
Morgan   Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editors: Ronald J. Brachman, Yahoo! Research
William W. Cohen, Carnegie Mellon University
Peter Stone, University of Texas at Austin

CM& Morgan   Claypool Publishers&SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

Ronald J. Brachman, William W. Cohen, and Peter Stone, Series Editors

ISBN: 978-1-60845-969-8

9 781608 459698

90000

Series ISSN: 1939-4608 GEFFNER • BONET 
A CONCISE INTRODUCTION TO M

ODELS AND M
ETHODS FOR AUTOM

ATED PLANNING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

A Concise Introduction to Models and
Methods for Automated Planning
Hector Geffner, ICREA and Universitat Pompeu Fabra, Barcelona, Spain
Blai Bonet, Universidad Simón Bolívar, Caracas, Venezuela

Planning is the model-based approach to autonomous behavior where the agent behavior is derived
automatically from a model of the actions, sensors, and goals. The main challenges in planning are
computational as all models, whether featuring uncertainty and feedback or not, are intractable in
the worst case when represented in compact form. In this book, we look at a variety of models used
in AI planning, and at the methods that have been developed for solving them. The goal is to provide
a modern and coherent view of planning that is precise, concise, and mostly self-contained, without
being shallow. For this, we make no attempt at covering the whole variety of planning approaches,
ideas, and applications, and focus on the essentials. The target audience of the book are students and
researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive
science perspective.

A Concise Introduction
to Models and Methods
for Automated Planning

Hector Geffner
Blai Bonet

Morgan   Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editors: Ronald J. Brachman, Yahoo! Research
William W. Cohen, Carnegie Mellon University
Peter Stone, University of Texas at Austin

CM& Morgan   Claypool Publishers&SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

Ronald J. Brachman, William W. Cohen, and Peter Stone, Series Editors

ISBN: 978-1-60845-969-8

9 781608 459698

90000

Series ISSN: 1939-4608 GEFFNER • BONET 
A CONCISE INTRODUCTION TO M

ODELS AND M
ETHODS FOR AUTOM

ATED PLANNING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

A Concise Introduction to Models and
Methods for Automated Planning
Hector Geffner, ICREA and Universitat Pompeu Fabra, Barcelona, Spain
Blai Bonet, Universidad Simón Bolívar, Caracas, Venezuela

Planning is the model-based approach to autonomous behavior where the agent behavior is derived
automatically from a model of the actions, sensors, and goals. The main challenges in planning are
computational as all models, whether featuring uncertainty and feedback or not, are intractable in
the worst case when represented in compact form. In this book, we look at a variety of models used
in AI planning, and at the methods that have been developed for solving them. The goal is to provide
a modern and coherent view of planning that is precise, concise, and mostly self-contained, without
being shallow. For this, we make no attempt at covering the whole variety of planning approaches,
ideas, and applications, and focus on the essentials. The target audience of the book are students and
researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive
science perspective.

A Concise Introduction
to Models and Methods
for Automated Planning

Hector Geffner
Blai Bonet

Morgan   Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editors: Ronald J. Brachman, Yahoo! Research
William W. Cohen, Carnegie Mellon University
Peter Stone, University of Texas at Austin

CM& Morgan   Claypool Publishers&SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

SYNTHESIS LECTURES ON ARTIF ICIAL
INTELLIGENCE AND MACHINE LEARNING

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

Ronald J. Brachman, William W. Cohen, and Peter Stone, Series Editors

ISBN: 978-1-60845-969-8

9 781608 459698

90000

Series ISSN: 1939-4608 GEFFNER • BONET 
A CONCISE INTRODUCTION TO M

ODELS AND M
ETHODS FOR AUTOM

ATED PLANNING
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

A Concise Introduction to Models and
Methods for Automated Planning
Hector Geffner, ICREA and Universitat Pompeu Fabra, Barcelona, Spain
Blai Bonet, Universidad Simón Bolívar, Caracas, Venezuela

Planning is the model-based approach to autonomous behavior where the agent behavior is derived
automatically from a model of the actions, sensors, and goals. The main challenges in planning are
computational as all models, whether featuring uncertainty and feedback or not, are intractable in
the worst case when represented in compact form. In this book, we look at a variety of models used
in AI planning, and at the methods that have been developed for solving them. The goal is to provide
a modern and coherent view of planning that is precise, concise, and mostly self-contained, without
being shallow. For this, we make no attempt at covering the whole variety of planning approaches,
ideas, and applications, and focus on the essentials. The target audience of the book are students and
researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive
science perspective.

A Concise Introduction
to Models and Methods
for Automated Planning

Hector Geffner
Blai Bonet





A Concise Introduction to
Models and Methods for
Automated Planning





Synthesis Lectures on Artificial
Intelligence and Machine

Learning

Editor
Ronald J. Brachman, Yahoo! Labs
William W. Cohen,CarnegieMellon University
Peter Stone,University of Texas at Austin

A Concise Introduction to Models and Methods for Automated Planning
Hector Geffner and Blai Bonet
2013

Essential Principles for Autonomous Robotics
Henry Hexmoor
2013

Case-Based Reasoning: A Concise Introduction
Beatriz López
2013

Answer Set Solving in Practice
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
2012

Planning with Markov Decision Processes: An AI Perspective
Mausam and Andrey Kolobov
2012

Active Learning
Burr Settles
2012

Computational Aspects of Cooperative Game eory
Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge
2011



iv

Representations and Techniques for 3D Object Recognition and Scene Interpretation
Derek Hoiem and Silvio Savarese
2011

A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice
Francesca Rossi, Kristen Brent Venable, and Toby Walsh
2011

Human Computation
Edith Law and Luis von Ahn
2011

Trading Agents
Michael P. Wellman
2011

Visual Object Recognition
Kristen Grauman and Bastian Leibe
2011

Learning with Support Vector Machines
Colin Campbell and Yiming Ying
2011

Algorithms for Reinforcement Learning
Csaba Szepesvári
2010

Data Integration: e Relational Logic Approach
Michael Genesereth
2010

Markov Logic: An Interface Layer for Artificial Intelligence
Pedro Domingos and Daniel Lowd
2009

Introduction to Semi-Supervised Learning
XiaojinZhu and Andrew B.Goldberg
2009

Action Programming Languages
Michael ielscher
2008

Representation Discovery using Harmonic Analysis
Sridhar Mahadevan
2008



v

Essentials of Game eory: A Concise Multidisciplinary Introduction
Kevin Leyton-Brown and Yoav Shoham
2008

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence
Nikos Vlassis
2007

Intelligent Autonomous Robotics: A Robot Soccer Case Study
Peter Stone
2007



Copyright © 2013 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

A Concise Introduction to Models and Methods for Automated Planning
Hector Geffner and Blai Bonet
www.morganclaypool.com

ISBN: 9781608459698 paperback
ISBN: 9781608459704 ebook

DOI 10.2200/S00513ED1V01Y201306AIM022

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE ANDMACHINE LEARNING

Lecture #22
Series Editors: Ronald J. Brachman, Yahoo! Labs

William W. Cohen, Carnegie Mellon University
Peter Stone, University of Texas at Austin

Series ISSN
Synthesis Lectures on Artificial Intelligence and Machine Learning
Print 1939-4608 Electronic 1939-4616

www.morganclaypool.com


A Concise Introduction to
Models and Methods for
Automated Planning

Hector Geffner
ICREA and Universitat Pompeu Fabra, Barcelona, Spain

Blai Bonet
Universidad Simón Bolívar, Caracas, Venezuela

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE ANDMACHINE
LEARNING #22

C
M
&

cLaypoolMorgan publishers&



ABSTRACT
Planning is the model-based approach to autonomous behavior where the agent behavior is derived
automatically from a model of the actions, sensors, and goals. e main challenges in planning are
computational as all models, whether featuring uncertainty and feedback or not, are intractable in the
worst case when represented in compact form. In this book, we look at a variety of models used in
AI planning, and at the methods that have been developed for solving them. e goal is to provide
a modern and coherent view of planning that is precise, concise, and mostly self-contained, without
being shallow. For this, we make no attempt at covering the whole variety of planning approaches,
ideas, and applications, and focus on the essentials. e target audience of the book are students and
researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive
science perspective.

KEYWORDS
planning, autonomous behavior, model-based control, plan generation and recognition,
MDP and POMDP planning, planning with incomplete information and sensing, action
selection, belief tracking, domain-independent problem solving



ix

Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Planning and Autonomous Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Autonomous Behavior: Hardwired, Learned, and Model-based . . . . . . . . . . . . . . . . . 1
1.2 Planning Models and Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Generality, Complexity, and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Generalized Planning: Plans vs. General Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Classical Planning: Full Information and Deterministic Actions . . . . . . . . . . . . 15
2.1 Classical Planning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Classical Planning as Path Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Search Algorithms: Blind and Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Online Search: inking and Acting Interleaved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Where do Heuristics come from? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Languages for Classical Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Domain-Independent Heuristics and Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Heuristic Search Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 Decomposition and Goal Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Structure, Width, and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Classical Planning: Variations and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Relaxed Plans and Helpful Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Multi-Queue Best-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Implicit Subgoals: Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 State-of-the-Art Classical Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Optimal Planning and Admissible Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Branching Schemes and Problem Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Regression Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Planning as SAT and Constraint Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Partial-Order Causal Link Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.10 Cost, Metric, and Temporal Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.11 Hierarchical Task Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



x

4 Beyond Classical Planning: Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Soft Goals and Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Incomplete Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Plan and Goal Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Finite-State Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Temporally Extended Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Planning with Sensing: Logical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Model and Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Solutions and Solution Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Offline Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Online Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Belief Tracking: Width and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Strong vs. Strong Cyclic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 MDP Planning: Stochastic Actions and Full Feedback . . . . . . . . . . . . . . . . . . . . 79
6.1 Goal, Shortest-Path, and Discounted Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Dynamic Programming Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Heuristic Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Online MDP Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Reinforcement Learning, Model-based RL, and Planning . . . . . . . . . . . . . . . . . . . . 95

7 POMDP Planning: Stochastic Actions and Partial Feedback . . . . . . . . . . . . . . . 97
7.1 Goal, Shortest-Path, and Discounted POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Exact Offline Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Approximate and Online Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Belief Tracking in POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Other MDP and POMDP Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.1 Challenges and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Planning, Scalability, and Cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Author’s Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



xi

Preface
Planning is a central area in Artificial Intelligence concerned with the automated generation of behav-
ior for achieving goals. Planning is also one of the oldest areas in AI with the General Problem Solver
being the first automated planner and one of the first AI programs [Newell et al., 1959]. As other ar-
eas in AI, planning has changed a great deal in recent years, becoming more rigorous, more empirical,
and more diverse. Planners are currently seen as automated solvers for precise classes of mathematical
models represented in compact form, that range from those where the state of the environment is fully
known and actions have deterministic effects, to those where the state of the environment is partially
observable and actions have stochastic effects. In all cases, the derivation of the agent behavior from the
model is computational intractable, and hence a central challenge in planning is scalability. Planning
methods must exploit the structure of the given problems, and their performance is assessed empiri-
cally, often in the context of planning competitions that in recent years have played an important role
in the area.

In this book, we look at a variety of models used in AI planning and at the methods that have
been developed for solving them. e goal is to provide a modern and coherent view of planning that is
precise, concise, and mostly self-contained, without being shallow. For this, we focus on the essentials
and make no attempt at covering the whole variety of planning approaches, ideas, and applications.
Moreover, our view of the essentials is not neutral, having chosen to emphasize the ideas that we find
most basic in a model-based setting. A more comprehensive treatment of planning, circa 2004, can be
found in the planning textbook by Ghallab et al. [2004]. Planning is also covered at length in the AI
textbook by Russell and Norvig [2009].

e book is organized into eight chapters. Chapter 1 is about planning as the model-based ap-
proach to autonomous behavior in contrast to appproaches where behaviors are learned, evolved, or
specified by hand. Chapters 2 and 3 are about the most basic model in planning, classical planning,
where a goal must be reached from a fully known initial state by applying actions with deterministic
effects. Classical planners can currently find solutions to problems over huge state spaces, yet many
problems do not comply with these restrictions. e rest of the book addresses such problems in two
ways: one is by automatically translating non-classical problems into classical ones; the other is by
defining native planners for richer models. Chapter 4 focuses thus on reductions for dealing with soft
goals, temporally extended goals, incomplete information, and a slightly different task: goal recogni-
tion. Chapter 5 is about planning with incomplete information and partial observability in a logical
setting where uncertainty is represented by sets of states. Chapters 6 and 7 cover probabilistic planning
where actions have stochastic effects, and the state is either fully or partially observable. In all cases,
we distinguish between offline solution methods that derive the complete control offline, and online
solution methods that derive the control as needed, by interleaving planning and execution, thinking
and doing. Chapter 8 is about open problems.

We are grateful to many colleagues, co-authors, teachers, and students. Among our teachers,
we would like to mention Judea Pearl, who was the Ph.D. advisor of both of us at different times, and
always a role model as a person and as a scientist. Among our students, we thank in particular Hector



xii PREFACE

Palacios, Emil Keyder, Alex Albore, Miquel Ramírez, and Nir Lipovetzky, on whose work we have
drawn for this book. e book is based on tutorials and courses on planning that one of us (Hector)
has been giving over the last few years, more recently at the ICAPS Summer School (essaloniki,
2009; São Paulo, 2012; Perugia, 2013), the International Joint Conference on AI (IJCAI, Barcelona,
2011), La Sapienza, Università di Roma (2010), and the Universitat Pompeu Fabra (2012). We thank
the students for the feedback and our colleagues for the invitations and their hospitality. anks also
to Alan Fern who provided useful and encouraging feedback on a first draft of the book.

A book, even if it is a short one, is always a good excuse for remembering the loved ones.

A los chicos, caminante no hay camino, a Lito, la llama eterna, a Marina, mucho más que dos, a la
familia toda; a la memoria del viejo, la vieja, la bobe, y los compañeros tan queridos – Hector

A Iker y Natalia, por toda su ayuda y amor, a la familia toda, por su apoyo. A la memoria de Josefina
Gorgal Caamaño y la iaia Francisca Prat – Blai

Hector Geffner, Barcelona
Blai Bonet, Caracas
June 2013



1

C H A P T E R 1

Planning and Autonomous
Behavior

Planning is the model-based approach to autonomous behavior where the agent selects the action to
do next using a model of how actions and sensors work, what is the current situation, and what is the
goal to be achieved. In this chapter, we contrast programming, learning, and model-based approaches
to autonomous behavior, and present some of the models in planning that will be considered in more
detail in the following chapters. ese models are all general in the sense that they are not bound
to specific problems or domains. is generality is intimately tied to the notion of intelligence which
requires the ability to deal with new problems. e price for generality is computational: planning over
these models when represented in compact form is intractable in the worst case. A main challenge in
planning is thus the automated exploitation of problem structure for scaling up to large and meaningful
instances that cannot be handled by brute force methods.

1.1 AUTONOMOUS BEHAVIOR: HARDWIRED, LEARNED,
AND MODEL-BASED

At the center of the problem of intelligent behavior is the problem of selecting the action to do next.
In Artificial Intelligence (AI), three different approaches have been used to address this problem. In
the programming-based approach, the controller that prescribes the action to do next is given by the
programmer, usually in a suitable high-level language. In this approach, the problem is solved by the
programmer in his head, and the solution is expressed as a program or as a collection of rules or
behaviors. In the learning-based approach, the controller is not given by a programmer but is induced
from experience as in reinforcement learning. Finally, in themodel-based approach, the controller is not
learned from experience but is derived automatically from a model of the actions, sensors, and goals.
In all these approaches, the controller is the solution to the model.

e three approaches to the action selection problem are not orthogonal, and exhibit different
virtues and limitations. Programming agents by hand, puts all the burden on the programmer that
cannot anticipate all possible contingencies, and often results in systems that are brittle. Learning
methods have the greatest promise and potential, but their flexibility is often the result of learning a
model. Last, model-based methods require a model of the actions, sensors, and goals, and face the
computational problem of solving the model—a problem that is computationally intractable even for
the simplest models where information is complete and actions are deterministic.

e Wumpus game, shown in Figure 1.1 from the standard AI textbook [Russell and Norvig,
2009], is an example of a simple scenario where an agent must process information arriving from the
sensors to decide what to do at each step. e agent, initially at the lower left corner, must obtain the
gold while avoiding deadly pits and a killer wumpus. e locations of the gold, pits, and wumpus are



2 1. PLANNING AND AUTONOMOUS BEHAVIOR

PIT

PIT

PIT

Breeze

Breeze

Breeze

Breeze

Breeze

Breeze

Stench

Stench

Stench

Figure 1.1: Autonomous Behavior in the Wumpus World: What to do next?

not known to the agent, but each emits a signal that can be perceived by the agent when in the same
cell (gold) or in a contiguous cell (pits and wumpus). e agent control must specify the action to be
done by the agent as a function of the observations gathered. e three basic approaches for obtaining
such a controller are to write it by hand, to learn it from interactions with a Wumpus simulator, or to
derive it from a model representing the initial situation, the actions, the sensors, and the goals.

While planning is often defined as the branch of AI concerned with the “synthesis of plans of ac-
tion to achieve goals,” planning is best conceived as the model-based approach to action selection—a view
that defines more clearly the role of planning in intelligent autonomous systems. e distinction that
the philosopher Daniel Dennett makes between “Darwinian,” “Skinnerian,” and “Popperian” crea-
tures [Dennett, 1996], mirrors quite closely the distinction between hardwired (programmed) agents,
agents that learn, and agents that use models respectively. e contrast between the first and the lat-
ter corresponds also to the distinction made in AI between reactive and deliberative systems, as long
as deliberation is not reduced to logical reasoning. Indeed, as we will see, the inferences captured
by model-based methods that scale up are not logical but heuristic, and follow from relaxations and
approximations of the problem being solved.

PLANNING IS MODEL-BASED AUTONOMOUS BEHAVIOR
Model-based approaches to the action selection problem are made up of three parts: the models that
express the dynamics, feedback, and goals of the agent; the languages that express these models in
compact form; and the algorithms that use the representation of the models for generating the behavior.

A representation of the model for the Wumpus problem, for example, will feature variables for
the locations of the agent, the gold, the wumpus, the pits, and a boolean variable for whether the
agent is alive. e location variables can take 16 different values, corresponding with the cells in the
4 � 4 grid, except for the gold that can also be held by the agent and hence has 17 possible values.1
A state for the problem is a valuation over these seven variables. e number of possible states is thus
165 � 17 � 2, which is slightly more than 35 million. Initially, the agent is alive and knows its location
1If the number of pits and wumpus is not known a priori, an alternative representation would be needed where each cell in the
grid would contain a wumpus, a pit, or neither.



1.2. PLANNING MODELS AND LANGUAGES 3

but not the value of the pit and wumpus variables. e state of the system is thus not fully observable.
e agent gets partial knowledge about the hidden variables through each of its three sensors that relate
the true but hidden state of the world with observable tokens. e agent receives the observation token
“stench” in the states where the wumpus is in one of the (at most) four cells adjacent to the agent, the
token “breeze” in the states where a pit is adjacent to the agent, and the token “bright” when the gold
and the agent are in the same cell. e actions available to the agent are to move to an adjacent cell,
and to pick up the gold if known to be in the same cell. e actions change the state of the system in
the expected way, affecting the location of the agent or the location of the gold. Yet the agent dies if
it enters a cell with a wumpus or a pit, and a dead agent cannot execute any of the actions, and hence
cannot achieve the goal of getting the gold.

In this problem, an intelligent agent should notice first that there is no wumpus or pit in cells
.1; 2/ or .2; 1/ as there is no stench or breeze at the initial agent location .1; 1/. It is then safe to move
either up or right. If it moves up, it’ll sense a stench at .1; 2/ and conclude that the wumpus is at either
.1; 3/ or .2; 2/. Likewise, since it senses no breeze, it can conclude that neither of these cells contains
a pit. e only safe move is then to get back to .1; 1/ where it can move safely to .2; 1/. From the
sensed breeze, it can conclude that there is a pit at .3; 1/ or .2; 2/, or one pit at each, and from sensing
no stench, that there is no wumpus at either .3; 1/ or .2; 2/. At this point, it should conclude that cell
.2; 2/ is safe as it cannot contain either a wumpus or a pit. It should then move up to .2; 2/, from
which the process of visiting new cells that are safe is repeated until the gold is found.

Writing a program for solving any instance of the Wumpus domain, for any (solvable) initial
situation and grid size, is interesting enough. Yet, the task in planning is quite different. We want a
program that can take a representation of any problem exhibiting a certain mathematical structure, not
limited to theWumpus domain, and find a solution to it. A number of planningmodels will make these
mathematical structures explicit. Other problems that have a number of features in common with the
Wumpus domain include the familiar Battleship game or the popular PC game Minesweeper. ese
are all problems where a goal is to be achieved by acting and sensing in a world where the state of the
system, that may change or not, is partially observable.

While a program that has been designed to play the Wumpus can be deemed as intelligent, a
program that can play the Wumpus without having been designed specifically for it will be intelligent
in a much broader sense. e first contains the recipes for playing the Wumpus; the latter contains
“recipes” for playing an infinite collection of domains, known or unknown to the programmer, that
share a general mathematical structure. e formulation of these mathematical structures and the
general “recipes” for solving them is what planning is about.

1.2 PLANNING MODELS AND LANGUAGES
Awide range of models used in planning can be understood as variations of a basic state model featuring:

• a finite and discrete state space S ,

• a known initial state s0 2 S ,

• a non-empty set SG � S of goal states,

• actions A.s/ � A applicable in each state s 2 S ,



4 1. PLANNING AND AUTONOMOUS BEHAVIOR

• a deterministic state transition function f .a; s/ such that s0 D f .a; s/ stands for the state result-
ing of applying action a in s, a 2 A.s/, and

• positive action costs c.a; s/.

is is the model underlying classical planning where it is normally assumed that action costs
c.a; s/ do not depend on the state, and hence c.a; s/ D c.a/. A solution or plan in this model is
a sequence of applicable actions that map the initial state into a goal state. More precisely, a plan
� D a0; : : : ; an�1 must generate a state sequence s0; : : : ; sn such that ai 2 A.si /, siC1 D f .ai ; si /,
and sn 2 SG , for i D 0; : : : ; n � 1. e cost of the plan is the sum of the action costs c.ai ; si /, and a
plan is optimal if it has minimum cost over all plans.

Classical planners accept a compact description of models of this form in languages featuring
variables, where the states are the possible valuations of the variables. A classical plan � D a0; : : : ; an

represents an open-loop controller where the action to be done at time step i depends just on the step
index i . e solution of models that accommodate uncertainty and feedback, produce closed-loop con-
trollers where the action to be done at step i depends on the actions and observations collected up to
that point. ese models can be obtained by relaxing the assumptions in the model above displayed in
italics.

e model for partially observable planning, also called planning with sensing or contingent plan-
ning, is a variation of the classical model that features both uncertainty and feedback—namely, uncer-
tainty about the initial and next possible state, and partial information about the current state of the
system. Mathematically such a model can be expressed in terms of the following ingredients:

• a finite and discrete state space S ,

• a non-empty set S0 of possible initial states, S0 � S ,

• a non-empty set SG � S of goal states,

• a set of actions A.s/ � A applicable in each state s 2 S ,

• a non-deterministic state transition function F.a; s/ for s 2 S and a 2 A.s/, where F.a; s/ is
non-empty and s00 2 F.a; s/ stands for the possible successor states of state s after action a is
done, a 2 A.s/,

• a set of observation tokens O ,

• a sensor model O.s; a/ � O , where o 2 O.s; a/ means that token o may be observed in the
(possibly hidden) state s if a was the last action done, and

• positive action costs c.a; s/.

