
Lehrstuhl für Informatik VI 27 April 2009
Rheinisch–Westfälische Technische Hochschule Aachen D. Vilar
Prof. Dr.–Ing. H. Ney

1. Exercise Sheet Statistical Methods in Natural Language Processing

The solutions to the problems may be submitted until Monday, 4 May 2009, either in the secretariate
of the Lehrstuhl für Informatik VI or at the latest before the exercise lesson on the same day. Sufficient
condition for obtaining the Leistungsnachweis (Schein) “Statistical Methods in Natural Language
Processing” is the succesful solution of 50% of the problems and the presentation of the solution of at
least one problem in the exercise lessons.
The solutions to the problems can be submitted in groups of up to two students.
For programming exercises:

• The implementation has to be done in C/C++, but you can use additional standard Unix tools
(tr, sed, awk...) for the preprocessing.

• The implementation must be sent to vilar@informatik.rwth-aachen.de as a .tgz or a .zip
compressed directory. It must include a Makefile and must compile on Linux using simply the
make command. Please include the string [NLP] in the subject.

• Include in your solution sheet a short description of the main data structures and algorithms used.

1. [1 Point] Show that the following definitions of stochastic independence are equivalent:

∀a, b p(a|b) = p(a) or p(b|a) = p(b) or p(a, b) = p(a)p(b)

2. [2 Points] Suppose we wish to calculate p(h|e1, e2), and we know following quantities:

(i) p(e1, e2), p(h), p(e1|h), p(e2|h)

(ii) p(e1, e2), p(h), p(e1, e2|h)

(iii) p(h), p(e1|h), p(e2|h)

Which of these sets of quantities are sufficient for the calculation. . .

a) . . . if no additional independence information is given?

b) . . . if we know that p(e1|h, e2) = p(e1|h)?

3. [3 Points] Let X and Y be two independent random variables with Poisson distributions with
parameters λX and λY . Show that the sum X+Y is Poisson distributed with parameter λX +λY .

(Reminder: Poisson distribution with parameter λ: pλ(x) =
e−λλx

x!
for x ∈ IN0)

4. [3 Points] Implement a dictionary, i.e. a data structure for indexing words. The reverse access
direction should also be included, i.e. given a word it is possible to get its index, and given an
index the corresponding word can also be retrieved.

Use this data structure to implement a program which reads a text, selects the n most frequent
words, and writes the text again with the other words substituted with the special <UNK> token
(for “unknown”). Do this in an efficient way, especially:

• Read the text from disk only once.

• Do not store the text as words, use the dictionary.

1/2



Do this in a modular way, so you can reuse your implementation for future problems. In particular
the dictionary and the routines for reading texts and splitting it into words will be used in further
exercises.

You can try it on the text “Alice’s adventures in Wonderland” available from our website. Do not
take case information into account and treat punctuation marks (‘’_-,;:!?."()[]*) as separate
words. (Hint: This preprocessing is best done as a separate step using scripts.)

An example Makefile is shown in the appendix. You can use this example as a template for your
own implementation.

Appendix
Makefile

1 # Sample Makefile for the first exercise of the course "Statistical

2 # Methods in Natural Language Processing"

3 #

4 # Author:

5 # David Vilar, Lehrstuhl für Informatik 6

6

7 # Compiler binary

8 CXX=g++
9 # Compiler options

10 CXXFLAGS=-Wall -O2
11

12 # The first target will be the default when make is called without arguments

13 all: exercise01.4
14

15 exercise01.4: dictionary.o exercise01.4.cc
16 dictionary.o: dictionary.cc dictionary.hh
17

18 # These are only for conveninience and are not strictly necessary

19 .PHONY: clean veryclean
20 clean:
21 7→ rm -f *.o
22

23 veryclean: clean
24 7→ rm -f *~

2/2


