are applied to avoid unlikely values

• Parameter estimation is performed using Expectation
Constrained Maximization and Minorization-Maximization2

2
Didier Chauveau, David Hunter. “ECM and MM algorithms for normal mixtures with

constrained parameters”, 2013. Available Online: https://hal.archives-ouvertes.fr/hal-00625285v2
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Alignment between streams
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• Alignment to ensure that the Nspk speaker indexes represent
the same speaker across the different J streams for frames l.
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Decoding
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• The aim of the decoding block is to find, for each frame l, the
speaker index i that maximizes the posterior probability of
the speaker model θji given the TDOA sample τ jl as

arg max
i

P (θji |τ
j
l ), where,

P (θji |τ
j
l ) =

P (τ jl |θ
j
i ) · P (θji )∑Nspk

e=1 P (τ jl |θje) · P (θje)
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Decoding - Approaches

1. Stream selection approach selects the optimal TDOA stream
to employ for decoding based on the Bayesian Information
Criterion (BIC) by maximizing

BIC(θj , τ j) = −2 log L(θj |τ j) +Nfp · log(NTDOA)

where:

◦ L(θj |τ j) is the likelihood of the model θj given the data τ j

◦ Nfp is the number of free parameters to be estimated in θ

2. Stream combination approach computes the average of the
probabilities over all J streams and selects i as

argmax
i

1

J

J∑
j=1

P (θji |τ
j
l ), where i = {1, · · · , Nspk}
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Decoding - HMM

• A Hidden Markov Model (HMM) is introduced to avoid
very unlikely short utterances

• Each state of the HMM represents one speaker and all the
states are interconnected

• Transition probabilities for speakers q and r are chosen as

1/(1− aqq) = average duration in frames of speaker q

aqr = (1− aqq)/Nspk − 1)

• Observation probabilities are set to P (θi|τl) for speaker i at
frame l

• Viterbi algorithm is applied to extract the speaker label
estimate at frame l
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Evaluation

• Evaluated on distant multi-microphone partition of NIST
RT-05

• The baseline used to compare the performance is DiarTK3

◦ Open source toolkit where the clusters are merged depending
on a mutual information loss

◦ It was given TDOA streams from all microphone pairs τ

• In both systems Nspk is set to 10

• The scoring is restricted to speech active regions
◦ The relative reduction of the speaker error (RRSE) time is used

RRSE =
SEbaseline − SEproposed

SEbaseline
· 100(%)

3D. Vijayasenan, F. Valente, and H. Bourlard (2011). “An Information
Theoretic Combination of MFCC and TDOA Features for Speaker Diarization”.
In: IEEE Trans. Audio, Speech, Lang. Process. 19.2, pp. 431–438.
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Results

• Summary of the performance in terms of RRSE for the two
proposed approaches

Meeting Nspk Nmic
Stream
Selection

Stream
Combination

AMI1 4 8 54.1 85.6

AMI2 4 8 -6.0 31.3

CMU1 4 3 75.2 77.1

CMU2 4 3 77.4 38.0

ICSI1 7 6 84.6 70.8

ICSI2 9 6 50.1 49.9

NIST1 10 7 -54.3 -56.9

NIST2 4 7 0.0 31.2

VT1 5 2 8.3 8.3

VT2 5 2 25.9 25.9

Mean RRSE(%) 31.5 36.1

A remote speaker is present in this meeting
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Conclusions

• A speaker diarization method was presented that uses:

◦ Spatial features in the form of TDOAs

◦ Features modelled to include linear constraints to increase
robustness

• The evaluation of the proposed method was carried out on a
distant multi-microphone database achieving 36.1% RRSE
with respect to DiarTK

• Further improvements can be gained when the number of
speakers is known a priori (RRSE of 51.9%)
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