In themodel for theWumpus problem, the state space S is given by the set of possible valuations
over the problem variables, S0 is the set of states where the agent is initially alive and at location .1; 1/,
SG is the set of states where the agent is holding the gold, and A stands for the actions of moving
and picking up the gold, provided that the agent can’t leave the grid and can’t pick the gold if not
in the same cell. Likewise, the state transitions F.a; s/ associated with these actions is deterministic,
meaning that F.a; s/ contains a single state s0 so that jF.a; s/j D 1. e same is true for the sensor



1.2. PLANNING MODELS AND LANGUAGES 5

Planning Problem Planner Controller Environment

Figure 1.2: A planner takes a compact representation of a planning problem over a certain class of models (clas-
sical, conformant, contingent, MDP, POMDP) and automatically produces a controller. For fully and partially
observable models, the controller is closed-loop, meaning that the action selected depends on the observations
gathered. For non-observable models like classical and conformant planning, the controller is open-loop, meaning
that it is a fixed action sequence.

model O.s; a/, which does not depend on a but just on the hidden state s. Namely, O contains nine
observation tokens o, corresponding to the possible combinations of the three booleans stench, breeze,
and bright, so that if s is a state where the agent is next to a pit and a wumpus but not in the same cell
as the gold, then o 2 O.s; a/ iff o represents the combination where stench and breeze are true, and
bright is false. e action costs for the problem, c.a; s/, can be all assumed to be 1, and in addition,
no action can be done by the agent when he is not alive.

A partially observable planner is a program that accepts compact descriptions of instances of
the model above, like the one for the Wumpus, and automatically outputs the control (Figure 1.2). As
we will see, planners come in two forms: offline and online. In the first case, the behavior specifies the
agent response to each possible situation that may result; in the second case, the behavior just specifies
the action to be done in the current situation. ese types of control, unlike the control that results
in classical planning, are closed-loop: the actions selected usually depend on the observation tokens
received.

Offline solutions of partially observable problems are not fixed action sequences as in classical
planning, as observations need to be taken into account for selecting actions. Mathematically, thus,
these solutions are functions mapping the stream of past actions and observations into actions, or more
conveniently, functions mapping belief states into actions. e belief state that results after a given
stream of actions and observations represents the set of states that are deemed possible at that point,
and due to the Markovian state-transition dynamics, it summarizes all the information about the past
that is relevant for selecting the action to do next. Moreover, since the initial belief state b0 is given,
corresponding to the set of possible initial states S0, a solution function � , called usually the control
policy, does not need to be defined over all possible beliefs, but just over the beliefs that can be produced
from the actions determined by the policy � from the initial belief state b0 and the observations that
may result. Such partial policies � can be represented by a directed graph rooted at b0, where nodes
stand for belief states, edges stand for actions ai or observations oi , and the branches in the graph
from b0, stand for the stream of actions and observations a0; o0; a1; o1; : : :, called executions, that are
possible. e policy solves the problem when all these possible executions end up in belief states where
the goal is true.2

e models above are said to be logical as they only encode and keep track of what is possible or
not. In probabilistic models, on the other hand, each possibility is weighted by a probability measure.
A probabilistic version of the partially observable model above can be obtained by replacing the set of
possible initial states S0, the set of possible successor states F.a; s/, and the set of possible observation
tokensO.s; a/, by probability distributions: a prior P.s/ on the states s 2 S0 that are initially possible,

2We will make this all formal and precise in Chapter 5.



6 1. PLANNING AND AUTONOMOUS BEHAVIOR

transition probabilities Pa.s
0js/ for encoding the likelihood that s0 is the state that follows s after a,

and observation probabilities Pa.ojs/ for encoding the likelihood that o is the token that results in the
state s when a is the last action done.

e model that results from changing the sets S0, F.a; s/, andO.s; a/ in the partially observable
model, by the probability distributions P.s/, Pa.s

0js/, and Pa.ojs/, is known as a Partially Observable
Markov Decision Process or POMDP [Kaelbling et al., 1998]. e advantages of representing uncer-
tainty by probabilities rather than sets is that one can then talk about the expected cost of a solution
as opposed to the cost of the solution in the worst case. Indeed, there are many meaningful problems
that have infinite cost in the worst case but perfectly well-defined expected costs. ese include, for
example, the problem of preparing an omelette with an infinite collection of eggs that may be good
or bad with non-zero probabilities, but that can be picked up and sensed one at a time. Indeed, while
the scope of probabilistic models is larger than the scope of logical models, we will consider both, as
the latter are simpler, and the computational ideas are not all that different.

A fully observable model is a partially observable model where the state of the system is fully
observable, i.e., whereO D S andO.s; a/ D fsg. In the logical setting such models are known as Fully
Observable Non-Deterministicmodels, abbreviated FOND. In the probabilistic setting, they are known
as Fully Observable Markov Decision Processes or MDPs [Bertsekas, 1995].

Finally, an unobservable model is a partially observable model where no relevant information
about the state of the system is available. is can be expressed through a sensor model O containing
a single dummy token o that is “observed” in all states, i.e., O.s; a/ D O.s0; a/ D fog for all s, s0,
and a. In planning, such models are known as conformant, and they are defined exactly like partially
observable problems but with no sensor model. Since there are no (true) observations, the solution
form of conformant planning problems is like the solution form of classical planning problems: a fixed
action sequence. e difference between classical and conformant plans, however, is that the former
must achieve the goal for the given initial state and unique state-transitions, while the latter must
achieve the goal in spite of the uncertainty in the initial situation and dynamics, for any possible initial
state and any state transition that is possible. As we will see, conformant problems make up an interesting
stepping stone in the way from classical to partially observable planning.

In the book, we will consider each of these models in turn, some useful special cases, and some
variations. is variety of models is the result of several orthogonal dimensions: uncertainty in the
initial system state (fully known or not), uncertainty in the system dynamics (deterministic or not),
the type of feedback (full, partial or no state feedback), and whether uncertainty is represented by sets
of states or probability distributions.

1.3 GENERALITY, COMPLEXITY, AND SCALABILITY
Classical planning, the simplest form of planning where actions have deterministic effects and the
initial state is fully known, can be easily cast as a path-finding problem over a directed graph where
the nodes are the states, the initial node and target nodes are the initial and goal states, and a directed
edge between two nodes denotes the existence of an action that maps one state into the other. Classical
planning problems can thus be solved in theory by standard path-finding algorithms such as Dijkstra’s
that run in time that is polynomial in the number of nodes in the graph [Cormen et al., 2009, Dijkstra,
1959]. Yet in planning, this is not good enough as the nodes in the graph stand for the problem states,
whose number is exponential in the number of problem variables. If these variables have at least two



1.3. GENERALITY, COMPLEXITY, AND SCALABILITY 7

A

B C

A B C

A

B

C

A

CB

· · ·
· · ·

A B

C

A C

BA

B C

A

CB A

B

C A B

C

A B

C

A B CA

C

B

· · · · · · · · · · · · · · ·

Init

Goal

Figure 1.3: e graph corresponding to a simple planning problem involving three blocks with initial and goal
situations as shown. e actions allow to move a clear block on top of another clear block or to the table. e size
of the complete graph for this domain is exponential in the number of blocks. A plan for the problem is shown
by the path in red.

possible values, the number of nodes in the graph to search can be in the order of 2n, where n is the
number of variables. In particular, if the problem involves 30 variables, this means 1; 073; 741; 824
nodes, and if the problem involves 100 variables, it means more than 1030 nodes. In order to get
a concrete idea of what exponential growth means, if it takes one second to generate 107 nodes (a
realistic estimate given current technology), it would take more than 1023 seconds to generate 1030

nodes. is is however almost one million times the estimated age of the universe.3
A more vivid illustration of the complexity inherent to the planning problem can be obtained

by considering a well known domain in AI: the Blocks World. Figure 1.3 shows an instance of this
domain where blocks A, B, and C, initially arranged so that A is on B, and B and C are on the table,
must be rearranged so that B is on C, and C is on A. e actions allow to move a clear block (a block
with no block on top) on top of another clear block or on the table. e problem can be easily expressed
as a classical planning problem where the variables are the block locations: blocks can be on the table
or on top of another block. e figure shows the graph associated to the problem whose solution is a
path connecting the node representing the initial situation with a node representing a goal situation.
e number of states in a Blocks World problem with n blocks is exponential in n, as the states include
all the nŠ possible towers of n blocks plus additional combinations of lower towers. us, a planner
3e age of the universe is estimated at 13:7 � 109 years approximately. Visiting 2100 nodes at 107 nodes a second would
take in the order of 1015 years, as 2100=.107 � 60 � 60 � 24 � 365/ D 4:01969368 � 1015.



8 1. PLANNING AND AUTONOMOUS BEHAVIOR

able to solve arbitrary Blocks World instances should be able to search for paths over huge graphs. is
is a crisp computational challenge that is very different from writing a domain-specific Blocks World
solver—namely, a program for solving any instance of this specific domain. Such a program could
follow a domain-specific strategy, like placing all misplaced blocks on the table first, in order, from top
to bottom, then moving these blocks to their destination in order again, this time, from the bottom
up. is program will solve any instance of the Blocks World but will be completely useless in other
domains. e challenge in planning is to achieve both generality and scalability. at is, a classical
planner must accept a description of any problem in terms of a set of variables whose initial values are
known, a set of actions that change the values of these variables deterministically, and a set of goals
defined over these variables. e planner is domain-general or domain-independent in the sense that
it does not know what the variables, actions, and domain stand for, and for any such description it
must decide effectively which actions to do in order to achieve the goals.

For classical planning, as for the other planning models that we will consider, the general prob-
lem of coming up with a plan is NP-hard [Bylander, 1994, Littman et al., 1998]. In Computer Science,
an NP-hard problem (non-deterministic polynomial-time hard) is a problem that is at least as hard
as any NP-complete problem; these are problems that can be solved in polynomial time by a non-
deterministic Turing Machine but which are widely believed not to admit polynomial-time solutions
on deterministic machines [Sipser, 2006]. e complexity of planning and related models has been
used as evidence for contesting the possibility of general planning and reasoning abilities in humans
or machines [Tooby and Cosmides, 1992]. e complexity of planning, however, just implies that no
planner can efficiently solve every problem from every domain, not that a planner cannot solve an
infinite collection of problems from seen and unseen domains, and hence be useful to an acting agent.
is is indeed the way modern AI planners are empirically evaluated and ranked in the AI planning
competitions, where they are tried over domains that the planners” authors have never seen. us, far
from representing an insurmountable obstacle, the twin requirements of generality and scalability have
been addressed head on in AI planning research, and have resulted in simple but powerful computa-
tional principles that make domain-general planning feasible. e computational challenge aimed at
achieving both scalability and generality over a broad class of intractable models, has actually come
to characterize a lot of the research work in AI, that has increasingly focused on the development of
effective algorithms or solvers for a wide range of tasks and models (Figure 1.4); tasks and models that
include SAT and SAT-variants like Weighted-Max SAT and Weighted Model Counting, Bayesian
Networks, Constraint Satisfaction, Answer Set Programming, General Game Playing, and Classi-
cal, MDP, and POMDP Planning. is is all work driven by theory and experiments, with regularly
held competitions used to provide focus, to assess progress, and to sort out the ideas that work best
empirically [Geffner, 2013a].

1.4 EXAMPLES
We consider next a simple navigation scenario to illustrate how different types of planning problems
call for different planning models and different solution forms. e general scenario is shown in Fig-
ure 1.5 where the agent marked as A has to reach the goal marked as G. e four actions available
let the agent move one unit in each one of the four cardinal directions, as long as there is no wall.
Actions that lead the agent to a wall have no effect. e question is how should the agent select the
actions for achieving the goal with certainty under different knowledge and sensing conditions. In all



1.4. EXAMPLES 9

Model Instance Solver Solution

Figure 1.4: Models and Solvers: Research work in AI has increasingly focused on the formulation and devel-
opment of solvers for a wide range of models. A solver takes the representation of a model instance as input, and
automatically computes its solution in the output. Some of the models considered are SAT, Bayesian Networks,
General Games Playing, and Classical, MDP, and POMDP Planning. All of these models are intractable when
represented in compact form. e main challenge is scaling up.

cases, we assume that the agent knows the map, including where the walls and the goals are. In the
simplest case, the actions are assumed to be deterministic and the initial agent location known. In this
case, the agent faces a classical planning problem whose solution is a path in the grid joining the initial
agent location and the goal. On the other hand, if the actions have effects that can only be predicted
probabilistically but the state of the problem—the agent location—is always observable, the problem
becomes an MDP planning problem. e solution to this problem is no longer an action sequence,
that cannot guarantee that the goal will be achieved with certainty, but a policy assigning one of the
four possible actions to each one of the states. e number of steps to reach the goal can no longer
be determined with certainty but there is then an expected number of steps to reach the goal that
can be determined, as the policy and the action model induce a probability distribution over all the
possible paths in the grid. Policies that ensure that the goal is eventually achieved with certainty are
called proper policies. Interestingly, we will see that the exact transition probabilities are not relevant
for defining or computing proper policies; all we need to know for this are which state transitions are
possible (probability different than zero) and which ones are not (probability equal to zero). e prob-
lem variation in which the actions have stochastic effects but the location of the agent cannot be fully
observed is a POMDP planning problem, whose general solution is neither a fixed action sequence,
that ignores the observations, nor a policy prescribing the action to do in each state, that assumes that
the state is observable. It is rather a policy that maps belief states into actions. In the POMDP setting,
a belief state is a probability distribution over the states that are deemed possible. ese probability
distributions summarize all the information about the past that is relevant for selecting the action to
do next. e initial belief state has to be given, and the current belief state is determined by the actions
done, the observations gathered, and the information in the model. On the other hand, if uncertainty
about the initial situation, the system dynamics and the feedback are represented by sets of states as
opposed to probability distributions over states, we obtain a partially observable planning problem which
is the logical counterpart of POMDPs. In such problems, the number of possible belief states (sets
of states deemed possible) is finite, although exponential in the number of states, and hence doubly
exponential in the number of problem variables. Finally, if the agent must reach the goal with certainty
but there is uncertainty about the initial state or about the next state dynamics, and there is no feedback
of any type, the problem that the agent faces is a conformant problem. For the problem shown in the
figure, if the actions are deterministic and the agent knows that it is initially somewhere on the room
on the left, a conformant solution can be obtained as follows: the agent moves up five times, until
it knows with certainty that it is somewhere on the top row, then it moves right three times until it
knows with certainty that it is exactly at the top right corner of the left room. With all uncertainty
gone, the agent can then find a path to the goal from that corner.



10 1. PLANNING AND AUTONOMOUS BEHAVIOR

A

G

Figure 1.5: Variations on a planning problem: Agent, marked as A, must reach the goal marked G, by moving
one cell at a time under different knowledge and sensing conditions.

A completely different planning example is shown in Figure 1.6 for a problem inspired on the
use of deictic representations [Ballard et al., 1997, Chapman, 1989], where a visual-marker or “eye”
(the circle on the lower left) must be placed on top of a green block by moving it one cell at a time.
e location of the green block is not known initially, and the observations are just whether the cell
with the mark contains a green block (G), a non-green block (B), or neither (C), and whether such
cell is at the level of the table (T) or not (–). e problem is a partially observable planning problem
and the solution to it can be expressed by means of control policies mapping beliefs into actions. An
alternative way to represent solutions to these types of problems is by means of finite-state controllers,
such as the one shown on the right of Figure 1.6. is finite-state controller has two internal states, the
initial controller state q0, and a second controller state q1. An arrow q

o=a
! q0 in the controller indicates

that, when obtaining the observation o in the controller state q, the action a should be performed,
moving to the controller state q0, that may be equal to q or not, and where the same action selection
mechanism is applied. e reader can verify that the finite-state controller searches for a tower with
a green block from left to right, going all the way up to the top block in each tower, then going all
the way down to the table, and iterating in this manner until the visual marker appears on top of a
block that is green. Finite-state controllers provide a very compact and convenient representation of
the actions to be selected by an autonomous system, and for this reason they are commonly used in
practice for controlling robots or non-playing characters in video games [Buckland, 2004, Mataric,
2007, Murphy, 2000]. While these controllers are normally written by hand, we will show later that
they they can be obtained automatically using planners. Indeed, the controller shown in the figure
has been derived in this way using a classical planner over a suitable transformation of the partially
observable problem shown on the left [Bonet et al., 2009]. It is actually quite remarkable that the
finite-state controller that has been obtained in this manner is not only good for solving the original
problem on the left, but also an infinite number of variations of it. It can actually be shown that the
controller will successfully solve any modification in the problem resulting from changes in either the
dimensions of the grid, the number of blocks or their configuration. us, in spite of appearances, the power



1.5. GENERALIZED PLANNING: PLANS VS. GENERAL STRATEGIES 11

q0 q1
–C/Down

TB/Right

TC/Right
–B/Up
TB/Up –B/Down

Figure 1.6: Left: Problem where a visual-marker (mark on the lower left cell) must be placed on top of a green
block by just observing what is on the marked cell. Right: Finite-state controller obtained with a classical planner
from suitable translation. e controller solves the problem and any variation of the problem that results from
changes in the number or configuration of blocks.

of classical planners shouldn’t be underestimated. Often we will be able to solve non-classical planning
problems using classical planners by means of feasible, well-defined transformations.

1.5 GENERALIZED PLANNING: PLANS VS. GENERAL
STRATEGIES

e visual-marker problem illustrates two differences that are crucial in planning. One is the difference
between a solution to a problem instance and a solution to a family of instances. e second is the difference
between expressing the solution to a problem and finding a solution to the problem in the first place. For
example, a solution to a particular Blocks World instance, with blocks A, B, and C, on the table,
that must be stacked in order with C on top, may be the action sequence pick(B), stack(B,A), pick(C),
stack(C,B). On the other hand, the general strategy of putting all blocks on the table, in order from
top to bottom, followed by putting all blocks on their destination in order from the bottom to the
top, works for all Blocks World instances, regardless of the number and names of the blocks. Planning
in AI, and in particular what is called domain-independent planning, has been mostly focused on
models and methods for expressing and solving single planning instances. On the other hand, the work
in planning driven by applications over certain specific domains, has usually focused on languages like
Hierarchical Task Networks [Erol et al., 1994] for expressing by hand the strategies for solving any problem
in the given domain. e problem of computing general domain strategies has not been tackled by
automated methods, because the problem appears to be too hard in general. Yet, ideally, this is where
we would like to get, at least on domains that admit compact general solutions [Srivastava et al.,
2011a]. In a recent formulation, a form of generalized planning of this type has been shown to be
EXPSPACE-Complete [Hu and de Giacomo, 2011]. In this formulation, all instances are assumed
to share the same set of actions and observations, and a general solution is a function mapping streams
of observations into actions. In some cases, such functions can be conveniently expressed as policies
that map suitable combination of observables, called features, into actions. e crucial question is how
to get such features and policies effectively, in particular over domains that admit compact solutions
over the right features. An early approach that does this in the blocks world constructs a pool of possible



12 1. PLANNING AND AUTONOMOUS BEHAVIOR

features from the primitive domain predicates and a simple grammar (a description logic), and then
looks for compact rule-based policies over some of such features using supervised learning algorithms
[Fern et al., 2003, Martin and Geffner, 2000]. Another approach, used for playing a challenging game
in real-time, represents the policies that map observables into actions by means of neural networks
whose topology and weights are found by a form of evolutionary search [Stanley et al., 2005]. Both of
these approaches are aimed at general domain policies that map state features into actions, which are
not tied to specific instances.

In a famous exchange during the 80s about “universal plans,” Matthew Ginsberg attacked the
value of the idea of general plans on computational grounds [Ginsberg, 1989]. A universal plan is a
strategy for solving not just one planning instance, but many instances, and more specifically, all those
instances that can be obtained by just changing the initial state of the problem [Schoppers, 1987].
While the solutions to such generalized planning problems can be expressed as policies mapping states
into actions, as for MDPs, Ginsberg argued that the size of such universal plans would be often just too
large; exponential at least for families of problems that are NP-hard to solve. In order to illustrate this
point, Ginsberg conjectured that no compact universal plan could be defined for a specific problem
that he called the fruitcake problem, where blocks were to be placed on a tower to spell the word
“fruitcake.” e challenge, however, was answered by David Chapman who came up with an elegant
reactive architecture, basically a circuit in line with his “Pengi” system [Agre and Chapman, 1987], that
in polynomial time solved the problem [Chapman, 1989]. Chapman went on to claim that Blockhead,
his system, solved the fruitcake problem, and solved it easily, with no search or planning, thus raising
doubts not only about the value of “universal plans” but also of the need to plan itself. is was an
interesting debate, and if we bring it here it is because it relates to the two key distinctions mentioned
at the beginning of this section: one between a solution to a problem instance and a solution to a family of
instances, the other between expressing a solution and finding a solution. From this perspective, Chapman
is right that general strategies for solving many classes of interesting problems can often be encoded
through compact representations, like Pengi-like circuits, yet the challenge is in coming up with such
strategies automatically. Without this ability, it cannot be said that Blockhead is solving the problem—
it’s Chapman. Blockhead simply executes the policy crafted by Chapman that is not general and doesn’t
apply to other domains.

1.6 HISTORY
e first AI planner and one of the first AI programs was introduced by Newell and Simon in the
50s [Newell and Simon, 1961, Newell et al., 1959]. is program called GPS, for General Problem
Solver, introduced a technique called means-ends analysis where differences between the current state
and the goal were identified and mapped into operators that decreased those differences. e STRIPS
system [Fikes and Nilsson, 1971] combined means-ends analysis with a convenient declarative action
language. Since then, the idea of means-ends analysis has been refined and extended in many ways, in
the formulation of planning algorithms that are sound (only produce plans), complete (produce a plan if
one exists), and effective (scale up to large problems). By the early 90s, the state-of-the-art planner was
UCPOP [Penberthy and Weld, 1992], an implementation of an elegant planning method known as
partial-order planning where plans are not searched either forward from the starting state or backward
from the goal, but are constructed from a decomposition scheme in which joint goals are decomposed
into subgoals that create as further subgoals the preconditions of the actions used to establish them



1.6. HISTORY 13

[McAllester and Rosenblitt, 1991, Sacerdoti, 1975, Tate, 1977]. e actions that are incorporated into
the plan are partially ordered as needed in order to resolve possible conflicts among them. Partial-order
planning algorithms are sound and complete, but do not scale up well, as there are too many choices
to make and too little guidance on how to make those choices; yet see [Nguyen and Kambhampati,
2001, Vidal and Geffner, 2006].

e situation in planning changed drastically in the mid 90s with the introduction of Graphplan
[Blum and Furst, 1995], an algorithm that appeared to have little in common with previous approaches
but scaled up much better. Graphplan builds a plan graph in polynomial time reasoning forward from
the initial state, which is then searched backward from the goal to find a plan. It was shown later
that the reason Graphplan scaled up well was due to a powerful admissible heuristic implicit in the
plan graph [Haslum and Geffner, 2000]. e success of Graphplan prompted other approaches. In
the SAT approach [Kautz and Selman, 1996], the planning problem for a fixed planning horizon is
converted into a general satisfiability problem expressed as a set of clauses (a formula in Conjunctive
Normal Form or CNF) that is fed into state-of-the-art SAT solvers, which currently manage to solve
huge SAT instances even though the SAT problem is NP-complete.

Currently, the formulation of classical planning that appears to scale up best is based on heuristic
search, with heuristic values derived from the delete-relaxation [Bonet et al., 1997,McDermott, 1996].
In addition, state-of-the-art classical planners use information about the actions that aremost “helpful”
in a state [Hoffmann and Nebel, 2001], and implicit subgoals of the problem, called landmarks, that
are also extracted automatically from the problem with methods similar to those used for deriving
heuristics [Hoffmann et al., 2004, Richter and Westphal, 2010].

Since the 90s, increasing attention has been placed on planning over non-classical models such
as MDPs and POMDPs where action effects are not fully predictable, and the state of the system
is fully or partially observable [Dean et al., 1993, Kaelbling et al., 1998]. We will consider all these
variations and others in the rest of the book. We will have less to say about Hierarchical Task Planning
or HTN planning, which, while widely used in practice, is focused on the representation of general
strategies for solving problems rather than in representing and solving the problems themselves. For a
comprehensive planning textbook, see Ghallab et al. [2004], while for a modern AI textbook covering
planning at length, see Russell and Norvig [2009].





15

C H A P T E R 2

Classical Planning: Full
Information and Deterministic

Actions
In classical planning, the task is to drive a system from a given initial state into a goal state by applying
actions whose effects are deterministic and known. Classical planning can be formulated as a path-
finding problem over a directed graph whose nodes represent the states of the system or enviroment,
and whose edges capture the state transitions that the actions make possible. e computational chal-
lenge in classical planning results from the number of states, and hence the size of the graph, which
are exponential in the number of problem variables. State-of-the-art methods in classical planning
search for paths in such graphs by directing the search toward the goal using heuristic functions that are
automatically derived from the problem. e heuristic functions map each state into an estimate of the
distance or cost from the state to the goal, and provide the search for the goal with a sense of direction.
In this chapter, we look at the model and languages for classical planning, and at the heuristic search
techniques that have been developed for solving it. Variations and extensions of these methods, as well
as alternative methods, will be considered in the next chapter.

2.1 CLASSICAL PLANNING MODEL
Classical planning is concerned with the selection of actions in environments that are deterministic and
whose initial state is fully known.e model underlying classical planning can be described as the state
model S D hS; s0; SG ; A; f; ci where

• S is a finite and discrete set of states,

• s0 2 S is the known initial state,

• SG � S is the non-empty set of goal states,

• A.s/ � A represents the set of actions in A that are applicable in each state s 2 S ,

• f .a; s/ is the deterministic transition function where s0 D f .a; s/ is the state that follows s after
doing action a 2 A.s/, and

• c.a; s/ is a positive cost for doing action a in the state s.

A solution or plan in this model is a sequence of applicable actions a0; : : : ; an that generates a
state sequence s0; s1; : : : ; snC1 where snC1 is a goal state. More precisely, the action ai is applicable



16 CLASSICAL PLANNING

in the state si if ai 2 A.si /, the state siC1 follows the state si if siC1 D f .ai ; si /, and snC1 is a goal
state if snC1 2 SG . e cost of the plan is the sum of the action costs c.ai ; si /, i D 0; : : : ; n. A plan is
optimal if it has minimum cost, and the cost of the model is the cost of an optimal plan. A common
cost structure arises when all action costs c.a; s/ are equal to 1. en the cost of the plan is given by
its length, and the optimal plans are the shortest ones.

Domain-independent classical planners accept a compact description of the above models, and
automatically produce a plan. e problem is intractable in the worst case [Bylander, 1994], yet cur-
rently large classical problems can be solved very quickly. Optimal planners produce optimal plans,
while satisficing planners are aimed at producing good plans which are not necessarily optimal. Com-
puting optimal plans is harder than computing plans, as the former involves a universal claim about
the space of all plans—namely, that they all have a cost that is not smaller than the cost of the plan
found.

2.2 CLASSICAL PLANNING AS PATH FINDING
ere is a direct correspondence between classical planning models and directed graphs, and between
classical plans and certain paths over these graphs. Recall that directed graphs are structures G D

.V;E/ made up of a set of nodes V and a set of directed edges represented by ordered pairs of nodes

.n; n0/, n; n0 2 V . Directed graphs or digraphs are a fundamental model in Computer Science, and
there is a wide range of algorithms for solving tasks over graphs [Cormen et al., 2009]. A weighted
digraph is a digraph G D .V;E;w/ where every edge .n; n0/ in E comes with a real weight w.n; n0/.
One of the basic tasks over digraphs is finding a (directed) path from a given source node n0 to a node
n in a target set, and similarly, one of the basic tasks over weighted digraphs is finding one such path
with minimum cost.

A classical planning model S D hS; s0; SG ; A; f; ci defines a weighted directed graph G D

.V;E;w/ where the nodes in V represent the states in S , the edges .s; s0/ in E represent the pres-
ence of an action a in A.s/ such that s0 is the state that follows a in s, and the weight w.s; s0/ is the
minimum cost over such actions in s. It follows from this correspondence that an action sequence
� D a0; : : : ; am is a plan for the state model S iff � generates a sequence of states s0; : : : ; smC1 that
represents a directed path in the weighted digraph G D .V;E;w/. Clearly, if one such path can be
found in the graph, the corresponding plan can be obtained by retrieving ai as the action that makes
the transition .si ; siC1/ possible with least cost. us, in principle any path-finding algorithm over
weighted directed graphs can be used for finding plans for the classical planning model. We look at
some of these algorithms below. All these algorithms are incremental in the sense that none of them
requires the graph to be explicit in memory at the beginning; rather they all explicate an implicit graph
incrementally as the search to the goal proceeds. is is crucial in planning where the size of the graphs
is exponential in the number of problem variables.

2.3 SEARCH ALGORITHMS: BLIND AND HEURISTIC
Path-finding algorithms come in two main varieties: those in which the goal plays an active role in the
search, and those in which the goal sits passively until encountered. e standard way in which goals
can bias the search is by means of heuristic functions; these are functions h.s/ that provide a quick-
and-dirty estimate of the cost to reach the goal from the state s, making the search goal-directed.
Algorithms that use these heuristics are called heuristic search algorithms; those in which the goals



2.3. SEARCH ALGORITHMS: BLIND AND HEURISTIC 17

S.Nodes/
while Nodes ¤ ; do

Let n WD S-N.Nodes/
Let Rest WD Nodes n fng

if n is a goal node then
return E-S.n/

else
Let Children WD E-N.n/
Set Nodes WD A-N.Children;Rest/

end if
end while
return Unsolvable

Figure 2.1: General search schema invoked with Nodes containing the source node only. A number of familiar
search algorithms are obtained by suitable choices of the S-N and A-N functions.

play no active role during the search are called brute force or blind search algorithms [Edelkamp and
Schrödl, 2012, Pearl, 1983].e latter include algorithms likeDepth-First Search,Breadth-First Search,
and Uniform Cost Search, also called Dijkstra’s algorithm [Cormen et al., 2009]. e former include
Best-First Search, A*, and Hill Climbing. e algorithms search for paths in different ways, and have
different properties concerning completeness, optimality, and time and memory complexity. We will
make a quick overview of them before reviewing some useful variants.

e algorithms can all be understood as particular instances of the general schema shown in
Figure 2.1, where a search frontier called Nodes, initialized with the root node of the graph, shifts
incrementally as the graph is searched. In each iteration, two steps are performed: a selected node is
removed from the search frontier, and if the selected node is not a goal node, its children are added
to the search frontier, else the search terminates and the path to the last node selected is returned.
e nodes in the search represent the states of the problem and contain in addition bookkeeping
information like a pointer to the parent node, and the weight of the best path to the node so far, called
the accumulated cost and denoted by the expression g.n/ where n is the node. e various algorithms
arise from the representation of the search frontierNodes, the way nodes are selected from this frontier,
and the way the children of these nodes are added to the search frontier.

Depth-First Search is the algorithm that results from implementing the search frontierNodes as
a : the node that is selected is the top node in the stack, and the children nodes are added to the
top of the stack. It can be shown that if the graph is acyclic, the nodes in Nodes will be selected indeed
in depth-first order. Similarly, Breadth-First Search is the algorithm that results from implementing
the search frontier Nodes as a : nodes are selected from one end, and their children are added
to the other end. It can be shown then that the nodes in Nodes will be selected depth-last, and more
precisely, shallowest-first, which is the characteristic of Breadth-First Search. Finally, Best-First Search
is the algorithm that results when the search frontier is set up as a -, so that the nodes
selected are the ones that minimize a given evaluation function f .n/. Best-First Search reduces to
the well-known A* algorithm [Hart et al., 1968] when the evaluation function is defined as the sum



18 CLASSICAL PLANNING

f .n/ D g.n/C h.n/ of the accumulated cost g.n/ and the heuristic estimate of the cost-to-go h.n/.
Other known variations of Best-First Search are Greedy Best-First where f .n/ D h.n/, and WA*
where f .n/ D g.n/CW h.n/ and W is a constant larger than 1. Finally, Uniform-Cost Search or
Dijkstra’s algorithm corresponds basically to a Best-First Searchwith evaluation function f .n/ D g.n/,
or alternatively to the A* algorithm with the heuristic function h.n/ set to 0.

Certain optimizations are common. In particular, Depth-First Search prunes paths that contain
cycles—namely, pairs of nodes that represent the same state (duplicate nodes), while Breadth-First and
Best-First Search keep track of the nodes that have been already selected and expanded in a CLOSED
list. Duplicates of these nodes can be pruned except when the new node has a lower accumulated cost
g.n/ and the search is aimed at returning a minimum-cost path. Similarly, duplicate nodes in the
search frontier, also called the OPEN list, are avoided by just keeping in OPEN the node with the
least evaluation function.

It can be shown that all these algorithms are complete, meaning that if there is a path to a goal
node, the algorithms will find a path in finite time.1 Furthermore, some of these algorithms are optimal,
meaning that the paths returned upon termination will be optimal. ese include Dijkstra’s algorithm,
Breadth-First Search when action costs are uniform, and A* when the heuristic h.n/ is admissible, i.e.,
it doesn’t overestimate the true optimal cost h�.n/ from n to the goal for any node n. e complexity
in space of these algorithms can be described in terms of the length d of the solutions and the average
number of children per node, the so-called branching factor b. e space requirement of Breadth-First
search is exponential and grows with O.bd /, where d is the length of the optimal solution, as a b-ary
tree of depth d has bd leafs all of which can make it into the search frontier in the worst case. e
space complexity of A* with admissible heuristics is in turn O.bC �=cmin/, where C � is the optimal cost
of the problem and cmin is the minimum action cost. is is because A* may expand in the worst case
all nodes n with evaluation function f .n/ � C � and such nodes can be at depth C �=cmin.2 e same
bounds apply for the time complexity of the algorithms. On the other hand, the space requirements
for Depth-First Search are minor: they grow linearly with d as O.bd/, as the search frontier in DFS
just needs to keep track of the path to the last selected node along with the children of the ancestors
nodes that have not yet been expanded.

e difference between linear and exponential memory requirements can be crucial, as algo-
rithms that require exponential memory may abort after a few seconds or minutes with an “insuf-
ficient memory” message. Since DFS is the only linear space algorithm above, extensions of DFS
have been developed that use linear memory and yet return optimal solutions. e core of some of
these algorithms is a bounded-cost variant of DFS where selected nodes n whose evaluation function
f .n/ D g.n/ exceeds a given bound B are immediately pruned. Bounded-Cost DFS remains com-
plete provided that the bound B is not smaller than the cost C � of an optimal solution, but it is not
optimal unless B is equal to C �. Two iterative variants of Bounded-Cost DFS achieve optimality by
performing several successive trials with increasing values for the bound B , until B D C �. Iterative
Deepening (ID) is a sequence of Bounded-Cost DFS searches with the bound B0 for the first itera-
tion set to 0, and the bound Bi for iteration i > 0 set to minimum evaluation function f .n/ over the
nodes pruned in the previous iteration so that at least a new node is expanded in each iteration. In its
most standard form, when all action costs are equal to 1, the bound Bi in the iteration i is Bi D i . ID

1For DFS to be complete, paths containing cycles must be pruned to avoid getting trapped into a loop.
2is bound assumes that the heuristic is consistent, as otherwise, nodes may have to be reopened an exponential number of
times in the worst case [Pearl, 1983].



2.3. SEARCH ALGORITHMS: BLIND AND HEURISTIC 19

combines the best elements of Depth-First Search (memory) and Dijkstra’s algorithm (optimality).
ID achieves this combination by performing multiple searches where the same node may be expanded
multiple times. Yet, asymptotically this does not affect the time complexity that is dominated by the
worst-case time of the last iteration. Iterative Deepening A* (IDA*) is a variant of ID that uses the
evaluation function of A*—namely, f .n/ D g.n/C h.n/. As long as the heuristic is admissible, the
first solution encountered by IDA* will be optimal too, while usually performing fewer iterations than
ID and pruning many more nodes [Korf, 1985].

e number of nodes expanded by heuristic search algorithms like A* and IDA* depends on the
quality of the heuristic h. A* is no better than Breadth-First Search or Dijkstra’s algorithm when h.n/
is uniformly 0, and IDA* is no better then than ID. Yet if the heuristic is optimal, i.e., h.n/ D h�.n/

where h� stands for the optimal cost from n to the goal, then both A* and IDA* will find an optimal
path to the goal with no search at all, just expanding the nodes in one optimal path only (for this
though, A* must break ties in the evaluation function by favoring the nodes with the smaller heuristic,
else if the problem has multiple optimal solutions, A* may keep switching from one optimal path to
another). In the middle, A* and IDA* will expand fewer nodes using an admissible heuristic h1 than
using an admissible heuristic h2 when h1 is higher than h2.3 A more common situation is when h1 is
higher than h2 over some states, and equal to h2 over the other states. In such cases, h1 will produce
no more expansions than h2 provided that ties are broken in the same way in the two cases. In the first
case, the heuristic h1 is said to be more informed than h2 or to dominate h2, in the second, that it is at
least as informed as h2 [Edelkamp and Schrödl, 2012, Pearl, 1983].

Admissible heuristics are crucial in algorithms like A* and IDA* for ensuring that the solu-
tions returned are optimal, yet they are not crucial for finding solutions fast, when there is no need
for optimality. Indeed, these algorithms will often find solutions faster by multiplying an admissi-
ble heuristic h by a constant W > 1 as in WA*. WA* can be thought as an A* algorithm but with
heuristic W � h which is not necessarily admissible even when h is. e reason that WA* will find so-
lutions faster than A* can be seen by considering the nodes selected for expansion given an OPEN
list that contains one node n that is deep in the graph but close to the goal, e.g., g.n/ D 10 and
h.n/ D 1, and another node n0 that is shallow and far from the goal; e.g., g.n0/ D 2 and h.n0/ D 6.
Among the two nodes, A* will choose n0 for expansion as f .n0/ D g.n0/C h.n0/ D 2C 6 D 8, while
f .n/ D g.n/C h.n/ D 10C 1 D 11. On the other hand if W D 2, WA* chooses the node n instead
as f .n0/ D g.n0/CW � h.n0/ D 2C 2 � 6 D 14 and f .n/ D g.n/CW � h.n/ D 10C 2 � 1 D 12.

e optimality of A* with admissible heuristics can be shown by contradiction. First, it is not
hard to verify that until termination, the OPEN list always contains a node n in an optimal path to
the goal if the problem is solvable. en, if A* selects a goal node n0 with cost f .n0/ that is higher
than the optimal cost C �, then f .n0/ > C � � g.n/C h.n/ D f .n/ as the heuristic h is admissible.
erefore, A* did not select the node with minimum f -value from OPEN which is a contradiction.
WA* is not optimal, even when the heuristic h is admissible, yet the same argument can be used to
show that the solution returned by WA* will not exceed the optimal cost C � by more than a factor of
W . is is important in practice, as for example, with W D 1:2 the algorithm may turn out to run an
order-of-magnitude faster and with much less memory than A*, yet the loss in optimality is then at
most 20%.

Anytime WA* [Hansen and Zhou, 2007] is an anytime optimal algorithm which basically works
exactly like WA* until a solution is found with cost C , not necessarily optimal. Rather than stopping

3Technically speaking, this result assumes that both heuristics are consistent [Pearl, 1983].



20 CLASSICAL PLANNING

there, however, anytime WA* uses the amount of time available for improving the quality of this
solution, continuing the WA* search, while pruning nodes n with accumulated costs g.n/ greater than
C , and updating the bound C to C 0 when solutions with cost C 0 less than C are found. Anytime WA*
can thus produce solutions more quickly, and if given enough time, produce better and better solutions
until finding an optimal solution. is, however, can only be verified when the search terminates, i.e.,
when the OPEN list becomes empty. Another interesting anytime optimal algorithm obtained as a
variation of WA* is Restarting WA* or RWA* that performs iterated WA* searches but with decreasing
weights, while keeping in memory nodes expanded in previous iterations that are re-expanded only
when a cheaper path to the node is found [Richter et al., 2010]. is is the search algorithm used
in the state-of-the-art heuristic search planner called LAMA [Richter and Westphal, 2010]. Many
other heuristic search planners useGreedyBest-First (GBFS)which is a best-first searchwith evaluation
function f .n/ D h.n/, where the accumulated cost term g.n/ has been dropped. GBFS can be seen as
an WA* algorithm with a very large constant, and a tie breaking rule that favors nodes n with smallest
accumulated costs g.n/.

2.4 ONLINE SEARCH: THINKING AND ACTING
INTERLEAVED

Often there is no time for machines to compute a complete solution offline before performing an
action. is is clearly the situation in Chess where programs do not compute a complete solution to
the game before choosing a move, but rather focus iteratively on the move to do next. Of course, Chess
is a two-player game that cannot be described in terms of classical state models, yet the situation is
similar for people in games such as Rubik’s Cube, the 15-Puzzle, or Sokoban. People do not have the
patience or the computational resources to compute complete solutions offline. Rather, they think a
bit, explore the possible options and consequences, and then move. Search algorithms that interleave
thinking and acting in this way are called online search algorithms. While online search algorithms
come often with fewer guarantees than the offline algorithms, they are often more practical and have
a wider scope. In particular, online search algorithms can deal with classical state models that are not
completely accurate, provided that the state of the system is fully observable. Indeed, when the model
predicts the state s0 after performing the action a in the state s, but the state s00 is observed instead,
online algorithms can continue the search from s00. us, for example, a Blocks World problem where
there is a chance for blocks to fall down accidentally from the gripper, can be described in terms of the
standard, deterministic Blocks World state model. en an online search algorithm that keeps track of
the state of the system can replan from the new state when it is not the state that was predicted from
the model (e.g., where a block fell unexpectedly from the gripper). In the presence of feedback, thus,
online search algorithms can be used to provide a form of closed-loop control where a bounded search
over the model is used to select the action to do in the observed state, which is then applied to the
real or simulated system, and so on, until the goal is reached. Online search algorithms are also called
planning and execution algorithms, as they interleave planning and execution, as opposed to offline
search algorithms that just plan.

e simplest heuristic online algorithm is also the simplest heuristic algorithm of all: from the
current state s, the action a that is selected is the one that minimizes the estimated cost to the goal
defined as:



2.4. ONLINE SEARCH: THINKING AND ACTING INTERLEAVED 21

Q.a; s/ D c.a; s/C h.s0/ (2.1)

where h is the heuristic function and s0 is the state that is predicted to follow the action a in the state
s, i.e., s0 D f .a; s/. e minimization is done over the actions a applicable in s, i.e., a 2 A.s/.

is algorithm is known as the greedy algorithm or policy, and also as hill climbing search. It’s
called greedy because it selects the action to be done by trusting the heuristic function h completely,
and hill climbing, because when action costs are uniform it behaves as ifQ.a; s/ D h.s0/, selecting thus
actions that minimize the heuristic function toward goal states that should have a zero heuristic.4

e main positive property of the greedy algorithm is that it is optimal if the heuristic h is
optimal, i.e., if h D h�. In addition, the algorithm uses constant memory; it doesn’t keep track of a
search frontier at all, just the current state and its children. is is however where the good news for
the greedy algorithm end. e algorithm in general is neither optimal nor complete; in fact, it can get
trapped into a loop, selecting actions that take it from a state s into state s0 and then back from s0 to
s.

A common way to improve the greedy algorithm is by looking ahead from the current state s,
not just one level as done by the minimization of theQ.a; s/ expression in Eq. 2.1, but several levels.
A depth-first search from s that prunes nodes that are deeper than a given bound H can be used to
perform this lookahead whereH is the number of levels, or planning horizon. is form of lookahead
is time exponential in the horizon, O.bH /, where b is the branching factor of the problem. After this
lookahead, the action that is selected is the one on the path to the best leaf, with “best” defined in
terms of the evaluation function f .n/ D g.n/C h.n/.

is form of lookahead ensures that the action selected is the one that is best within the planning
horizonH for the given heuristic, yet this horizon must be kept small, else the local lookahead search
cannot be completed in real time. A useful alternative lookahead scheme over small time windows is the
combination of a larger horizon H along with a heuristic search algorithm that operates within this
horizon (deeper nodes are still pruned) as an anytime optimal algorithm. For example, the lookahead
search can be done with the A* algorithm from the current state s. en, when time is up, whether the
search is finished or not, the action selected in s is taken as the one leading to the best leaf, yet with
the leaves being both the nodes at depth H that have been generated plus the nodes that have been
generated at any other level that have not been yet expanded. Algorithms like Anytime WA* can also
be convenient for this type of anytime optimal lookahead search.

While a depth-first or best-first lookahead can improve the quality of the actions selected in the
greedy online search algorithm, neither approach guarantees completeness and optimality, except in
the trivial case where a solution and an optimal solution are within an horizon H of the seed state.
On the other hand, there is a simple fix to the greedy search that delivers both completeness and
optimality. e fix is due to Richard Korf, and the resulting algorithm is known as Learning Real Time
A* or LRTA* [Korf, 1990].

LRTA* is an extremely simple, powerful, and adaptable algorithm, that as we will see generalizes
naturally to MDPs. LRTA* is the online greedy search algorithm with one change: once the action a
that minimizes the estimated cost-to-go term Q.a; s/ from s is applied, the heuristic value h.s/ is
updated to Q.a; s/. e code for LRTA* is shown in Figure 2.2 where the dynamically changing
4In the planning setting, the algorithm actually does hill descending. e name of the algorithm, however, comes from contexts
where states that maximize a given function are sought.



22 CLASSICAL PLANNING

LRTA*
% h is the initial value function and V is the hash table that stores the updated
% values. When fetching a value for s in V , if V does not contain an entry for s,
% an entry is created with value h.s/
Let s WD s0
while s is not a goal state do

Evaluate each action a 2 A.s/ as:Q.a; s/ WD c.a; s/C V.f .a; s//

Select best action a that minimizesQ.a; s/
Update value V.s/ WD Q.a; s/
Set s WD f .a; s/

end while

Figure 2.2: Single Trial of Learning Real Time A* (LRTA*)

heuristic function, initially set to h.s/, is denoted as V.s/. For the implementation of LRTA*, the
estimates V.s/ are stored in a hash table that initially contains the heuristic value h.s0/ of the initial
state s0 only. en, when the value of a state s that is not in the table is needed, a new entry for s with
value V.s/ D h.s/ is allocated. ese entries V.s/ are updated as

V.s/ WD mina2A.s/Q.a; s/ D mina2A.s/ Œc.a; s/C V.s0/� (2.2)

where s0 D f .a; s/, when the action a D argmina2A.s/Q.a; s/ is applied in the state s. is simple
greedy algorithm combinedwith these updates delivers the two key properties provided that the heuristic
h.s/ is admissible and that there are no dead-ends (states from which the goal cannot be reached). First,
LRTA* will not be trapped into a loop and will eventually reach the goal. Second, if upon reaching the
goal, the search is restarted from the same initial state while keeping the current heuristic function V ,
and this process is repeated iteratively, eventually LRTA* converges to an optimal path to the goal. is
convergence will be achieved in a finite number of iterations, and the convergence is achieved when
the updates V.s/ WD mina2A.s/Q.a; s/ do not change the value V.s/ of any of the states encountered
in the way to the goal, which are then optimal.

ese are two remarkable properties that follow from a simple change in the greedy algorithm
that adjusts the value of the heuristic according to Eq. 2.2 over the states that are visited in the search.
Of course, LRTA*, unlike the greedy algorithm, does not run in constant space, as the updates to
the heuristic function take space in the hash table that in the worst case can become as large as the
number of states in the problem. e value of the initial heuristic is critical in the performance of
LRTA*, both in terms of time and space, as better heuristic values mean a more focused search, and
a more focused search means more updates on the states that matter. When LRTA* is to be run once
and not until convergence, a lookahead can improve the quality of the actions selected and boost the
heuristic values of the visited states (which remain admissible if they are initially admissible). e latter
can be achieved if the states that are expanded in the lookahead search are also updated using Eq. 2.2,
and the new values are propagated up to their parents. In this way, a move from s will leave a heuristic



2.5. WHERE DO HEURISTICS COME FROM? 23

14 12 15 13

5 8 7 9

6 2 11 10

1 3 4

Figure 2.3: e sliding 15-puzzle where the goal is to get to a configuration where the tiles are ordered by
number with the empty square last. e actions allowed are those that slide a tile into the empty square. While
the problem is not simple, the heuristic that sums the horizon and vertical distances of each tile to its target
position is simple to compute and provides informative estimates to the goal. In planning, heuristic functions are
obtained automatically from the problem representation.

value V.s/ for s that would be more informed than the value of s computed from its children using
Eq. 2.2. LSS-LRTA* is a version of LRTA* with a lookahead of this type [Koenig and Sun, 2009].

2.5 WHERE DO HEURISTICS COME FROM?
Heuristic search algorithms express a form of goal-directed search where heuristic functions are used
to guide the search toward the goal. A key question is how such heuristics can be obtained for a
given problem. A useful heuristic is one that provides good estimates of the cost to the goal and can
be computed reasonably fast. Heuristics have been traditionally devised according to the problem at
hand [Edelkamp and Schrödl, 2012, Pearl, 1983]: the Euclidean distance is a good heuristic for route
finding, the sum of the Manhattan distances of each tile to its destination is a good heuristic for
the sliding puzzles, the assignment problem heuristic is good for Sokoban [Junghanns and Schaeffer,
2001], both the assignment problem and spanning tree heuristics have been used for the Travelling
Salesman Problem [Lawler et al., 1985], and so on. e general idea that emerges from the various
problems is that heuristics h.s/ can be seen as encoding the cost of reaching the goal from the state s in
a problem that is simpler than the original one [Minsky, 1961, Pearl, 1983, Simon, 1955]. For example,
the sum-of-Manhattan distances in the sliding puzzles (Figure 2.3) corresponds to the optimal cost of
a simplification of the puzzle where tiles can be moved to adjacent positions, whether these positions
are empty or not. Similarly, the Euclidean heuristic for route finding is the cost of a simplification
of the problem where straight routes are added between any pair of cities in the map. e simplified
problems are normally referred to as relaxations of the original problem. If P is the original problem,
P 0 is its relaxation, and P.s/ and P 0.s/ refer to the problem and relaxation when the initial state is
set to the state s, the general idea is to set the heuristic value hP .s/ associated with the problem P.s/

to the optimal cost h�
P 0.s/ of the relaxed problem P 0.s/. It is easy to show that if the solutions to the

original problem P.s/ are also solutions of the relaxed problem P 0.s/, something which is natural for
most relaxations, then the heuristic hP .s/ that results from the relaxation is actually admissible. is



24 CLASSICAL PLANNING

is because any optimal solution for P.s/must be also a solution to the relaxation P 0.s/, whose optimal
value cannot exceed then the optimal value of P.s/. On the other hand, if the heuristic hP .s/ for P is
obtained from a solution to the relaxation P 0.s/ that is not necessarily optimal, the resulting heuristic
hP .s/ would not be necessarily admissible.

A key development in modern planning research was the realization that useful heuristics could
be derived automatically from the representation of the problem in a domain-independent planning
language [Bonet et al., 1997, McDermott, 1996]. It does not matter what the problem P.s/ is about,
an automated relaxation P 0.s/ yielding informative heuristics can be obtained directly and effectively
from the representation of P.s/. e result is a domain-general heuristic h.s/, i.e., a heuristic that
makes the search goal-driven, no matter what the problem is about, as long as it is a problem where
deterministic actions expressed in compact form have to be used to drive the system from a known
initial state into a goal state.

2.6 LANGUAGES FOR CLASSICAL PLANNING
e languages for expressing classical planning models in compact form come in two main varieties.
In one, the state variables are all boolean, i.e., they can take just one of two values, true or false. In the
other, they are multivalued and can take values from a finite domain. In either case, the states in the
resulting model are the valuations over the variables, where a valuation assigns to each variable a value
from its domain.

e simplest and possibly oldest classical planning language in use is STRIPS, a language based
on boolean variables, which was originally developed in a different form for controlling the Robot
Shakey at SRI during the late 60s [Fikes and Nilsson, 1971]. A planning problem in the current
version of STRIPS is a tuple P D hF; I;O;Gi where

• F represents the set of atoms or propositions of interest,

• O represents the set of actions,

• I � F represents the initial situation, and

• G � F represents the goal.

In STRIPS, the actions o 2 O are represented by three sets of atoms over F called the Add,
Delete, and Precondition lists, denoted as Add.o/,Del.o/, P re.o/. e first describes the atoms that
the action omakes true, the second, the atoms that omakes false, and the third, the atoms that must be
true in order for the action to be applicable. A STRIPS problem P D hF; I;O;Gi encodes implicitly,
in compact form, the classical state model S.P / D hS; s0; SG ; A; f; ci where

• the states s 2 S are the possible collections of atoms over F , each defining a truth valuation where
an atom p 2 F is true in s iff p 2 s,

• the initial state s0 is I ,

• the set SG of goal states comprises the states s for which G � s,

• the actions a in A.s/ are the ones in O with P rec.a/ � s,



2.6. LANGUAGES FOR CLASSICAL PLANNING 25

• the state transition function is f .a; s/ D .s nDel.a// [ Add.a/, so that the state s0 that results
from action a in s is s but with the atoms in Del.a/ deleted, and the atoms in Add.a/ added,
and

• the action costs c.a; s/ are equal to 1 by default.

Given that the STRIPS problemP represents the state model S.P /, the plans for P are defined
as the plans for S.P /, namely, the action sequences that map the initial state s0 that corresponds to I
into a goal state where the goals G are true. Since the states in S.P / are represented as collections of
atoms from F , the number of states in S.P / is 2jF j where jF j is the number of atoms in P , usually
called fluents.

e state representation that follows from a planning language such as STRIPS is domain-
independent. us, while a specialized solver for a Blocks World problem may represent the state
of the problem by a set of lists, each one representing a tower of blocks, in the state representation
that follows from STRIPS there are just atoms, and the same is true of any other domain. As an
illustration, a domain that involves three locations l1, l2, and l3, and three tasks t1, t2, and t3, where ti
can be performed only at location li , can be modeled with a set F of fluents at.li / and done.ti /, and
a set O of actions go.li ; lj / and do.ti /, i; j D 1; : : : ; 3, with precondition, add, and delete lists

P re.a/ D fat.li /g ; Add.a/ D fat.lj /g ; Del.a/ D fat.li /g

for a D go.li ; lj /, and

P re.a/ D fat.li /g ; Add.a/ D fdone.ti /g ; Del.a/ D fg

for a D do.ti /. e problem of doing tasks t1 and t2 starting at location l3 can then be modeled by
the tuple P D hF; I;O;Gi where

I D fat.l3/g and G D fdone.t1/; done.t2/g :

A solution to P is an applicable action sequence that maps the state s0 D I into a state where the goals
in G are all true. In this case one such plan is the action sequence

� D hgo.l3; l1/; do.t1/; go.l1; l2/; do.t2/i :

e number of states in the problem is 26 as there are six boolean variables. Still, it can be shown that
many of these states are not reachable from the initial state. Indeed, the atoms at.li / for i D 1; 2; 3

are mutually exclusive and exhaustive, meaning that every state reachable from s0 by applying the
available actions makes one and only one of these atoms true. ese boolean variables encode indeed
the possible values of the multivalued variable that represents the agent’s location.

Planning languages featuring non-boolean variables and richer syntactic constructs than
STRIPS are also common in planning [Bäckström and Nebel, 1995, Gerevini et al., 2009]. In partic-
ular, if X is a multivalued variable with domain DX , then the initial situation can be characterized by
a set of literals of the form ‘X D x” for each variable X where x 2 DX , the actions can be described
in terms of pre and postconditions expressed through these literals, and the same for goals. In princi-
ple, a planning problem expressed through multivalued variables can be compiled automatically into a
problem with boolean variables only, by simple transformations such as replacing each literal X D x



26 CLASSICAL PLANNING

by the proposition p.X D x/ throughout, and by including the propositions p.X D x0/ in the delete
list of every action that adds p.X D x/. Planning problems expressed over boolean variables such as
STRIPS can be similarly expressed in multivalued form by mapping atoms p into literals Xp D t rue

throughout, except in delete lists when they are mapped into postconditions Xp D false. Often it is
possible to derive a more compact multivalued encoding of a planning problem, e.g., like when a set
of atoms at.l1/, …, at.ln/ is used to represent the possible locations of an object. Such a location can
be encoded through a multivalued variable L with domain DL D fl1; : : : ; lng. Programs that auto-
matically infer invariants from a STRIPS encoding, such as sets of exhaustive and mutually exclusive
atoms, are used to transform one representation into another automatically [Helmert, 2009]. While
some of the representation languages are more natural for users, they are not necessarily more efficient
for planning as the extra features can often be compiled away at no cost. For example, STRIPS does
not accommodate negation or negated atoms, yet when it is convenient to introduce a negated atom :p

in the initial situation, preconditions, or goals of a problem, it is possible to introduce a new atom Np

for capturing :p. e atom Np has to be part of I when p 62 I , has to be included in the Add list of
an action when p is included in the Delete list, and vice versa, has to be included in the Delete list
when p is in Add list. en the atom Np can be used in preconditions and goals, as indeed, Np represents
:p over all the states that are reachable from I using the available actions, where the logical formula
Np � :p can be shown to hold. In other words, the formula Np � :p is an invariant in the problem.

One important syntactic construct that extends STRIPS and is not convenient to compile away
in general, because of a potential exponential blow up in the size of the problem, is conditional effects
[Gazen and Knoblock, 1997, Nebel, 2000]. While Add and Delete lists represent sets of atoms that
become true and false unconditionally after an action is done, a conditional effect C ! C 0 associated
with an action, where C and C 0 are sets of literals (atoms or negated atoms), says that C 0 will be
true right after the action if C was true right before the action. In other words, unlike an action
precondition, C does not have to be true for the action to be applicable, yet if it is true, then C 0 will
become true as a result of the action.

Figure 2.4 shows a description of the Blocks World domain in PDDL. PDDL is the Planning
Domain Definition Language, a language and syntax that has been used in the planning competitions
[McDermott et al., 1998]. PDDL accommodates the STRIPS language along with a number of addi-
tional syntactic constructs in a notation that originates in the Lisp programming language. Problems in
PDDL are expressed in two parts: one about the general domain; the other about a particular domain
instance. In the domain part, the actions are described by means of schemas over generic atoms de-
fined using predicates names like clear , variables like ‹x, and possibly constants. In the instance part,
the object names that will replace the variables are declared, along with the atoms describing the ini-
tial state, and the formula describing the goal states. e “requirement” flag in the domain definition
describes the PDDL fragment used by the encoding which can include STRIPS, ADL extensions
featuring negation, conditional effects, function symbols, and various forms of quantification [Ped-
nault, 1989], a hierarchy of types for controlling how variables can be substituted by object names, the
equality predicate, and so on. ere are currently tens of classical planners that can be downloaded free
from the Internet and hundreds of planning problems expressed in PDDL for use with such planners.



2.7. DOMAIN-INDEPENDENT HEURISTICS AND RELAXATIONS 27

(define (domain BLOCKS)
(:requirements :strips)
(:predicates (clear ?x) (on-table ?x) (arm-empty) (holding ?x) (on ?x ?y))
(:action stack

:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (on ?x ?y) (handempty)))

(:action unstack
:parameters (?x ?y)
:precondition (and (clear ?x) (on ?x ?y) (handempty))
:effect (and (not (clear ?x)) (not (on ?x ?y)) (not (handempty)) (holding ?x)

(clear ?y)))
(:action put_down

:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (ontable ?x) (handempty)))

(:action pick_up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (clear ?x)) (not (ontable ?x)) (not (handempty)) (holding ?x)))

)

(define (problem BLOCKS_6)
(:domain BLOCKS)
(:objects A B C D E F)
(:init (clear B) (clear C) (clear E) (ontable C) (ontable D) (on A D) (on B A)

(ontable F) (on E F) (handempty))
(:goal (and (on E F) (on F C) (on C B) (on B A) (on A D)))

)

Figure 2.4: A Blocks World instance described in PDDL.

2.7 DOMAIN-INDEPENDENT HEURISTICS AND
RELAXATIONS

A STRIPS planning problem P D hF; I;O;Gi defines a state model and a directed graph so that
the plans for P corresponds to paths connecting a source node to a target node in the graph. e
size of the graph, however, is exponential in the number of atoms in P , and this prevents the use of
blind search methods in general. As mentioned, a key development in modern planning research was
the realization that this search could be guided by heuristics extracted automatically from the problem
[Bonet and Geffner, 2001, McDermott, 1999]. e heuristics are derived from relaxations, and the
most common and useful domain-independent relaxation in planning is the delete-relaxation, that
maps a problem P D hF; I;O;Gi into a problem PC D hF; I;OC; Gi that is exactly like P but with



28 CLASSICAL PLANNING

the actions in OC set to the actions in O with empty delete lists. at is, the delete-relaxation is a
domain-independent relaxation that takes a planning problem P and produces another problem PC

where atoms are added exactly as in P but they are never deleted. e relaxation implies, for example,
that objects and agents can be in “multiple places” at the same time as when an object or an agent moves
into a new place, the atom representing the old location is not deleted. Relaxations, however, are not
aimed at providing accurate models of the world; quite the opposite, simplified and even meaningless
models of the world that while not accurate yield useful heuristic guidance.

e domain-independent delete-relaxation heuristic is obtained as an approximation of the op-
timal cost of the delete-relaxation PC obtained from the cost of a plan that solves PC not necessarily
optimally. e reason that an approximation is needed is because finding an optimal plan for a delete-
free planning problem like PC.s/ is still a computationally intractable task (also NP-hard). On the
other hand, finding just one plan for the relaxation whether optimal or not, can be done quickly and
efficiently. e property that allows for this is decomposability: a problem without deletes is decompos-
able in the sense that a plan � for a joint goal G1 and G2 can always be obtained from a plan �1 for
the goal G1 and a plan �2 for the goal G2. e concatenation of the two plans � D �1; �2 in either
order is indeed one such plan. is property allows for a simple method for computing plans for the
relaxation from which the heuristics are derived.

e main idea behind the procedure for computing the heuristic h.s/ for an arbitrary planning
problem P can be explained in a few lines. For this, let P.s/ refer to the problem that is like P but
with the initial situation set to the state s, and let PC.s/ stand for the delete-relaxation of P.s/, i.e.,
the problem that is like P.s/ but where the delete-lists are empty. e heuristic h.s/ is computed
from a plan for the relaxation PC.s/ that is obtained using the decomposition property and a simple
iteration. Basically, the plans for achieving the atoms p that are already true in the state s, i.e., p 2 s,
are the empty plans. en if �1, �2, …, �m are the plans for achieving each of the preconditions
p1; p2; : : : ; pm of an action a that has the atom q in the add list, � D �1; �2; : : : ; �m followed by
the action a is a plan for achieving q from s. It can be shown that this iteration yields a plan in the
relaxation PC.s/ for each atom p that has a plan in the original problem P.s/ in a number of steps
that is bounded by the number of atoms in the problem. A plan for the actual goal G of P.s/ in the
relaxation PC.s/ can then be obtained in a similar manner by concatenating the plans for each of the
atoms q in G in any order. Such a plan for the relaxation PC.s/, denoted as �C.s/, is called a relaxed
plan. e heuristic h.s/ can then be set to the cost of such a plan. A better estimate can be obtained if
duplicate actions in the resulting relaxed plan are removed, since no STRIPS action needs to be done
twice for solving a delete-free problem, as the effects of the first action occurrence stay true until the
end of the plan.5 Below we will formalize the domain-independent planning heuristic sketched above,
and explore some variations.

As an illustration, Figure 2.5 displays a fragment of the directed graph corresponding to a blocks
world problemP with the automatically derived heuristic values next to some of the nodes. e heuris-
tic values shown are computed very fast, in low polynomial time, using an algorithm similar to the one
described above, with h.s/ representing an approximation of the number of actions needed (cost) to
solve the relaxed problem PC.s/. Actually, the instance shown can be solved without any search at all
by just selecting in each node, starting from the source node, the action that leads to the node with a
lower heuristic value (closer to the goal). e resulting plan is shown as a red path in the figure.

5is is not true, however, in planning languages that extend STRIPS with negation and conditional effects, where the same
action may have to be applied multiple times for solving the relaxation.



2.7. DOMAIN-INDEPENDENT HEURISTICS AND RELAXATIONS 29

A

B C

A B C

A

B

C

A

CB

· · ·
· · ·

A B

C

A C

BA

B C

A

CB A

B

C A B

C

A B

C

A B CA

C

B

· · · · · · · · · · · · · · ·

Init

Goal

h = 3

h = 3 h = 2 h = 3

h = 3
h = 3 h = 2 h = 1 h = 2 h = 2

h = 0 h = 2 h = 2

Figure 2.5: A fragment of the graph corresponding to a blocks world planning problem with the automatically
derived heuristic values shown next to some of the nodes. e heuristic values are computed in low polynomial
time and provide the search with a sense of direction. e instance can actually be solved without any search by
just performing in each state the action that leads to the node with a lower heuristic value (closer to the goal). e
resulting plan is shown in red; helpful actions shown in blue.

In order to get a more vivid idea of where the heuristic values shown in the figure come from,
consider the heuristic h.s/ for the initial state where block A is on B, and both B and C are on the
table. In order to get the goal “B on C” in the relaxation from the state s, two actions are needed:
one to get A out of the way to achieve the preconditions for moving B, the second to move B on
top of C. On the other hand, in order to achieve the second goal “C on A” in the relaxation from s,
just the action of moving C to A is needed. e result is a heuristic value h.s/ D 3 as shown, which
actually coincides in this case with the cost of the best plan to achieve the joint goal from s in the
non-relaxed problem P.s/. Nonetheless, this is just a coincidence, and indeed, the best plans in the
relaxation PC.s/ can be quite different than the best plans in the original problem P.s/. e best plan
for P.s/ is indeed unique: moving A to the table, then C on A, and finally B on C. On the other
hand, a possible optimal plan in the relaxation PC.s/ is to move first C on A, then A on the table,
and finally B on C. Of course, this plan does not make any sense in the real problem where A can’t
be moved when covered by C, yet the relaxation is not aimed at capturing the real problem or the real
physics; it is aimed at producing informative but quick estimates of the cost to the goal. e reader
can verify that for the leftmost child s0 of the initial state s, the costs of the problem P.s0/ and the
relaxation PC.s0/ no longer coincide. e former is 4, while the latter is 3, the difference arising from



30 CLASSICAL PLANNING

the goal “C on A” that in the original problem must be undone and then redone. In the relaxation this
is never needed as no atom is ever deleted.

e heuristics for classical planning that have been developed so far, all assume that actions
costs c.a; s/ are 1 or depend at most on the action a but not on the state s, i.e., c.a; s/ D c.a/. In
principle, there is no problem in expressing arbitrary action costs c.a; s/ in compact form, like for
instance saying that c.a; s/ is 1 except that when s makes both p and q true where it is 100. Yet, while
such cost structures are important and are often needed, they have not been addressed systematically
in the literature so far, and thus there are not yet good heuristics for handling them in planning.

ADDITIVE AND MAX HEURISTICS
One of the first heuristics developed for domain-independent planning operate on the delete-
relaxation but doesn’t involve the computation of relaxed plans. We review this heuristic below along
with some variations that actually do. In order to simplify the definition, we introduce a new dummy
End action with zero cost, whose preconditionsG1; : : : ; Gn are the goals of the problem, and whose ef-
fect is a dummy atomic goalG. e heuristics h.s/ simply estimates the cost of achieving this “dummy”
goal G from the state s.

Since the heuristic hC that represents the optimal cost function of the delete-relaxation is in-
tractable, the additive heuristic hadd introduces a polynomial approximation in which subgoals are
assumed to be independent in the sense that they are achieved with no “side effects” [Bonet et al.,
1997]. is assumption is normally false, but results in a simple heuristic function

hadd .s/
def
D hadd .P re.End/I s/ (2.3)

that can be computed quite efficiently in every state s visited in the search, where hadd .P re.a/I s/ is
an estimate of the cost of achieving the preconditions of action a from s, defined from the expressions:

hadd .pI s/
def
D

�
0 if p 2 s

mina2O.p/ Œcost.a/C hadd .P re.a/I s/� otherwise (2.4)

and

hadd .P re.a/I s/
def
D

P
q2P re.a/ hadd .qI s/ : (2.5)

In these expressions, hadd .pI s/ stands for the estimated cost of achieving the atom p from s,
O.p/ stands for the actions in the problem that add p, and hadd .P re.a/I s/ stands for the estimated
cost of achieving the preconditions of the actions a from s. Versions of the additive heuristic appear
in several planners [Bonet and Geffner, 2001, Do and Kambhampati, 2001, Smith, 2004], where the
cost of the joint condition in action preconditions (and goals) is set to the sum of the costs of each
condition in isolation. e additive heuristic hadd is neither a lower bound nor an upper bound on the
optimal cost function h� over the original problem. e reason is that the cost of achieving two atoms
jointly from a state s can be lower or higher than the sum of the costs of achieving each one of them
individually. In particular, if a is a unit-cost action with preconditions that are true in s and atoms p
and q in the Add list that are not true in s, then the heuristic hadd .s/ for the goal G D fp; qg will be
2, while clearly the optimal cost h�.s/ of achieving G in the problem from s is 1. Likewise, if there is



2.7. DOMAIN-INDEPENDENT HEURISTICS AND RELAXATIONS 31

instead just one action that adds p and deletes q, and one action that adds q and deletes p, then the
heuristic hadd .s/ would still be 2, while the optimal cost h�.s/ of achieving G in the problem would
be infinity. G is indeed unachievable in such a problem where the formula :.p ^ q/ is an invariant.

If the estimated cost of the joint condition in Eq. 2.5 is changed from the sum to the maximum,

hmax.P re.a/I s/
def
D maxq2P re.a/ hmax.qI s/ ; (2.6)

a different heuristic is obtained by setting hmax.s/ to hmax.P re.End/I s/, and replacing hadd by
hmax in Eq. 2.4. Since the cost of achieving several atoms from a state s can never be lower than the
cost of achieving one of them, the max-heuristic hmax unlike the additive heuristic hadd is admissible,
and hence, potentially useful for computing optimal plans in combination with algorithms such as A*
or IDA*. Still, the max-heuristic is not informative enough in general, as it ignores all but one of the
atoms of each action precondition. In this sense, the heuristic hadd is not admissible but is better at
discriminating good from bad actions, as no precondition is left out from the computation.

e equations for hadd and hmax basically define a path-finding problem over atom space as
opposed to the planning problem that is a path-finding problem over the exponentially larger state
space. Indeed, any shortest-path algorithm can be used for computing these heuristics, including Di-
jkstra’s algorithm, Bellman and Ford’s, or Value Iteration [Bertsekas, 1995, Cormen et al., 2009].
A single change is needed though: while the nodes of the graph are the problem atoms, the edges,
that correspond to problem actions are actually hyperedges rather than normal edges, as they link the
set of atoms appearing in an action precondition with each of the atoms appearing in the Add list.
So, while an edge .n; n0/ in a normal directed graph induces a cost c.n0/ � c.n/C w.n; n0/ on the
target node n0, a (directed) hyperedge .fn1; : : : ; nkg; n0/ associated with an action a induces a cost
c.n0/ �

P
iD1;k c.ni /C c.a/ instead, in the additive heuristic. For any of the algorithms, the costs

c.n/ can be initialized to 0 for the nodes n corresponding to atoms p that are true in s, and to 1

for all other atoms. All the algorithms use the inequalities c.n0/ �
P

iD1;k c.ni /C c.a/ as updates
of the form c.n0/ WD min.c.n0/;

P
iD1;k c.ni /C c.a//, and differ in the order in which these updates

are performed and the conditions under which they are terminated. Dijkstra’s algorithm for example
updates nodes n0, once, in order, according to the value of the right-hand side expression, lowest first.
Bellman and Ford’s algorithm, and Value Iteration, do not pay the overhead required for following
this order, but end up updating nodes many times. In all cases, the computation is polynomial and
finishes in Dijkstra’s algorithm when there are no more nodes to update, while in Bellman and Ford’s
algorithm and in Value Iteration, when the updates produce no changes. For the max heuristic, the
update expression needs to be changed to c.n0/ WD min.c.n0/;maxiD1;k c.ni /C c.a//. An analysis of
these various methods for computing the additive heuristic is given by Liu et al. [2002].

RELAXED PLAN HEURISTIC
e heuristic search planners UNPOP and HSP use the additive heuristic in the context of standard
heuristic search algorithms [Bonet and Geffner, 2001, McDermott, 1999]. e planner FF that built
on these planners introduced two important changes [Hoffmann and Nebel, 2001]: one in the heuris-
tic, and one in the search procedure. We focus here on the heuristic, and consider the search procedure
in the next chapter. FF’s heuristic hFF.s/ is set to the cost of a plan �FF.s/ for the relaxationPC.s/ that
is not necessarily optimal, and which is obtained by running a Graphplan-like procedure [Blum and
Furst, 1995] that exploits the decomposability of the delete-free problem in line with the algorithm



32 CLASSICAL PLANNING

sketched above. Basically, a graph made of successive layers P0; A0; P1; A1; : : : where Pi is a set of
atoms, and Ai is a set of actions, is constructed for a problem P.s/ D hF; I D s;O;Gi as:

P0 D fp 2 sg

Ai D fa 2 O j P re.a/ � Pi g

PiC1 D Pi [ fp 2 Add.a/ j a 2 Ai g

until a fixed point is reached; i.e., a layer Pn for which PnC1 D Pn. Here P0 contains all the atoms
in s, Ai contains all the actions whose preconditions are true in Pi , and PiC1 contains the positive
effects of these actions along with the atoms appearing in previous layers Pk , k � i C 1. e resulting
layered graph cannot contain more than jF j layers, which happens only when P0 is empty, and PiC1

just contains one more atom than Pi . Moreover, the construction can be stopped when the goal G
first appears in a layer PmC1, i.e., G � PmC1, as the plan �FF.s/ for the relaxation PC.s/ is extracted
then backward from that layer. For this, it’s convenient to conceive �FF.s/ as a “parallel” plan made up
of actions B0 done in “parallel” at time 0, actions B1 done in “parallel” at time 1, and so on until Bm.
By actions done in parallel, we mean that the actions can be done in any order, as they will necessarily
have the same effect in the relaxation. In addition, during the construction of the graph, each atom
p that makes it for the first time in a layer PiC1 is tagged with one of the actions in Ai that adds p
which is called the best supporter for p and is denoted by ap . Clearly, there must be one such action,
else the atom p would not make it into the layer PiC1. e sets of actions Bi in the relaxed plan
�FF.s/ is then obtained recursively backward from the set GiC1 of atoms, initially set to G for i D m.
en for i D m;m � 1; : : : ; 0, and starting with Bi D ;, we add to Bi , the best supporter ap of each
of the atoms p in GiC1 that made into the layer PiC1 for the first time, and recursively set Gi to
.GiC1 n Add.Bi // [ P re.Bi /, where Add.Bi / and P re.Bi / are respectively the union of the Add
and Precondition lists of the actions in Bi .

It is easy to see that the resulting plan �FF.s/made up of this sequence of action sets Bi , where
actions in a set can be done in any order, is a plan for the relaxation PC.s/. is is because �FF.s/ con-
tains actions that add each of the goals in G, and in addition, every action in �FF.s/ has preconditions
that are true in the state s or are added by previous actions in the sequence. e heuristic hFF.s/ is
defined as the size j�FF.s/j of the plan, namely, the number of actions that it contains, thus assuming
implicitly that action costs are all 1. Of course, hFF.s/ could be defined instead as the sum of the ac-
tion costs c.a/ for a in �FF.s/, yet this does not address the fact that the relaxed plan was constructed
assuming that costs were uniform.

An advantage of FF’s heuristic over the additive heuristic is that it is less likely to overcount
actions. For example, if there is an action a whose preconditions hold in s with effects p and q that
do not, then the additive heuristic for the goal G D fp; qg is 2, while FF’s heuristic will be 1. Still,
FF’s heuristic can also overcount if there is a second action that adds q and whose preconditions hold
in s. In such a case, FF can produce a relaxed plan where the atom p is supported by the first action,
and the atom q is supported by the second action. An additional limitation of the FF heuristic is that
it assumes that all action costs are uniform. ere is however a simple way to combine the benefits of
the additive and FF’s heuristic [Keyder and Geffner, 2008a]. For this, all that is required is to change
the definition of the best support action ap for each atom p in the computation of the layered graph to

ap
def
D argmina2O.p/ Œc.a/C hadd .P re.a/I s/� (2.7)



2.8. HEURISTIC SEARCH PLANNING 33

when p is not true in the state s. ese best supports obtained from the additive heuristic can then be
used to build a relaxed plan that no longer ignores action costs. e backward procedure for extracting
a plan from these best supports proceeds like above: we collect in the relaxed plan the best supports
for the atoms in the goal, and recursively, the best supports of their preconditions, in all cases skipping
the atoms that are true in the state s. Actually, the same construction can be used also with the max
heuristic. Interestingly, the relaxed plan that would be obtained in this way from the max heuristic is
equivalent to the one obtained from FF’s procedure, provided that ties in the selection of best supports
are broken in the same way. is is because there is a tight correspondence between the max heuristic
and the layered graph constructed by FF. Indeed, it can be easily shown that the heuristic hmax.s/ is
equal to the index i of the first propositional layer Pi that contains the goalG of the problem [Haslum
and Geffner, 2000]. is also implies that the construction of the layered graph provides an alternative
way for computing the hmax heuristic that is still polynomial, although taking more space than the
shortest-path formulation over atom space described above.

2.8 HEURISTIC SEARCH PLANNING
efirst generation of heuristic search planners in the late 90s looked for plans by plugging one of these
heuristics into a standard heuristic search algorithm. HSP, in particular, used the additive heuristic
inside a WA* search. e planner FF, on the other hand, used the relaxed planning heuristic hFF.s/
and the relaxed plan �FF.s/ itself in a search architecture that works in two phases. In the first phase,
an incomplete but fast search called Enforced Hill Climbing (EHC) is performed. If a plan is found, it
is reported, else a second phase is triggered consisting of a complete Greedy Best First Search guided
by the hFF heuristic. is second phase is not too different from HSP as the search algorithm and
the heuristics are similar to the ones used in HSP. e main novelty of FF is in the first phase. First,
the EHC search ignores all the actions a that are not “helpful” in a given state, where an action is
deemed as helpful in a state s when it is applicable in s and adds a goal or the precondition of an
action in the relaxed plan �FF.s/ that is not true in s. Second, with the actions pruned in this way,
thus reducing significantly the branching factor of the problem, a Breadth-First Search is triggered
from s until a state s0 is found with a heuristic value hFF.s

0/ that is strictly smaller than hFF.s/. e
actions leading from s to s0 are then applied, and the process is repeated from s0 until a state s00 is
found with hFF.s/ D 0, which is necessarily a goal state. e EHC search is thus a Greedy search with
a lookahead restricted to the actions that are helpful over an horizon that is defined implicitly by the
presence of a state with a smaller heuristic value. e EHC search is extremely fast in problems with
high branching factors where standard best-first search is unfeasible or too slow. More recent planners
like Fast Downward and LAMA [Helmert, 2006, Richter and Westphal, 2010] have managed to
improve on FF by incorporating “helpful actions” inside a complete search scheme. In FF, on the other
hand, if the incomplete EHC search fails, the useful distinction between “helpful” and “non-helpful”
actions is lost. We will come back to these issues in the next chapter.

ese planners can scale up to very large problems, but they make no attempt at computing
provable optimal solutions. eir performance is assessed empirically by comparing the number of
problems that they solve, the time that they take, and the quality of the solutions that they find. Ad-
ditional information, like the number of nodes that are expanded in the search, provides an indication
of how informative are the heuristics and how selective is the search.



34 CLASSICAL PLANNING

2.9 DECOMPOSITION AND GOAL SERIALIZATION
e domain-independent heuristics developed for planning often yield quite impressive results, but
can also fail miserably sometimes. It is not surprising when the heuristics fail on domains that are
inherently hard [Hoffmann et al., 2007], yet the heuristics can fail on trivial domains too. -
is a domain from the 2011 Int. Planning Competition [Coles et al., 2012] where an agent in the
middle of a square n � n grid must visit all the cells in the grid. is is an extremely simple problem
to solve when there are no optimality requirements, yet planners such as HSP and FF do not scale
up to values of n greater than 20. Indeed, a Greedy Best-First search guided by the additive heuristic
does a memory out for n D 15, and produces plans that are much longer than optimal, at cost 883
for n D 10. e planner LAMA, in the default configuration which uses landmarks—to be explained
below—does much better in this domain, solving grids with n up to 30, with relatively good plans.
Indeed, for n D 10, the solution found by LAMA has cost 138, much lower than 883. e problem
with the additive heuristic in this domain is that when the agent gets closer to one goal, visiting one
particular cell, it gets away from other goals. us, huge plateaus must be traversed in the search before
the additive heuristic can be decreased. is causes problems both in best-first search algorithms, and
in the otherwise quite effective EnforcedHill Climbing (EHC) search. Actually, - is a domain
that is simple because it’s easy to decompose and solve, just requiring to visit the closest unvisited cell,
one at a time, until all cells have been visited. Indeed, there is a very simple domain-independent
heuristic that does not look at the actions in the domain at all, and yet does better than heuristics
like hadd .s/ and hFF.s/ that do: it’s the number of unachieved goals heuristic hug.s/ that simply counts
the number of top goals in the problem, i.e., atoms in G, that are not true in the state s. A Greedy
Best-First search planner with this heuristic does actually better than LAMA and the other planners,
solving easily problems with n greater than 50, producing good plans too. For n D 10, the resulting
plan has cost 104, smaller than LAMA’s 138, and much smaller than the 883 steps that result from a
GBFS search guided by additive heuristic.

ere are several lessons to draw from this simple example. First, that heuristics like hadd and
hFF are not necessarily better than simpler heuristics like hug , which simply counts the number of
unachieved goals, without trying to estimate the cost of achieving them. Second, and related to the first
point, heuristics like hadd and hFF fail often to decompose a problem into subproblems, even when
this appears trivial and effective. Of course, the number of unachieved goals heuristics is not good
enough for itself, because it provides no guidance at all for achieving any of the goals, yet implicitly
manages to yield a goal decomposition scheme that in many domains pays off, as indeed, most of the
planning problems that are not inherently hard, are decomposable or nearly decomposable problems,
where goals can be tackled one at a time, probably undoing slightly and reconstructing previously
achieved goals [Korf, 1987, Simon, 1996]. In such cases, a best-first search guided by the number of
unachieved subgoals heuristics, in which the additive heuristic is used as a tie-breaker, can do much
better than either heuristic alone.

2.10 STRUCTURE, WIDTH, AND COMPLEXITY
ere is a wide gap between the complexity of planning [Bylander, 1994], and the ability of current
planners to solve most existing benchmarks in a few seconds. Work on tractable planning has been
devoted to the identification of planning fragments that due to syntactic or structural restrictions
can be solved in polynomial time; fragments that include for example problems with single atom



2.10. STRUCTURE, WIDTH, AND COMPLEXITY 35

preconditions and goals [Bylander, 1994, Jonsson and Bäckström, 1994]. On the other hand, work on
factored planning has appealed instead to mappings of planning problems into Constraint Satisfaction
Problems, and the notion of width over CSPs [Amir and Engelhardt, 2003, Brafman and Domshlak,
2006]. e width of a CSP is related to the number of variables that have to be collapsed to ensure that
the induced graph underlying the CSP becomes a tree [Dechter, 2003, Freuder, 1982]. e complexity
of a CSP is exponential in the problemwidth, and henceCSP-trees, for example, can be solved in linear
time. A notion of width for classical planning using a form of Hamming distance was introduced by
Chen and Giménez [2007], where the distance is set to the number of problem variables whose value
needs to be changed in order to increase the number of goals achieved.

ese proposals all identify planning fragments that can be solved efficiently, yet few of the
existing benchmarks fall into these fragments even though they can be solved easily too. A related
thread of research has aimed at understanding the performance of modern heuristic search planners
by analyzing the characteristics of the optimal delete-relaxation heuristic hC that planners approximate
for guiding the search for plans [Hoffmann, 2005, 2011]. For instance, the lack of local minima for
hC implies that the search for plans (and hence the global minimum of hC) can be achieved by local
search, and this local search is tractable when the distance to the states that decrement hC is bounded
by a constant. More recently, a novel width notion for classical planning has been introduced, along
with a simple algorithm that solves problems in time and space exponential in their width [Lipovetzky
and Geffner, 2012]. Basically, for a STRIPS planning problem P D hF; I;O;Gi, the authors define
chains of tuples (sets) of atoms ti , t0 ! t1 ! : : : ! tn that obey two conditions: t0 holds in the initial
situation I , and for every optimal plan � that achieves jointly all the atoms in ti from I , there is an
action a such that � followed by a is an optimal plan for tiC1. e sets of atoms ti are like stepping
stones in the construction of optimal plans for tiC1, but stepping stones of a special type, where all
optimal plans for ti can be extended into optimal plans for tiC1. A chain t0 ! t1 ! : : : ! tn implies a
formulaW if all the optimal plans for tn are also optimal plans forW . e size of the chain is the size
of the largest set ti in the chain, and thewidth of the problem P ,w.P /, is the size of the min-size chain
that implies the goal G of P . It is then shown that many of the existing benchmark domains have
a bounded and low width when goals are restricted to single atoms, and an algorithm called Iterated
Width (IW) search is presented that can solve planning problems in time exponential in their width.
e algorithm is very simple; it is just a sequence of pruned breadth-first searches where a novelty bound
used for pruning is increased from 0 until the problem is solved or the number of variables in the
problem is exceeded. Basically, the novelty of a newly generated state s is defined as the size of the
smallest tuple of atoms that is true in s and false in all the states generated in the search before s.
us, for example, if s makes an atom p true that was false in all previously generated states, then the
novelty of s is 1; if this is not true for any atom but is true for a pair of atoms .p; q/, then the novelty
of s is 2, and so on. If the problem has width w.P /, then it is shown that IW solves the problem in at
most w.P / iterations, in time and space exponential in w.P /. e blind-search algorithm IW, which
does not look at the goal in any way, is shown to be quite effective in solving the standard domains
when goals are single atoms, where it is competitive with the best heuristic-search planners. e blind-
search algorithm IW is extended into another algorithm, Serialized IW (SIW), that uses IW for both
decomposing a joint goal into atomic subgoals, and for solving each individual subgoal. Interestingly,
while SIW is an incomplete blind-search algorithm, its performance over the benchmark domains is
not far from the state of the art. While further work is required along this line, one tentative lesson that
can be drawn from these results is that planners do well on most benchmarks because the benchmark



36 CLASSICAL PLANNING

domains are easy when containing single atomic goals, and because simple methods appear to work for
decomposing joint goals into atomic goals. is account also suggests that problems with joint goals
that are hard to decompose, and problems with atomic goals that have a high width, may constitute
two sources of hard problems for classical planning.



37

C H A P T E R 3

Classical Planning: Variations
and Extensions

Most of the current state-of-the-art classical planners are based on the heuristic search formulation
where plans are searched forward from the initial state using heuristics derived from the problem. is
basic idea, however, has been extended in a number of ways, like in the use of structural information,
also obtained automatically from the problem, in the form of “helpful actions” and “landmarks.” In
this chapter, we look at extensions and variations of the basic framework, at the heuristics developed
for optimal planning, and at other computational approaches to classical and related forms of planning
such as temporal and hierarchical task network planning.

3.1 RELAXED PLANS AND HELPFUL ACTIONS

e planner FF [Hoffmann and Nebel, 2001] that followed the first generation of heuristic search
planners, used the relaxed plan heuristic inside a novel search architecture comprised of two phases:
an incomplete but fast Enforced Hill Climbing (EHC) search, followed if needed by a complete but
slower Greedy Best-First Search (GBFS). e gap in performance between FF and previous plan-
ners results mainly from the EHC search which can be particularly effective in problems where the
branching factor is high. As explained in Section 2.8, the EHC search is a greedy search that uses
a breadth-first lookahead where non-helpful actions are ignored and where the lookahead horizon is
given implicitly by the first state that improves the value of the heuristic. It is the pruning of non-
helpful actions that makes the EHC search incomplete. Recall that the helpful actions in a state s are
defined as the actions applicable in the state s that add a goal or a precondition for an action in the
relaxed plan �FF.s/ that is not part of the state s. e reason that this lookahead is effective is because
this notion of “helpful actions” often accounts for the actions that are most relevant to the goal, at
least on domains that are not inherently hard. is, however, is an empirical observation; we don’t
understand yet why and when this is so.

A single state s in the EHC search where the action required is not helpful is sufficient to make
the EHC search fail (assuming that this state can’t be avoided in the way to the goal). e problem
with this is that FF then switches to a complete GBFS where the information contained in the helpful
actions is not used at all. e EHC will fail for example in a problem where an agent has to bring a
suitcase to a destination, and there is a short route, say of 10 steps such that the agent cannot get past
the fifth step with the suitcase, and a longer, disjoint route, say of 100 steps, with no such impediment.
If the agent can drop the suitcase at any location and pick it up under the obvious preconditions, the
relaxation will drive the EHC search along the short route, yet as long as the non-helpful action leading
to the longer route is not taken in the initial state, the goal won’t be achieved. e “helpful actions” are



38 3. CLASSICAL PLANNING: VARIATIONS AND EXTENSIONS

the actions that most directly drive the agent to the goal in the relaxation, yet these are not always the
actions that serve best the agent in the original problem.

3.2 MULTI-QUEUE BEST-FIRST SEARCH
A key innovation in the planner Fast Downward (FD) that followed on FF [Helmert, 2006], was a
way to use the information contained in the actions deemed as “helpful” in a complete search. For this,
FD introduced a novel version of a Best-First Search algorithm that uses not just one OPEN list but
multiple ones. e lists do not have to be disjoint and each one can be ordered by a different evaluation
function. In particular, the complete algorithm that incorporates FF’s heuristic along with FF’s helpful
actions in FD contains two OPEN lists, both using FF’s heuristic as the evaluation function. Yet,
the children nodes that result from the application of a helpful action are placed in the “helpful”
OPEN list, while all the children, resulting either from helpful or non-helpful actions, are placed in
the “non-helpful” OPEN list. e search algorithm then alternates between expansions of the best
nodes according to the heuristic hFF in the two OPEN lists [Röger and Helmert, 2010]. Of course, a
node selected for expansion can be pruned when a duplicate of that node has been expanded already,
andmoreover, it makes sense to expand the “helpful”OPEN lists more often that the “non-helpful” list.
Yet, as long as the selection between the two lists remains fair and one list is never left waiting forever,
the algorithm remains complete and able to exploit information about helpful actions. Fast Downward
complements this novel search architecture with a technique for dealing with the very large branching
factors that result from not pruning the non-helpful actions as in the EHC search. e idea, called
delayed evaluation, is to compute the heuristic of nodes only when they are expanded and not when
they are generated. In the meantime, the heuristic of the node is set to the heuristic of its parent node
(which must have been expanded). While this simplification leaves out useful information that could
be derived, it avoids the overhead of evaluating many nodes that will never be expanded. Indeed, under
delayed evaluation, the number of heuristic computations is equal to the number of nodes expanded
rather than the possiblymuch larger number of nodes generated. Since the computation of the heuristic
often represents the bulk of the computation in heuristic search planners, for problems with average
branching factors of 100, for example, this technique can achieve time savings that can approach two
orders of magnitude.

3.3 IMPLICIT SUBGOALS: LANDMARKS
We have seen in Section 2.9 that problem decomposition can pay off in some planning problems where
a joint goal G D fG1; : : : ; Gng can often be achieved by dealing with one subgoal Gi at a time, in an
ordering that doesn’t have to be fixed a priori. We have also seen that some of the standard planning
heuristics such as hadd and hFF do not deliver such a decomposition, while the simpler heuristic hug

that counts the number of goals Gi not yet achieved, does.
eMulti-Queue Best-First search algorithm introduced in Fast Downward integrates multiple

heuristics in a natural way by ordering different queues with different heuristics. e more recent
planner LAMA [Richter and Westphal, 2010], which followed on Fast Downward, uses a similar
search architecture for combining FF’s heuristic with a more sophisticated version of the number of
unachieved goals heuristic that counts not only the explicit top goals of the problem, but also the
implicit subgoals. ese implicit subgoals are called landmarks, which are defined as formulas that must
achieved in the way to the goal by any plan that solves the problem [Hoffmann et al., 2004]. In



3.4. STATE-OF-THE-ART CLASSICAL PLANNERS 39

particular, an atomic landmark is an atom that all plans for the problem must achieve at some point.
LAMA uses both atomic landmarks and certain types of disjunctive landmarks. As an example, the
atom clear.A/ is a landmark in any Blocks World problem where block A has to be placed onto a
different block but its top is not clear. Similarly, if B is the block sitting on A, then the disjunction
ontable.B/ _

W
X on.B;X/, where X ranges over the blocks X different than A, is also a landmark.

While the problem of determining if a formula is a landmark is computationally intractable, there are
very efficient algorithms for identifying some, although not necessarily all landmarks. In particular, one
can identify landmarks in the delete-relaxation, as landmarks in the delete-relaxation are landmarks
of the original problem too (this is because all plans are plans for the relaxation). An atom p will be a
landmark of the problem when any of the delete-relaxation heuristics like hadd , hmax , or hFF yield an
infinite heuristic value in the problem that results from excluding the atom p from all action effects.
Since all these heuristics yield an infinite value only when the delete-relaxation, and hence the original
problem, is unsolvable, this means that if the problem is solvable at all, all the plans will have to contain
an action that adds p. Since for this computation we are just interested in whether the value of the
heuristic is infinite or not, for performance it pays off to set all action costs to zero when using either
the additive or max heuristic for this purpose. While this computation has to be done jF j times for
identifying the atomic landmarks, where F is the set of atoms in the problem, this can be done just
once as preprocessing. ere are also algorithms that compute all atomic landmarks more efficiently
in one pass, as well as algorithms that compute atomic and certain classes of disjunctive landmarks
[Hoffmann et al., 2004, Keyder et al., 2010, Richter et al., 2008, Zhu and Givan, 2005].

e LAMA planner which has been the top performing planner in the last two International
Planning Competitions [Coles et al., 2012, Helmert et al., 2008], uses the same Multi-Queue Best-
First Search architecture as Fast Downward with two heuristics and four queues. e two heuristics
are FF’s and the number of unachieved landmark heuristic, which as we have seen, is an extension of
the traditional but less informed number of unachieved top-goals heuristic. Two of the queues are
then ordered by FF’s heuristic, and two by the landmark heuristic. As in Fast Downward, one of the
two queues for each heuristic is for the “helpful” children only; the other, for the non-helpful. e
definition of “helpful” children is the standard one for the queue ordered by FF’s heuristic (children
of helpful actions); on the other hand, the helpful children in the landmark queue are defined in a
different manner, as the children of actions that add an unachieved landmark, and when there are no
such actions, as the actions that would be helpful in FF’s sense for achieving the nearest unachieved
landmark. ese are somewhat arbitrary definitions that follow from performance considerations over
the wide range of planning benchmarks, and there is not yet a good theory justifying these choices.

3.4 STATE-OF-THE-ART CLASSICAL PLANNERS
Table 3.1 shows the performance of a number of classical planners over benchmarks from past com-
petitions, some of which feature hundreds of atoms and actions, and result in very long plans. We
include the planners FF [Hoffmann and Nebel, 2001], Fast Downward [Helmert, 2006], LAMA
[Richter and Westphal, 2010], Probe [Lipovetzky and Geffner, 2011], and BFS(f ) [Lipovetzky and
Geffner, 2012]. We have discussed most of these planners before. Probe is a GBFS planner guided
by the additive heuristic that throws a carefully designed probe to the goal from each state that is ex-
panded. e probe does not involve any search and either reaches the goal quickly or fails. In the first
case, a plan is returned, in the second, the search continues. BFS(f ) is also a GBFS planner but uses



40 3. CLASSICAL PLANNING: VARIATIONS AND EXTENSIONS

Table 3.1: Some recent classical planners and their performance over competition benchmarks. Planners are FF,
Fast Downward, Probe, LAMA, BFS(f ). I is number of instances per domain, S is number of solved instances,
Q and T are the average plan lengths and times in seconds computed over problems solved by all planners.

FF FD PROBE LAMA’11 BFS(f )
Domain I S Q T S Q T S Q T S Q T S Q T
8puzzle 50 49 52.61 0.03 50 52.30 0.18 50 60.94 0.09 49 92.54 0.18 50 45.30 0.20
Barman 20 0 – – 20 197.90 84.00 20 169.30 12.93 20 192.15 8.39 20 174.45 281.28
BlocksW 50 44 39.36 66.67 50 104.24 0.46 50 43.88 0.25 50 89.96 0.41 50 54.24 2.25
Cybersec 30 4 29.50 0.73 28 36.58 859.24 24 50.73 48.29 30 35.27 880.06 28 36.92 63.79
Depots 22 22 51.82 32.72 17 110.25 91.86 22 88.88 1.45 21 43.56 3.58 22 39.56 69.11
Driver 20 16 25.00 14.52 20 50.67 1.26 20 60.17 1.49 20 46.22 1.51 18 48.06 140.93
Elevators 30 30 85.73 1.00 30 92.57 3.20 30 107.97 26.66 30 97.07 4.69 30 129.13 93.88
Ferry 50 50 27.68 0.02 50 30.08 0.09 50 44.80 0.02 50 26.86 0.08 50 31.28 0.03
Floortile 20 5 44.20 134.29 3 39.00 6.91 5 40.50 106.97 5 40.00 8.94 7 36.50 4.15
Freecell 20 20 64.00 22.95 20 61.06 26.55 20 62.44 41.26 19 67.78 27.35 20 64.39 13.00
Grid 5 5 61.00 0.27 5 61.60 4.95 5 58.00 9.64 5 70.60 4.84 5 70.60 7.70
Gripper 50 50 76.00 0.03 50 152.62 0.17 50 152.66 0.06 50 92.76 0.15 50 152.66 0.38
Logistics 28 28 41.43 0.03 28 77.11 0.18 28 55.36 0.09 28 73.64 0.17 28 87.04 0.12
Miconic 50 50 30.38 0.03 50 39.80 0.07 50 44.80 0.01 50 31.02 0.06 50 34.46 0.01
Mprime 35 34 9.53 14.82 35 8.37 9.50 35 12.97 26.67 35 8.60 10.30 35 10.17 19.30
Mystery 30 18 6.61 0.24 19 6.86 1.87 25 7.71 1.08 22 7.29 1.70 27 7.07 0.93
NoMyst 20 4 19.75 0.23 6 22.40 1.96 5 23.20 2.73 11 23.00 1.77 19 22.60 0.78
OpenSt 30 30 155.67 6.86 30 130.11 5.97 30 134.14 64.55 30 130.18 3.49 29 125.89 129.06
OpenSt6 30 30 136.17 0.38 30 222.67 5.39 30 224.00 48.89 30 140.60 4.89 30 139.13 40.19
ParcPr 30 30 42.73 0.06 27 35.79 1.97 28 70.92 0.26 30 70.54 0.28 27 70.42 6.72
Parking 20 3 88.33 945.86 20 74.86 330.76 17 143.36 685.47 19 129.57 361.19 17 83.43 562.39
Pegsol 30 30 25.50 7.61 30 25.97 0.80 30 25.17 8.60 30 26.07 2.76 30 24.20 1.17
Pipes-N 50 35 34.34 12.77 44 75.50 7.94 45 46.73 3.18 44 54.41 11.11 47 58.39 35.97
Pipes-T 50 20 31.45 87.96 40 73.33 99.06 43 54.19 88.47 41 69.83 35.28 40 39.14 216.25
PSR-s 50 42 16.92 63.05 50 14.61 0.27 50 17.20 0.07 50 14.65 0.31 48 18.14 2.57
Rovers 40 40 100.47 31.78 40 153.18 13.69 40 131.20 24.19 40 108.53 17.90 40 126.30 44.20
Satellite 20 20 37.75 0.10 20 40.90 0.78 20 37.05 0.84 20 42.05 0.78 20 36.05 1.26
Scan 30 30 31.87 70.74 28 30.04 7.30 28 25.15 5.59 28 28.04 8.14 27 29.37 7.40
Sokoban 30 26 213.38 26.61 28 204.14 12.44 25 231.52 39.63 28 231.81 184.38 23 218.52 125.12
Storage 30 18 16.28 39.17 20 17.72 3.20 21 14.56 0.07 18 24.56 8.15 20 20.94 4.34
Tidybot 20 15 63.20 9.78 15 66.00 338.14 19 52.67 33.50 16 62.60 102.52 18 63.27 207.85
Tpp 30 28 122.29 53.23 30 127.93 16.95 30 152.53 60.95 30 205.37 18.72 30 110.13 126.03
Transport 30 29 117.41 167.10 30 97.57 12.75 30 125.63 38.87 30 215.90 76.18 30 97.57 46.64
Trucks 30 11 27.09 3.84 17 26.00 0.65 8 26.75 113.54 16 24.75 0.53 15 26.50 8.59
Visitall 20 6 450.67 38.22 7 3583.86 166.35 19 411.71 9.02 20 468.00 4.68 20 339.00 4.58
WoodW 30 17 32.35 0.22 30 57.13 18.40 30 41.13 15.93 30 79.20 12.45 30 41.13 19.12
Zeno 20 20 30.60 0.17 20 37.45 2.68 20 44.90 6.18 20 35.80 4.28 20 37.70 77.56
Summary 1150 909 67.75 51.50 1037 168.60 57.78 1052 83.64 41.28 1065 86.51 48.98 1070 74.32 63.91



3.5. OPTIMAL PLANNING AND ADMISSIBLE HEURISTICS 41

an evaluation function based on width-considerations (Section 2.10) along with tie breakers based on
the additive and number-of-unachieved-landmark heuristics. e scalability of planners has improved
considerably over the last 15 years with the best planners using and extending the ideas of previous
planners, such as heuristic functions, helpful actions, and landmarks. As a reference, a baseline planner
such as HSP, based solely on a Greedy Best-First Search guided by the additive heuristic, solves 789
of the problems, while LAMA, the winner of the last two competitions solves 1,065 problems out
of a total of 1,150. In the Table, I stands for the number of instances per domain, while S, Q, and
T stand for the number of instances solved, and the average plan lengths and times in seconds. e
experiments were conducted on a dual-core CPU running at 2.33 GHz and with two GB of RAM,
with processes timing out after two hours. All of these domains and planners, including their sources,
are available on the Internet.

3.5 OPTIMAL PLANNING AND ADMISSIBLE HEURISTICS
Optimal planners ensure the optimality of the plans found by using admissible heuristics (lower
bounds) in the context of search algorithms like A* or IDA*. Most admissible heuristics developed for
planning are based either on the delete-relaxation like the heuristic hmax [Bonet and Geffner, 2001],
on a notion of critical paths like the heuristics hm [Haslum and Geffner, 2000], on abstractions where
certain atoms are dropped from the problem, like pattern-database heuristics [Edelkamp, 2001], or on
landmarks, like the LA and LM-Cut heuristics [Helmert and Domshlak, 2009, Karpas and Domsh-
lak, 2009]. Many of these heuristics are general templates that leave some choices open, and some
dominance relations among these heuristics have been established as well [Helmert and Domshlak,
2009].

e heuristics hm, wherem is a positive integer, are based on the assumption that the estimated
cost hm.C; s/ of achieving a (conjunctive) set of C atoms from a state s is given by the estimated
cost hm.C 0; s/ of achieving the most costly subset C 0 of at most m atoms in C . Mathematically, the
estimate hm.C; s/ is defined inductively as:

hm.C; s/ D

8<: 0 if C � s,
mina2R.C / Œc.a/C hm.Reg.a; C /; s/� if C ª s and jC j � m,
maxfhm.C 0; s/ W C 0 � C; jC 0j � mg otherwise,

(3.1)

whereReg.a; C / stands for the regression of the set of atomsC through the action a, i.e.,Reg.a; C / D

.C n Add.a// [ P rec.a/, and R.C/ stands for set of actions a in the problem that add some atom in
C and delete none. e approximation captured by this definition follows from setting the estimated
cost hm.C; s/ of achieving sets C of more thanm atoms, to the cost of achieving the most costly subset
C 0 of C of at most m atoms. e hm heuristic for state s, hm.s/, is hm.s/ D hm.G; s/, where G is the
goal of the problem. For m D 1, it is easy to show that hm is equal to hmax , while for a sufficiently
large value of m that is less than or equal to the total number of variables in the problem, hm is equal
to the optimal heuristic h�.

Pattern database (PDB) heuristics provide a generalization of the PDB heuristics developed for
domain-specific heuristic search [Culberson and Schaeffer, 1998]. A PDB heuristic is a lookup table
that stores exact optimal distances for an abstraction of the problem computed by a regression search
from the goal. e abstraction is obtained by dropping a sufficient number of atoms from the problem



42 3. CLASSICAL PLANNING: VARIATIONS AND EXTENSIONS

so that the number of reachable states in the reduced problem fits in memory. An atom is removed
from a problem P D hF; I;O;Gi by removing it from F , I ,O , andG; i.e., the atom is removed from
precondition, delete, and add lists, from the goal and the initial situation, and from the set of problem
atoms. If s is a state over the original problem, and A is the set of atoms retained in the reduced
problem, the heuristic h.s/ is set to the optimal heuristic h�.s0/ over the reduced problem where s0

is the state s0 D s \ A. A key challenge in the design of PDBs is deciding which atoms to abstract
away from the problem [Haslum et al., 2007]. Two recent variations on the PDB idea for planning
are the merge-and-shrink heuristics [Helmert et al., 2007] and structural pattern heuristics [Katz and
Domshlak, 2008b].

Multiple admissible heuristics h1; : : : ; hn can be combined into a potentially more informed
admissible heuristic by taking their pointwise maximum as h.s/ D maxfh1.s/; : : : ; hn.s/g, or by par-
titioning the action costs [Haslum et al., 2007, Katz and Domshlak, 2008a]. A cost partitioning ˘ of
problem P with cost function c.�/ is a collection P1; : : : ; Pn of problems identical to P except on their
cost functions c1; : : : ; cn that must be non-negative and satisfy

P
iD1;n ci .a/ � c.a/ for every action a

in P . en, if h1; : : : ; hn are (arbitrary) admissible heuristics for the problems P1; : : : ; Pn respectively,
the additive heuristics h D h1 C � � � C hn is an admissible heuristic for P . One can indeed improve
a base heuristic by doing a cost partitioning that applies the same base heuristic to every problem in
the partition; the difficulty is in the choice of the cost functions ci , 1 � i � n, and the number of
partitions.

e LM-Cut heuristic [Helmert and Domshlak, 2009] is a powerful admissible heuristic that
can be thought as either a landmark heuristic or a cost partitioning heuristic based on hmax . For de-
termining the LM-Cut value of a state, a sequence L1; : : : ; Lm of (disjunctive but not necessarily
disjoint) action landmarks are computed together with cost functions c1; : : : ; cm providing a cost par-
titioning. Like (atomic) landmarks, a disjunctive action landmark L for state s is a set of actions such
that every plan from the state s must contain one of the actions in the set. In cases when the landmarks
computed by LM-Cut are pairwise disjoint, the cost function c1 in the partition defined by LM-Cut
assigns costs c1.a/ D c.a/ to every action a 2 L1 and c1.a/ D 0 to a … L1, costs c2.a/ D c.a/ for ev-
ery action a 2 L2 n L1, and c2.a/ D 0 for a … L2, and so on, while the heuristic values in such cases
become h1 D mina2L1

c1.a/, h2 D mina2L2
c2.a/, and so on. e value of the LM-Cut heuristic at

state s is the sum h1 C h2 C � � � C hm as in any cost partitioning scheme, which is guaranteed to be
admissible. e LM-Cut heuristic can be improved by computing and considering more than one
landmark at a time, exploiting a connection between action landmarks and hitting sets [Bonet and
Helmert, 2010].

3.6 BRANCHING SCHEMES AND PROBLEM SPACES
We have reduced the search for plans for a STRIPS planning problem P D hF; I;O;Gi to the search
for paths in the directed graph associated with the state space S.P /, where the root node represents
the initial state I , the target nodes represent the states that include the goal G, and the edges express
the state transitions that are possible given the actions in O . Yet, the search for plans can be formu-
lated in many other ways, some of which will be explored over the next few sections. As we will see,
the search for plans can also be formulated as a path-finding problem over a different graph, so that
plans are searched backward from the goal rather than forward from the initial state. We will also see
formulations where plans are not constructed directionally either from the initial situation or from



3.7. REGRESSION PLANNING 43

the goal. In all cases, however, the search will involve the traversal of a graph, along with heuristics
or inference procedures for selecting or pruning branches. Branches will represent partial plans: either
partial plans that have to be refined further, partial plans that are complete and hence encode solu-
tions, or partial plans that can’t be refined into solutions. In the formulation we have considered so
far, branches in the graph represent plan prefixes, and the nodes at the end of these branches represent
the resulting states. In other formulations, branches represent plan suffixes, partially ordered plans, or
simply commitments about actions and propositions that are true or false at different time steps. While
the formulation considered so far is the most natural, and the one that underlies the best current plan-
ners, the other formulations are also useful, and may in fact be superior in slightly different settings,
as in temporal planning, where actions have different durations and may be executed concurrently, and
plans that minimize total duration (makespan) are sought. e graph that results from these decisions,
and in particular, the way in which children nodes are generated from parent nodes in the graph, are
sometimes referred to as the branching scheme, the problem space, or the search graph. While in the stan-
dard problem space for planning, the branching factor (number of children) is given by the number of
applicable actions, we will see other problem spaces for planning whose branching factor is always 2,
regardless of the number of actions or atoms in the problem. As an illustration of this, consider the
famous Travelling Salesman Problem (TSP), where a minimum cost tour that visits every node in a
graph once is sought [Lawler et al., 1985]. e most natural way for solving the problem is by starting
in an arbitrary TSP node n, and by defining the children of the node in the search graph as the TSP
nodes that can be reached from n in one step. Branches in this search graph would thus stand for tour
prefixes. In principle, if there are n nodes in the TSP graph, this means up to n � 1 children per node
in the search graph, and hence a large branching factor if the TSP graph is large and dense. A different
branching scheme for solving the TSP is to pick one edge .i; j / from the TSP graph, while considering
two options: that the edge will be part of the optimal solution, or that the edge will not be part of the
optimal solution. e resulting search graph then becomes a tree with a branching factor of 2, where
the branches are no longer tour prefixes but tour commitments, namely, that certain edges in the TSP
graph have to be part of the final tour and that other edges don’t. Interestingly, in combination with
good admissible heuristics for the TSP like the assignment problem heuristic, this less direct form of
branching, scales up much better for large TSPs than the most straightforward approach of starting
in one city and building the tour forward from it [Lawler et al., 1985]. It is crucial though that the
problem space and the heuristics or inference used for guidance or pruning are well matched to each
other. Heuristics such as hFF and hadd work well in the forward search for plans because the initial
state of the problem can be progressed through the plan prefix (by applying the actions in sequence),
and the heuristic for the plan prefix can be computed from the state that results. is property extends
also to regression planners that search for plans backward, where a suitable state, obtained by regressing
the goal through a plan suffix, is used for computing the heuristic. For this reason, planners that search
for plans forward or backward are often called state-space planners. Computing heuristics for planners
that search for plans in other ways is more difficult, yet powerful propagation and pruning criteria have
been developed for SAT and CSP formulations.

3.7 REGRESSION PLANNING
Planners can search for plans backward from the goal by applying the actions in reverse. Basically, if a
set of atoms C is to be achieved, the only actions that could be “last” in a minimal plan for achieving



44 3. CLASSICAL PLANNING: VARIATIONS AND EXTENSIONS

C are actions that add some atom in C and do not delete any. If a is one such action, the set of atoms
C 0 that have to be true right before the application of a in order for C be true right after, are the action
preconditions of a along with the atoms in C that are not added by a. e set of atoms C 0 is said to
be then the regression of C through the action a. Starting this “subgoaling” process with the top goal
G of the problem, we obtain a state space that is called the regression state model associated with the
STRIPS planning problem P D hF; I;O;Gi, to distinguish it from the forward or progression state
model S.P / [Bonet and Geffner, 1999, Nilsson, 1980, Weld, 1994]. In this regression space R.P /:

• the states s are sets of atoms from F ,

• the initial state s0 is G,

• the goal states are the states s for which s � I ,

• the set of actions A.s/ applicable in s are the actions a 2 O that are relevant and consistent,
namely, for which Add.a/ \ s ¤ ; and Del.a/ \ s D ;,

• the state s0 D f .a; s/ that follows the application of action a 2 A.s/ in s is s0 D .s n Add.a// [

P rec.a/, and

• the action costs are c.a; s/.

e solution of this state space is like the solution of any state model, an applicable action
sequence mapping the initial state into a goal state. Yet, notice that in the regression space R.P /, the
initial state is the goal of P , and the goal states are the states that must be true in the initial situation
of P . Moreover, while the states s in the regression space R.P / are defined syntactically as in the
progression space S.P / by sets of atoms, the meaning of these sets is very different in the two cases:
states represent complete truth-assignments in the progression space but partial truth-assignments in the
regression space. In particular, in the initial state s0 D I of the progression space S.P /, every atom that
is not in I is false, while in the initial state s0 D G of the regression space, this is not true; indeed,
the goal G can be the single atom on.A;B/ in a blocks world problem with three blocks A, B , and
C , and there is no reachable state of the problem where on.A;B/ is true and all other atoms are false
(blocks B and C must be somewhere!). It can be shown that every state s in the regression spaceR.P /
stands indeed for a collection of states s0 in the progression space S.P /, namely all the states s0 in the
progression space that include s. Alternatively, the states s in the regression can be thought of as goals
and subgoals to be achieved, with an action applied in reverse, mapping one goal into another one.

e regression space R.P / is sound and complete in the sense that the solutions to R.P /
encode the solutions to the problem P but in reverse. One potential advantage of searching for plans
backward in R.P / as opposed to forward in S.P / is that it is possible to avoid the computation of
the heuristic from scratch in every state. is can represent up to 80% of the total time that heuristic
search planners take in solving a problem. In the regression search it is indeed possible to perform the
bulk of this computation just once. For example, if h.pI s0/ is the estimated cost of achieving the atom
p from the initial problem state s0 according to the additive heuristic, the estimated cost h.s0/ from a
state s0 to the goal I in the regression search can be set up to the sum h.s0/ D

P
p2s0 h.pI s0/, where the

elements of the sum need to be computed just once from s0 and used then to determine the heuristic
h.s0/ of any state s0 in the regression space.



3.8. PLANNING AS SAT AND CONSTRAINT SATISFACTION 45

A potential problem in the regression search is that while the regression is sound and complete,
it may contain many more dead-ends than the progression search; i.e., the regression can generate
collection of atoms that cannot be achieved jointly by any plan from the initial situation, and hence
that will not lead to any solution [Bonet and Geffner, 1999]. In addition, it is not clear that the
heuristics as defined above are as informative in the backward search as in the forward search. None
of these issues have been studied throughly, though, yet the fact is that there are no regression-based
planners these days that can compete with the best progression-based planners examined above.

3.8 PLANNING AS SAT AND CONSTRAINT SATISFACTION
SAT is the problem of determining whether a formula in Conjunctive Normal Form (CNF) is satisfi-
able. A formula in CNF can be regarded as a set of disjunctions of literals where a literal is an atom or
its negation. Such disjunctions are called clauses. For instance, the formula .p _ :q/ ^ .:p _ q/ is in
CNF, p _ :q and :p _ q are its clauses, and the formula is satisfiable as the assignment p 7! t rue,
q 7! t rue, for example, makes both clauses true. SAT is an NP-Complete problem [Sipser, 2006],
which in practice means that all complete algorithms for SAT will run in exponential time in the
worst case. Still, very large SAT instances can be solved nowadays due to very effective inference tech-
niques, such as Unit Propagation and Conflict-driven Learning [Biere et al., 2012]. e problem of
classical planning can be expressed as a SAT problem provided that a planning horizon is given. e
SAT approach to planning has been introduced and shown to be effective by Kautz and Selman in
the mid 90s [Kautz and Selman, 1992, 1996, 1999]. e basic idea is very simple. For a STRIPS
problem P D hF; I;O;Gi and a planning horizon n, a CNF formula C.P; n/ is produced that is fed
into a general SAT solver. e CNF formula C.P; n/ includes propositions p0; p1; : : : ; pn for each
atom p 2 F and propositions a0; a1; : : : ; an�1 for each action a 2 O . e formula C.P; n/ is such
that C.P; n/ is satisfiable iff there is a plan of at most n steps that solves the problem P . In such a
case, the plan can be extracted from the actions that are true in the satisfying assignment.

e clauses in the formulaC.P; n/ encoding the planning problemP D hF; I;O;Gi with hori-
zon n are given in Figure 3.1. It can be shown that if C.P; n/ is not satisfiable, then there is no plan of
length n solving the problem P , while if C.P; n/ is satisfiable, the plan given by the action that is true
at time 0, followed by the action that is true at time 1, and so on, with truth evaluated in the satisfy-
ing assignment, is a plan that solves P . Moreover for any plan that solves P , there is an assignment
satisfying the formula C.P; n/ that makes the plan true. Since the horizon n required to find a plan is
not known a priori, the SAT approach to planning increases the horizon one by one from n D 0 until
a satisfying assignment for C.P; n/ is found.

e approach, as described, works remarkably well, although it doesn’t scale up as well as the
best heuristic search planners. In part, this is to be expected, as in this formulation the first plan found
is an optimal plan (assuming actions costs are uniform). In order for the SAT approach to scale up, a
number of variations have been introduced. One is to allow certain sets of actions to be done in parallel,
in particular, the sets of actions that if applicable in a given situation, remain applicable and yield
the same overall effect regardless of how they are ordered. A sufficient condition for this is that no
action in the set deletes a precondition or add effect of any other action in the set. Actions that do
not comply with this condition are called mutex, as they are regarded as mutually exclusive at any
one time step [Blum and Furst, 1995]. Other improvements involve the introduction of a NO-OP
action for each atom p in the problem, with precondition and effect p, which helps to simplify the



46 3. CLASSICAL PLANNING: VARIATIONS AND EXTENSIONS

Init: p0 for each p 2 I , :q0 for each q 2 F such that q 62 I .

Goal: pn for each p 2 G.

Actions: For i D 0; 1; : : : ; n � 1 and each action a 2 O :
ai � pi for each p 2 P re.a/

ai � piC1 for each p 2 Add.a/

ai � :piC1 for each p 2 Del.a/

Persistence: For i D 0; 1; : : : ; n � 1 and each fluent p 2 F , where O.pC/ and O.p�/

are the actions that add and delete p respectively,
pi ^

V
a2O.p�/ :ai � piC1

:pi ^
V

a2O.pC/ :ai � :piC1

Seriality: For each a; a0 2 O such that a ¤ a0, :.ai ^ a0
i / for i D 1; : : : ; n � 1.

Figure 3.1: e subformulas that make up the CNF formula C.P; n/ encoding a planning problem P D

hF; I;O;Gi with horizon n. Fluents p and actions a are tagged with time indices i . e subformulas can be
easily converted into clauses.

clauses encoding the persistence axioms, and the use of lower bounds for initializing the planning
horizon [Kautz and Selman, 1999]. More recently, Jussi Rintanen has introduced other refinements
that improve the performance of SAT-based planners further, including the use of a special heuristic for
variable selection in the otherwise generic SAT solver, an improved search for an adequate planning
horizon, and better memory management for dealing with the millions of clauses that often result
from planning encodings in CNF [Rintanen, 2012]. While SAT-based planners do not yet scale up
as well as the best heuristic-search planners, the gap has narrowed down considerably. Moreover, it is
well known that on domains that are inherently difficult, SAT approaches can do much better than
optimal and non-optimal heuristic search planners [Hoffmann et al., 2007].

Constraint Satisfaction Problem (CSP) provide a generalization of SAT where the variables are
not restricted to be boolean, and constraints are not restricted to be clauses [Dechter, 2003]. General
CSP solvers can deal with multivalued variables over arbitrary constraints. In the same way that clas-
sical planning problems with a fixed horizon can be cast as SAT problems, they can also be cast as
CSP problems [Do and Kambhampati, 2000]. In spite and perhaps because of the additional expres-
sive power afforded by the CSP formulation, CSP-based planners have not been able to keep up with
SAT-based planners, that are based on a more restricted task (SAT) over which the technology has
moved faster.

3.9 PARTIAL-ORDER CAUSAL LINK PLANNING
Branching schemes have also been developed for searching for plans neither forward from the initial
state or backward from the goal, but by extending a set of actions that are partially ordered. e result-
ing planners are known as partial-order planners [Ghallab et al., 2004, Weld, 1994]. We follow below



3.10. COST, METRIC, AND TEMPORAL PLANNING 47

the formulation of partial order planning known as partial-order causal-link or POCL planning, where
structures known as causal links are used in the plan representation to keep track of temporal prece-
dences and constraints [McAllester and Rosenblitt, 1991]. A partial plan � in POCL planning corre-
sponds to a set of commitments represented by a tuple � D hSteps;Ord; CL;Openi, where Steps is
the set of actions in the partial plan � , Ord is a set of precedence constraints on Steps, CL is a set of
causal links, andOpen is a set of open preconditions. A precedence constraint a � a0 states that action
a precedes action a0 in the partial plan, a causal link aŒp�a0 states that action a supports the precondi-
tion p of action a0 in the partial plan, and an open precondition Œp�a states that the precondition p of the
action a in the partial plan is open, meaning that it is not yet supported by any action. e initial node
of the search, �0, is given by the tuple hfStart; Endg; fStart � Endg;;; fŒG1�End; : : : ; ŒGm�Endgi

where G1; G2; : : : ; Gm are the top level goals of the problem. Here Start and End are two dummy
actions used for encoding the initial situation and goals: the action Start must precede all actions and
is assumed to add all the atoms in the initial situation of the problem, and the actionEnd must be the
last action, whose preconditions are the goals of the problem and whose effect is the dummy target
goal G.

Branching in POCL planning proceeds by picking a “flaw” in a non-terminal node (partial
plan) � and applying the possible repairs [Kambhampati et al., 1995, Weld, 1994]. Flaws are of two
types. Open precondition flaws Œp�a in � are solved by selecting an action a0 that supports p and adding
the causal link a0Œp�a to CL and the precedence constraint a0 � a to Ord (a0 should also be added
to Steps if a0 62 Steps). Similarly, threats—which refer to situations in which an action a 2 Steps

deletes the condition p in a causal link a1Œp�a2 in CL with the ordering a1 � a0 � a2 consistent with
Ord—are solved by placing one of the precedence constraints a0 � a1 or a2 � a0 in Ord . A node is
terminal if it is inconsistent (i.e., the ordering Ord is inconsistent or contains flaws that cannot be
fixed) or is a goal (is consistent and contains no flaws). e goal nodes represent partial plans that are
complete and solve the problem. A plan can then be obtained from such nodes by any total ordering of
Steps that respects the partial orderOrd ; an operation that can be done in polynomial time [Dechter
et al., 1991].

POCL planning is a clever branching scheme for organizing the search for plans, which is
sound and complete. Up to the mid 90s, it represented the main computational approach in planning,
but with the advent of Graphplan, SAT, and heuristic-based planners, it lost appeal as it could not
scale up as well. One of the main problems is the lack of good heuristics for guiding or pruning the
POCL search. POCL planning, however, remains a convenient scheme for some expressive forms of
planning, including planning with time, resources, and concurrency [Smith et al., 2000], and several
attempts have been made to make its search more informed [Nguyen and Kambhampati, 2001, Vidal
and Geffner, 2006].

3.10 COST, METRIC, AND TEMPORAL PLANNING
Optimal and non-optimal planning in the presence of non-uniform action costs c.a/ is direct in the
heuristic search approach to planning, where most heuristic estimators can be easily extended to take
action costs into account. In SAT or CSP approaches, the handling of such costs is less direct. In
all cases, one important challenge that has been left unaddressed is the handling of costs c.a; s/ that
depend on both the action and the state where it is applied, or costs c.s/ that depend solely on the
state. One could express, for example, that states s where two atoms p and q are true, are to be avoided,



48 3. CLASSICAL PLANNING: VARIATIONS AND EXTENSIONS

by assigning a high cost c.s/ to actions applied in such states. Unfortunately, no informative heuristics
have been formulated so far for taking such state-dependent costs into account.

Numeric or metric planning refers to planning in the presence of numeric variables that can
potentially take an infinite number of values, such as all integer, rational, or real numbers, or whose
range cannot be bounded a priori. If this range is finite, the problem can be transformed into a planning
problem over a finite collection of multivalued or boolean variables, even if this transformation is not
always convenient computationally.

In the presence of such numerical variables X , the states are defined in the usual way as as-
signment of values x to variables X , and the initial situation fully defines one such state. Goals and
preconditions, however, can then include atoms like X D Y , X > Y , X � Y , and their negations,
where Y is a value or another variable, and the effect of these actions can involve expressions of the
form X WD f .X1; : : : ; Xn/ where the new value of X is set as a function of the current value of a sub-
set of variables Xi that may include the variable X itself. In common applications of metric-planning,
numeric variables refer to resources: money, fuel, time, space, etc.

e semantics of metric planning problems is direct, as they easily map into classical planning
models where a target state is to be achieved from a given initial state by applying deterministic actions.
e sole difference with the standard classical planning model is that the number of states in metric
planning may be infinite. While in the case of non-integer variables this may present some subtleties
(e.g., no finite plan can achieve X D 0 if the only available action changes X to X WD X=2), the chal-
lenge that has received the most attention in metric planning is the search for finite plans (when they
exist), and in particular, the formulation and use of heuristics that take numeric variables into account.
Metric-FF was one of the first modern planners to tackle this problem by introducing a polynomial
relaxation and heuristic that rather than ignoring “negative” effects, as in the delete-relaxation, it ig-
nores either increasing or decreasing effects [Hoffmann, 2003]. e relaxation yields lower and upper
bounds for the numeric variables so that values within these bounds are assumed to be all achievable.
us, in particular, a relaxed plan that makes the upper bound of X higher than the lower bound of
Y is assumed to be also a relaxed plan for an atom like X > Y . e relaxation provides useful guid-
ance in many problems, although there are obvious limitations such as potentially regarding an atom
like X > X as achievable. More recent work addressing metric planning can be found in [Coles et
al., 2009, Do and Kambhampati, 2001, Edelkamp, 2006, Gerevini et al., 2008, van den Briel and
Kambhampati, 2005].

Finally, temporal planning refers to planning in the presence of actions with durations, that
under certain conditions can be executed concurrently. Normally, the objective in temporal planning
is to achieve the goal as early as possible, often referred to as the minimization of the plan makespan.
From a computational point of view, temporal planning raises two challenges. e first has to do
with the problem space: the branching factor that results from the explicit consideration of sets of
parallel actions in a forward search may be just too large. In general, it is thought that the problem
space associated with POCL planning, where actions in the plan are partially ordered is then more
convenient [Smith et al., 2000]. is, however, raises the second challenge: the control of the search
in temporal POCL planning. CPT is a temporal planner that optimizes makespan by means of a
constraint programming formulation of POCL planning where partial plans that cannot be refined
into complete plans within a given makespan are detected and pruned early in the search by a form
of constraint propagation [Vidal and Geffner, 2006]. A common strategy when formal guarantees on
the makespan are not required is to deal with temporal problems as if they were standard sequential



3.11. HIERARCHICAL TASK NETWORKS 49

problems with action costs set to action durations. en different approaches can be used to parallelize
the resulting plans for reducing the makespan. is approach, however, is not universal, and can be
used only when temporal plans, accommodating concurrent actions, can be serialized. It can be shown
that this is true, for example, when the only sets of actions that can be done in parallel, i.e., that may
overlap in time, are commutative actions, like non-mutex actions that do not delete a precondition or
effect of another action [Blum and Furst, 1995, Smith and Weld, 1999]. Often, however, there are
parallel plans that cannot be serialized in this way, as when someone must light a match for inserting
a key in a door. Interestingly, the current version of the planning language standard, PDDL 2.1 [Fox
and Long, 2003], can express temporal problems of this type, which involve what is called required
concurrency [Cushing et al., 2007]. While most existing temporal planners, whether optimal or not, do
not handle this type of concurrency, the extensions required for handling it may not be that complex in
some formulations. In a constraint-based temporal planner like CPT, this may just require the ability
to express and deal with simple constraints on actions, such as that if a plan includes one action a at
time t , then it must include another action (event) b at time t C�, like “if light is turned on now, it’ll
turn off in 30 seconds.” Such action constraints create a new type of “flaws” in partial plans that must
be fixed too, e.g., by including b in the partial plan at time t C� when a is in the plan at time t . e
expressive power afforded by such changes and the necessary ways for dealing with them, however,
have not been fully addressed yet.

3.11 HIERARCHICAL TASK NETWORKS

In the forms of planning considered so far, no information is given about which actions to apply or
which subgoal to pursue; rather, actions are characterized in terms of their pre and postconditions,
and the choice and ordering of the actions for solving a problem is computed automatically. HTN
planning, where HTN stands for Hierarchical Task Networks, provide a completely different way of
constructing plans [Erol et al., 1994, Ghallab et al., 2004]. In HTN planning, plans are not obtained
from amodel that describes how the actions change the world, rather actions, called tasks, are described
at several levels, with tasks at one level decomposing into tasks at a lower level, with some tasks, called
the primitive tasks, standing for real executable actions that do not decompose further. For example,
the abstract task of taking a taxi may be decomposed into the tasks of getting to the street, stopping
a taxi, getting on board, and so on. Similarly, the task of getting on the taxi can be decomposed into
the tasks of opening the door, entering the taxi, and closing the door. Some tasks, like getting to the
airport, may admit multiple decompositions called methods, one of which may involve the tasks of
taking a taxi to the train station, and then a train from the station to the airport. In this case, the tasks
inside the methods are constrained to be one after the other. Other types of restrictions may relate the
tasks in a method as well. While the objective in classical planning is to find an action sequence that
maps the initial situation into a goal state, in HTN planning, the objective is to find a decomposition
that results in a consistent network of primitive tasks. Classical planning is model-based because it’s
based on a model of the actions, the initial situation, and goals, from which the plan is derived and
with respect to which the computed plan can be proved correct. HTN planning is not model-based
in this sense, and indeed, in HTN planning there is no clear separation between the problem that is
being solved and the strategies being used for solving it. Actually, HTNs are most commonly used for
encoding solution strategies. From a theoretical point of view, this is not good enough, as there is then



50 3. CLASSICAL PLANNING: VARIATIONS AND EXTENSIONS

no assurance that the planning strategy encoded by the HTN leads to plans that are correct.1 Yet, from
a practical point of view, this may be a feature rather than a bug: in many applications, humans feel
more comfortable describing the solving strategies for the domain than the domains themselves, and
place more trust on such strategies than on plans found by domain-independent planners. is may
explain why HTN planners are more common in applications than domain-independent planners.
is, however, may change, as better ways are found for integrating strategy and domain descriptions,
and for coming up automatically with general and transparent strategies.

1Indeed, in some of the knowledge-based planning competitions held so far, teams were given the planning domains in advance,
and they were free to determine and encode the strategies for solving them. It was then found that plans obtained from these
strategies were not always correct. is is because the HTN encodings were not derived from the domain descriptions but
were written by hand.



51

C H A P T E R 4

Beyond Classical Planning:
Transformations

We have considered models of planning where a goal is to be achieved by performing actions that are
deterministic given an initial situation that is fully known. Often, however, planning problems exhibit
features that do not fit into this format, features such as goals that are desirable but which are not to be
achieved at any cost (soft goals), goals that refer not only to end states but to the intermediate states as
well (temporally extended goals), or initial situations that are not fully known (conformant planning).
In this chapter, rather than reviewing more powerful algorithms for dealing with such features, we
illustrate how features such as these can be handled by off-the-shelf classical planners through suitable
transformations that can be performed automatically. Similar transformations will also be introduced
for dealing with a different task, plan recognition, where a probability distribution over the possible
goals of the agent is to be inferred from partial observations of the agent behavior.

4.1 SOFT GOALS AND REWARDS
Soft goals are used to express desirable outcomes that unlike standard hard goals are subject to a
cost-utility tradeoff [Sanchez and Kambhampati, 2005, Smith, 2004].We consider a simple STRIPS
planning setting where problemsP D hF; I;O;Gi are extendedwith information about positive action
costs c.a/ for every action a 2 O , and non-negative rewards or utilities u.p/ for every atom p 2 F .
e soft goals of the problem are the problem atoms with positive utility. It is possible to associate
utilities with more complex logical formulas, like disjunctions of atoms or negated literals, yet standard
methods can be used to introduce atoms for representing such formulas [Gazen and Knoblock, 1997].

In the presence of soft goals, the target plans � are the ones that maximize the utility measure
or net-benefit given by the difference between the total utility obtained by the plan and its cost:

u.�/ D
P

pW�ˆp u.p/ � c.�/ (4.1)

where c.�/ is given by the sum of the action costs in � , and � ˆ p expresses that p is true in the state
that results from applying the action sequence � to the initial problem state.

A plan � for a problem with soft goals is optimal when no other plan � 0 has utility u.� 0/ higher
than u.�/. e utility of an optimal plan for a problem with no hard goals is never negative as the
empty plan has non-negative utility and zero cost. e International Planning Competition held in
2008 featured a Net-Benefit Optimal track where the objective was to find optimal plans with respect
to Eq. 4.1 [Helmert et al., 2008]. Soft goal or net-benefit planning appears to be very different than
classical planning as it involves two interrelated problems: deciding which soft goals to adopt, and de-
ciding on the plan for achieving them. Indeed, most of the entries in the competition developed native



52 4. BEYOND CLASSICAL PLANNING: TRANSFORMATIONS

planners for solving these two problems. More recently, however, it has been shown that problems P
with soft goals can be compiled into equivalent problems P 0 without soft goals that can then be solved
by classical planners able to handle action costs c.a/ only [Keyder and Geffner, 2009]. e plans for
P and P 0 are the same, except for the presence of dummy actions, and the utilities of the plans for
P are inversely related to the cost of the plans for P 0. us, optimal cost-based planners for P 0 yield
optimal net-benefit plans for P , while satisfacing cost-based planners for P 0, that scale up better, yield
satisfacing net-benefit plans for P .

e idea of the transformation from the problem P with soft goals into the equivalent problem
P 0 with hard goals only is very simple. For soft goals p associated with individual atoms, one just needs
to add new atoms p0 that are made into hard goals in P 0, that are achievable in one of two ways: by the
new actions collect.p/with precondition p and cost 0, or by the new actions forgo.p/with precondition
p, that stands for the negation of p, and cost equal to the utility u.p/ of p. Additional bookkeeping
is needed in the translation so that these new actions can be done only after the normal actions in the
original problem.

More precisely, for a STRIPS problem P D hF; I;O;Gi with action costs c.�/ and soft goals
u.�/, the equivalent, compiled STRIPS problem P 0 D hF 0; I 0; O 0; G0i with action costs c0.�/ and no
soft goals has the following components, where Fu D fp j .p 2 F / ^ .u.p/ > 0/g stands for the set of
soft goals [Keyder and Geffner, 2009]:

• F 0 D F [ fp0 jp 2 Fug [ fp0 jp 2 Fug [ fnormal-mode; end-modeg,

• I 0 D I [ fp0 jp 2 Fug [ fnormal-modeg,

• O 0 D O 00 [ fcollect.p/; forgo.p/ jp 2 Fug [ fendg,

• G0 D G [ fp0 jp 2 Fug, and

• c0.a/ D

8<: c.a/ if a 2 O 00 ;

u.p/ if a D forgo.p/ ;
0 if a D collect.p/ or a D end :

If the STRIPS actions a are denoted as pairs hP re; Posti, where P re stands for the precondi-
tions of a, and Post for its effects (negated atoms indicate atoms in Del.a/), the actions in the new
compiled problem P 0 can be expressed as:

• O 00 D fhPre.o/ [ fnormal-modeg;Eff.o/i j o 2 Og,

• end D hfnormal-modeg; fend-mode;:normal-modegi,

• collect.p/ D hfend-mode; p; p0g; fp0;:p0gi,

• forgo.p/ D hfend-mode; p; p0g; fp0;:p0gi.

e forgo and collect actions can be used only after the end action that makes the fluent end-mode
true, while the actions from the original problem P can be used only when the fluent normal-mode is
true prior to the execution of the end action. Moreover, exactly one of fcollect.p/; forgo.p/g can appear
for each soft goal p in the plan, as both delete the fluent p0 which appears in their preconditions, and
no action makes this fluent true. As there is no way to make normal-mode true again after it is deleted



4.2. INCOMPLETE INFORMATION 53

G
I

Figure 4.1: Deterministic conformant problem where a robot must move from an uncertain location I into the
location with G with certainty, one cell at a time, in an n � n grid.

by the end action, all plans � 0 for P 0 have the form � 0 D h�; end; � 00i, where � is a plan for P and
� 00 is a sequence of jS 0.P /j collect.p/ and forgo.p/ actions in any order, the former appearing when
� ˆ p, and the latter otherwise.

e two problems P and P 0 are equivalent in the sense that there is a correspondence between
the plans for P and P 0, and corresponding plans are ranked in the same way. More specifically, for any
plan � for P , a plan � 0 in P 0 that extends � with the end action and a set of collect and forgo actions has
cost c.� 0/ D �u.�/C ˛, where ˛ is a constant that is independent of � and � 0. Finding an optimal
(maximum utility) plan � for P is therefore equivalent to finding an optimal (minimum cost) plan � 0

for P 0. is implies that the best plans for P can be obtained from the best plans for P 0, and these
can be computed with any optimal classical planner able to handle action costs.

From a computational point of view, the transformation above can be made more effective by
means of a simple trick. Recall that for a single plan � for P , there are many extensions � 0 in P 0, all
containing the same actions and having the same cost, but differing in the way the collect and forgo
actions are ordered. For efficiency purposes, it makes sense to enforce a fixed but arbitrary ordering
p1; : : : ; pm on the soft goals in P by adding the dummy hard goal p0

i as a precondition of the actions
collect.piC1/ and forgo.piC1/ for i D 1; : : : ; m � 1. e result is that there is a single possible extension
� 0 of every plan � in P , and the space of plans to search is reduced. Interestingly, the cost-optimal
planners that entered the Optimal Sequential Track of the 2008 IPC, fed with the translations of the
problems in the Optimal Net-Benefit Track, do significantly better than the net-benefit planners that
entered that track [Keyder and Geffner, 2009].

4.2 INCOMPLETE INFORMATION
Figure 4.1 shows a simple problem where an agent, whose initial state is uncertain and corresponds
to one of the four shaded cells, must reach the cell marked G with certainty. For this, the agent can
move one cell at a time in each one of the four directions, but cannot get passed the walls, thus any



54 4. BEYOND CLASSICAL PLANNING: TRANSFORMATIONS

move that would take him out of the grid has no effect. e problem is very much like a classical
planning problem except for the uncertain information about the initial situation. It is assumed that
the problem has uncertainty but no feedback of any type; i.e., the agent does not get to observe the
cell where it is located nor the nearby walls. e solution to the problem, if there is a solution, can’t
use feedback and hence it must be a fixed action sequence like in classical planning. e difference is
that this action sequence must be applicable and achieve the goal for any of the possible initial states.
Problems of this type are called conformant problems, as the solutions must conform with each possible
initial state. is is a deterministic conformant problem as the actions have all deterministic effects. In
non-deterministic conformant problems, solutions are also action sequences but they must conform not
only with each possible initial state but with each possible non-deterministic state transition as well
[Goldman and Boddy, 1996, Smith and Weld, 1998]. While conformant planning does not appear
to be too interesting in itself, it is a special case of the more general problem of planning with sensing,
and as we will see, the ideas developed for conformant planning provide indeed the basis for the state-
of-the-art planners that sense.

e best solution to the problem in the figure is to move left two times, then to move up three
times, after which the robot will know with certainty that it is located on the upper left-hand corner of
the grid (this is sometimes called localization). From there, the robot can head to the goalG directly as
in classical planning as all the uncertainty has been removed. We address next two issues: how to model
such problems in general, and how to solve them. We then turn to a solution method for deterministic
conformant problems that translates such problems into classical problems. Checking the existence of
a valid plan in the conformant setting is EXPSPACE-hard, so in the worst case the translation is
exponential in the number of problem variables [Bonet, 2010, Haslum and Jonsson, 1999, Rintanen,
2004a]. Still many problems exhibit a structure thatmakes the transformation polynomial and practical
[Palacios and Geffner, 2009].

A deterministic conformant problem is a tuple P D hF; I;O;Gi where F stands for the fluents
or atoms in the problem, O stands for a set of deterministic actions a, I is a set of clauses over F
defining the initial situation, and G is a set of literals over F defining the (conjunctive) goal. e
difference to classical problems is the uncertainty in the initial situation which is described by means
of clauses. Recall that a literal is an atom in F or its negation, and that a (non-empty) clause over F is
a disjunction of one or more literals. We will assume that the problem is not purely STRIPS but can
feature conditional effects and negation; i.e., every action a is assumed to have a precondition given by
a set of fluent literals, and a set of conditional effects a W C ! C 0 where C and C 0 are sets (conjunctions)
of literals, meaning that the literals in C 0 become true after the action a if the literals in C were true
when the action was done. e states associated with the problem P are valuations over the atoms in
F , and the set of possible initial states are the states that satisfy the clauses in I .

e problem in the figure can be encoded by a tuple P D hF; I;O;Gi where the atoms xi and
yi encode theX and Y position of the robot in the grid, i D 1; : : : ; n, the goal is given by the literals x4

and y4, and the initial situation has clauses expressing that the different xi and yi atoms are mutually
exclusive and that both x2 _ x3 and y3 _ y4 are true. e actions are four, and for example, the action
move-right is characterized by the conditional effects:

move-right W x1 �! x2; :x1 I

move-right W x2 �! x3; :x2 I

: : :

move-right W x5 �! x6; :x5 :



4.2. INCOMPLETE INFORMATION 55

A (deterministic) conformant problem P D hF; I;O;Gi defines a (deterministic) conformant
state model S.P / which is like the state model for a classical problem featuring negation and condi-
tional effects but with one difference: there is no single initial state s0 but a set of possible initial states
S0. A solution for P , namely a conformant plan for P , is an action sequence that simultaneously solves
all the classical state models S 0.P / that result from replacing the set of possible initial states S0 in S.P /
by each one of the states s0 in S0.

From a computational point of view, conformant planning can also be formulated as a path-
finding problem over a graph, but the nodes in the graph do not represent the states of the problem as
in classical planning, but belief states, where a belief state or belief is a set of states deemed possible at one
point [Bonet and Geffner, 2000]. us, the root node of the graph is the belief b0 D S0 corresponding
to the set of possible initial states, and the goal beliefs bG are the possible non-empty sets of goal states.
Likewise, the edges correspond to the belief state transitions .b; ba/ that are possible, where ba is the
belief state that results from applying the action a in the belief state b characterized as:

ba D fs0
j s 2 b and s0

2 F.a; s/g (4.2)

where F.a; s/ denotes the set of states that are possible following the action a in s. Recent proposals
have advanced new heuristics for guiding the search in belief space and more compact belief state
representations [Brafman and Shani, 2012b, Bryce et al., 2006, Cimatti et al., 2004, Hoffmann and
Brafman, 2006, Rintanen, 2004b, To et al., 2011].

A different approach to deterministic conformant planning is based on the translation of con-
formant problems into classical ones [Palacios and Geffner, 2009]. e basic sound but incomplete
translation removes the uncertainty in the problem by replacing each literalL in the conformant prob-
lem P by two literalsKL andK:L, to be read as “L is known to be true” and “L is known to be false,”
respectively. If L is known to be true or known to be false in the initial situation, then the translation
will contain respectivelyKL orK:L. On the other hand, if L is not known, then bothKL andK:L

will be initially false. e result is that there is no uncertainty in the initial situation of the translation
which thus represents a classical planning problem.

More precisely, the basic translationK0 is such that if P D hF; I;O;Gi is a deterministic con-
formant problem, the translation K0.P / is the classical planning problem K0.P / D hF 0; I 0; O 0; G0i

where

• F 0 D fKL;K:L jL 2 F g

• I 0 D fKL jL is a unit clause in I g

• G0 D fKL jL 2 Gg

• O 0 D O , but with each precondition L for a 2 O replaced by KL, and each conditional effect
a W C ! L replaced by a W KC ! KL and a W :K:C ! :K:L.1

e expressions KC and :K:C for C D fL1; L2; : : :g are abbreviations for the conjunctions
fKL1; KL2; : : :g and f:K:L1;:K:L2; : : :g respectively. Recall that in a classical planning problem,
atoms that are not part of the initial situation are assumed to be initially false, so if KL is not part of
I 0, KL will be initially false in K0.P /.
1A conditional effect a W C ! C 0 is equivalent to a collection of conditional effects a W C ! L, one for each literal L in C 0.



56 4. BEYOND CLASSICAL PLANNING: TRANSFORMATIONS

e only subtlety in this translation is that each conditional effect a W C ! L in P is mapped
into two conditional effects in K0.P /: a support effect a W KC ! KL, that ensures that L is known
to be true when the condition C is known to be true, and a cancellation effect a W :K:C ! :K:L,
that ensures that L is possible when the condition C is possible.

e translationK0.P / is sound as every classical plan that solvesK0.P / is a conformant plan for
P , but is incomplete, as not all conformant plans for P are classical plans for K0.P /. e meaning of
the KL literals follows a similar pattern: if a plan achievesKL in K0.P /, then the same plan achieves
L with certainty in P , yet a plan may achieve L with certainty in P without making the literal KL
true in K0.P /.

For completeness, the basic translation K0 is extended into a general translation scheme KT;M

where T andM are two parameters: a set of tags t and a set of merges m. A tag t 2 T is a set (conjunc-
tion) of literals L from P whose truth value in the initial situation is not known. e tags t are used to
introduce a new class of literalsKL=t in the classical problemKT;M .P / that represent the conditional
statements: “if t is initially true, then L is true.” Likewise, a mergem is a non-empty collection of tags
t in T that stands for the Disjunctive Normal Form (DNF) formula

W
t2m t . A mergem is valid when

one of the tags t 2 m must be true in I , i.e., when

I ˆ
W

t2m t : (4.3)

A merge m for a literal L in P translates into a “merge action” with effects that capture a simple form
of reasoning by cases: V

t2mKL=t �! KL : (4.4)

We assume that the collection of tags T always includes a tag that stands for the empty collec-
tion of literals, called the empty tag and denoted as ;. If t is the empty tag, literalsKL=t are denoted as
KL. e parametric translation scheme KT;M is the basic translation K0 “conditioned” with the tags
in T and extended with the actions that capture the merges inM . If P D hF; I;O;Gi is a determinis-
tic conformant problem, then KT;M .P / is the classical planning problem KT;M .P / D hF 0; I 0; O 0; G0i

where

• F 0 D fKL=t;K:L=t jL 2 F and t 2 T g,

• I 0 D fKL=t j I; t ˆ Lg,

• G0 D fKL jL 2 Gg,

• O 0 D fa W KC=t ! KL=t; a W :K:C=t ! :K:L=t j a W C ! L in P g [

O 0 D fam;L W
�V

t2mKL=t
�

! KL j L 2 P;m 2 M g.

As before, the literal KL is a precondition of action a in the translation KT;M .P / if L is a
precondition of a in P . e translation KT;M .P / reduces to the basic translation K0.P / when M is
empty (no merges) and T contains the empty tag only. Two basic properties of the general translation
scheme KT;M .P / are that it is always sound (provided that merges are valid), and for suitable choice
of the sets of tags and merges T andM , it is complete. In particular, a complete instance of the general
translationKT;M .P / results when the set of tags T is set to the set S0 of possible initial states ofP , and



4.3. PLAN AND GOAL RECOGNITION 57

A B C

D

EFH

J X

Figure 4.2: Plan Recognition: Which destination is the agent moving to after observing that he moved twice
up?

a mergem is included inM such thatm D S0. While the resulting translationKS0.P / is exponential
in the number of unknown atoms in the initial situation in the worst case, there is an alternative choice
of tags and merges, called theKi .P / translation, that is exponential in the non-negative integer i , and
that is complete for problems P that have a structural parameter w.P /, called the width of P , bounded
by i . In problems defined over multivalued variables, this width often stands for the maximum number
of variables all of which are relevant to a variable appearing in an action precondition or goal. It turns
out that many conformant problems have a bounded and small width, and hence such problems can
be efficiently solved by a classical planner after a low polynomial translation [Palacios and Geffner,
2009]. e conformant plans are then obtained from the classical plans by removing the “merge”
actions. e translation-based approach, introduced initially for deterministic conformant planning,
has been extended to deterministic planning with sensing [Albore et al., 2009, Bonet and Geffner,
2011, Brafman and Shani, 2012a,b]. In Chapter 5, we will look at a related notion of width in the
more general setting of non-deterministic planning.

4.3 PLAN AND GOAL RECOGNITION
e need to recognize the goals and plans of an agent from observations of his behavior arises in a
number of tasks. Plan recognition is like planning but in reverse: while in planning the goal is given
and a plan is sought, in plan recognition, part of a plan is observed, and the agent goal is sought
[Geib and Goldman, 2009, Kautz and Allen, 1986, Yang, 2009]. Figure 4.2 shows a simple scenario
of plan recognition where an agent is observed to move up twice from cell X. e question is which
is the most likely destination among the possible targets A to J. Clearly, A, B, and C appear to be
more likely destinations than D, E, or F. e reason is that the agent is moving away from these
other targets, while it’s not moving away from A, B, or C. e second question is whether B can be
regarded as more likely than A or C. ere are indeed good reasons for this. If we adopt a Bayesian



58 4. BEYOND CLASSICAL PLANNING: TRANSFORMATIONS

formulation, the probability of a hypothesisH given the observation Obs, P.H jObs/ is given by the
formula [Pearl, 1988]:

P.H jObs/ D
P.ObsjH/P.H/

P.Obs/
(4.5)

where P.ObsjH/ represents how well the hypothesis H predicts the observation Obs, P.H/ stands
for how likely is the hypothesis H a priori, and P.Obs/, which affects all hypotheses H equally,
measures how surprising is the observation. In our problem, the hypotheses are about the possible
destinations of the agent, and since there are no reasons to assume that one is more likely a priori than
the others, Bayes’ rule yields that P.H jObs/ should be proportional to the likelihood P.ObsjH/ that
measures howwellH predictsObs. Going back to the figure, and assuming that the agent is reasonably
“rational” and hence wants to achieve his goals with least cost, it’s clear that A, B, and C predict Obs
better than D, E, F, and also that B predicts Obs better than A and C. is is because there is a
single optimal plan for B that is compatible with Obs, but there are many optimal plans for A and
for C, some of which are not compatible with Obs (as when the agent moves first left or right, rather
than up). We say that a plan � is compatible with the observed action sequence Obs when the action
sequence Obs is embedded in the action sequence � , i.e., when Obs is � but with certain actions in
� omitted (not observed).

e reasoning above reduces goal recognition to Bayes’ rule and how well each of the possible
goals predicts the observed action sequence. Moreover, how well a goal G predicts the sequence Obs
turns out to depend on considerations having to do with costs, and in particular, two cost measures:
the cost of achieving G through a plan compatible with the observed action sequence Obs, and the
cost of achieving G through a plan that is not compatible with Obs. We will denote the first cost
as cP .G CObs/ and the second cost as cP .G CObs/, where P along with the observations Obs
define the plan recognition problem. at is, P is like a classical planning problem but with the actual
goal hidden and replaced by a set G of possible goals G, i.e., P D hF; I;O;Gi. e plan recognition
problem is to infer the probability distribution P.GjObs/ over the possible goals G 2 G, where each
possible goal G can be a (conjunctive) set of atoms.

For the plan recognition problem in Figure 4.2, the measures cP .B CObs/ and cP .B CObs/,
encoding the costs of getting to B from X through plans compatible and incompatible with the ob-
served action sequence Obs, are 4 and 6 respectively, assuming moves in each one of the four possible
directions, each with cost 1. On the other hand, the pairs of measures .cP .G CObs/; cP .G CObs//

for G equal to A, J, and H, are .8; 8/, .8; 4/, .12; 8/ respectively.
e key feature is actually the cost difference �.G;Obs/ D cP .G CObs/ � cP .G CObs/ for

each goal G which can range from �1 to C1. It can be argued that the higher the value of
�.G;Obs/, the better thatG predictsObs, and hence the higher the likelihood P.ObsjG/. In partic-
ular,�.G;Obs/ is 1 when all the plans forG comply withObs, and �1 when none of them complies
withObs. Values in the middle reflect how good are the plans that comply and do not comply with the
observed action sequence Obs. In our example, �.G;Obs/ is 2 for G D B, 0 for G D A and G D C,
and �4 for the other possible goals. Hence P.ObsjG/ is largest for G D B, smaller for G D A and
G D C, and smallest for the rest. e function used by Ramírez and Geffner [2010] for mapping the
cost difference �.G;Obs/ D cP .G CObs/ � cP .G CObs/ into the likelihoods P.ObsjG/ is the
sigmoid function:



4.3. PLAN AND GOAL RECOGNITION 59

P.ObsjG/ D
1

1C e�ˇ�.G;Obs/
(4.6)

where ˇ is a positive constant. is expression is derived from the assumption that while the observed
agent is not perfectly rational, he is more likely to follow cheaper plans, according to a Boltzmann
distribution. e larger the value of the constant ˇ, the more rational the agent, and the less likely that
he will follow suboptimal plans.

e target distributionP.GjObs/ over the possible goalsG 2 G given the observation sequence
Obs can thus be obtained in three steps. First, the costs cP .G CObs/ and cP .G CObs/ of achieving
each possible goal G with plans that are compatible and incompatible with the observed action se-
quence Obs are determined. en, the resulting cost differences �.G;Obs/ are plugged into Eq. 4.6
to yield the likelihoods P.ObsjG/. Finally, these likelihoods are plugged into Bayes’ rule (4.5) from
which the goal posterior probabilities are obtained. e probabilities P.Obs/ used in Bayes’ rule are
obtained by normalization (goal probabilities must add up to 1 when summed over all possible goals).

e open question is how to compute the cost measures cP .G CObs/ and cP .G CObs/.
Ramírez and Geffner [2010] show that these costs correspond to the costs of two classical planning
problems, that we will call P.G CObs/ and P.G CObs/, defined from the plan recognition prob-
lem P D hF; I;O;Gi, where G stands for the set of possible agent goals, and the observed action
sequence Obs. If we assume that no action occurs twice in the observed sequence Obs, the problems
P.G CObs/ and P.G CObs/ are like P but with extra atoms pa for each a 2 Obs, all initially false,
such that pa is made into an effect of the action a when a is the first action in Obs, while pb ! pa

is made into a conditional effect of a, when b is the action that immediately precedes a in sequence
Obs. e cost cP .G CObs/ is then the cost of this classical problem for the goal G0 D G [ fpag,
where a is the last action in the sequence Obs, and the cost cP .G CObs/ is the cost of the same
classical problem but with goal G00 D G [ f:pag where :pa is the negation of pa. In other words,
the constraint of achieving a possible goal G in a way that is compatible or incompatible with an ob-
served action sequence Obs, is mapped into the problem of achieving G and a suitable dummy goal
associated with Obs in a transformed classical problem.

Figure 4.3 shows a slightly different example, where the path followed by the agent is shown
on the left as time progresses. e curves on the right show the resulting goal posterior probabilities
over each one of the possible targets as a function of time. e account presented is not tied to agents
navigating in grids but is completely domain-independent. For computing the posterior probabilities,
2 � jGj classical planning problems need to be solved. ese probabilities will be exact if the prob-
lems are solved optimally, and will be approximate if they are solved with more scalable non-optimal
planners. e use of model-based approaches to behavior generation for the inverse task of behav-
ior recognition has been considered recently for other models such as MDPs [Baker et al., 2009] and
POMDPs [Ramírez and Geffner, 2011]. Moreover, the approaches can also be used to recognize both
goals and agent beliefs, by just replacing the set of possible goals by a set of possible goals and initial
belief pairs.



60 4. BEYOND CLASSICAL PLANNING: TRANSFORMATIONS

A

B C D E

F

I
 !"#$%&#'(

)
*
+
,
-

&

.

/ 0 1 2 3 4 5 6 7 /8 // /0 /1

8

8903

893

8953

/

+:;

+:<

+:=

+:>

+:?

+:@

Figure 4.3: Left: Red path shows noisy walk of agent Obst as time t progresses. Right: Curves show goal
posterior probabilities P.GjObst / for each possible target as a function of time.

4.4 FINITE-STATE CONTROLLERS
Finite-state controllers represent an action selectionmechanismwidely used in video games andmobile
robotics. In comparison to plans and POMDP policies, to be studied later, finite-state controllers
have two advantages: they are often extremely compact, and they are general, applying not just to
one problem but to many variations as well. As an illustration, Figure 4.4(a) depicts a simple problem
over a 1 � 5 grid where a robot, initially at one of the two leftmost positions, must visit the rightmost
position, marked B, and get back to A. Assuming that the robot can observe the mark in the current
cell if any, and that the actions Left and Right deterministically move the robot one unit left and right
respectively, the problem can be solved by planners that sense and POMDP planners. A solution to the
problem, however, can also be expressed as the finite-state controller shown on the right. Starting in
the controller state q0, this controller selects the action Right, whether A or no mark (‘�’) is observed,
until observing B. en the controller selects the action Left, switches to state q1, and remains in this
state selecting the action Left as long as no mark is observed. Later, when a mark is observed, no
further actions are taken as the agent must be back at A, having achieved the goal.

e finite-state controller displayed in the figure has two appealing features: it is very compact
(it involves two states only), and it is very general. Indeed, the problem can be changed in a number of
ways and the controller would still work, driving the agent to the goal. For example, the size of the grid
can be changed from 1 � 5 to 1 � n, the agent can be placed initially anywhere in the grid (except at
B), and the actions can be made non-deterministic by adding “noise” so that the agent can move one or
two steps at a time. e controller would work for all these variations. is generality is well beyond
the power of plans or policies that are normally tied to a particular state space. Memoryless controllers
or policies [Littman, 1994] are widely used as well, and they are nothing but finite-state controllers
with a single controller state. Additional states provide controllers with a memory that allows different
actions to be selected given the same observation.

e benefits of finite-state controllers, however, come at a price: unlike plans, they are usually
not derived automatically from a model but are written by hand—a task that is non-trivial even in the
simplest cases. Recently, however, the problem of deriving compact and general finite-state controllers
using planners has been considered [Bonet et al., 2009]. Once again, this is achieved by using classical
planners over suitable transformations. We sketch the main ideas below.



4.4. FINITE-STATE CONTROLLERS 61

A B
q0 q1

B/Left

−/Right
A/Right −/Left

(a) (b)

Figure 4.4: (a) A partially observable problem where an agent initially in one of the two leftmost positions has
to go to the cell marked B and then back to the cell marked A. ese two marks are observable. (b) A 2-state
controller that solves this problem and many variations of it. e circles are the controller states, and an edge
q ! q0 labeled o=a means to perform action a when the observation is o in state q, switching then to state q0.
e initial controller state is q0.

A finite-state controller CN with N controller states q0; : : : ; qN �1, for a partially observable
problem P with possible observations o 2 O is fully characterized by the tuples .q; o; a; q0/ associated
with the edges q

o=a
! q0 in the controller graph.ese edges, and hence these tuples, prescribe the action

a to do when the controller state is q and the observation is o, switching then to the controller state
q0 (which may be equal to q or not). A controller solves P if starting in the distinguished controller
state q0, all the executions that are possible given the controller reach a goal state. e key question is
how to find the tuples .q; o; a; q0/ that define such a controller. In the approach by Bonet et al. [2009],
the problem P is transformed into a problem P 0 whose actions are associated with each one of the
possible tuples .q; o; a; q0/, and where extra fluents pq and po for keeping track of the controller states
and observations are introduced. e action hti associated with the tuple t D .q; o; a; q0/ behaves then
very much like the action a but with two differences: first, the atoms pq and po are added to the body
of each conditional effect, so that the resulting action hti behaves like the original action a but only
when the controller state is q and the observation is o; second, the action makes the atom pq false
and the atom pq0 true, in accordance with the interpretation of the tuple (unless q D q0). Additional
bookkeeping is required in the transformed problemP 0 to prevent plans from executing actions hti and
ht 0i when t D .q; o; a; q0/, t 0 D .q; o; a0; q00/, and a 6D a0 or q0 6D q00. e reason is that no controller
can include such pairs of tuples, as the action and new controller state are always a function of the
current controller state and observation. Interestingly, the transformation from P into P 0 eliminates
sensing by making the effects of the actions conditional on the current controller state and observation.
e result is that while P is a partially observable problem, P 0 is a conformant problem, which as we
have seen in Section 4.2, can be further transformed into a classical problem. e actions hti that solve
such classical problems encode the tuples that define the controller with up to N states that solves P .

As a further illustration of the power of these transformations, Figure 4.5, on the left, shows a
problem inspired in the use of deictic representations [Ballard et al., 1997, Chapman, 1989], where a
visual-marker (the circle on the lower left) must be placed on top of a green block by moving it one
cell at a time. e location of the green block is not known, and the observations are whether the
cell currently marked contains a green block (G), a non-green block (B), or neither (C), and whether



62 4. BEYOND CLASSICAL PLANNING: TRANSFORMATIONS

q0 q1
–C/Down

TB/Right

TC/Right
–B/Up
TB/Up –B/Down

Figure 4.5: Left: Problem where a visual-marker (mark on the lower left cell) must be placed on top of a green
block whose location is not known, by moving the mark one cell at a time, and by observing what’s in the marked
cell. Right: Finite-state controller obtained with a classical planner from suitable translation. e controller solves
the problem and any variation resulting from changes in either the number or configuration of blocks.

this cell is at the level of the table (T) or not (–). e finite-state controller shown on the right has
been computed by running a classical planner over a translation obtained following the two steps above:
one, from the original partially observable problem into a conformant problem; the second, from the
conformant problem into a classical one. e solution to the classical problem represents the finite-
state controller that is shown on the right. Interestingly, this controller not only solves the problem
shown on the left, but the reader can verify that it also solves any modification in the problem resulting
from changes in either the dimensions of the grid, number or configuration of blocks [Bonet et al., 2009].
is is quite remarkable and illustrates that the combined use of transformations and classical planners
can be very powerful indeed.

4.5 TEMPORALLY EXTENDED GOALS
Classical planning is about acting on a system to drive it into a final state where a goal holds. Such tasks
are sometimes called “reachability” problems. In the last few years, temporally extended goals expressed
in temporal logics have been increasingly used to capture a richer class of plans where restrictions over
the whole sequence of states must be satisfied as well [Bertoli et al., 2003, de Giacomo and Vardi,
1999, Gerevini et al., 2009]. A temporally extended goal may state, for example, that any borrowed
tool should be kept clean until it is returned, defining a constraint that does not apply to a single state
but to a whole state sequence. A plan achieves a goal while satisfying a state-trajectory constraint when
the plan achieves the goal in the standard sense, and in addition, the state sequence that it generates
satisfies the constraint.

A standard language for expressing trajectory constraints is Linear Temporal Logic or LTL, a
logic originally proposed as a specification language for concurrent programs [Pnueli, 1977]. Formulas
of LTL are built from a set F of atoms and are closed under the boolean operators, the unary temporal
operators ı, Þ, and �, and the binary temporal operator U . Intuitively, ı' says that ' holds at the
next instant, Þ' says that ' will eventually hold at some future instant, �' says that from the current
instant on ' will always hold, and 'U says that at some future instant  will hold and until that



4.5. TEMPORALLY EXTENDED GOALS 63

point ' holds. As an example, the formula �.p � ıq/ says that if p is true at any time point, then q
must be true at the following time point.

e semantics of LTL is given in terms of infinite state sequences � D s0; s1; : : : ; si ; : : : where
the indices i stand for time points, and the state si represents a truth valuation over F at time i . If we
let �.i/ stand for the state si in the sequence � , the conditions under which a state sequence � satisfies
an arbitrary LTL formula ' at time i , written �; i ˆ ', can be given inductively as follows:

• �; i ˆ p, for p 2 F , iff p 2 �.i/.

• �; i ˆ :' iff not �; i ˆ '.

• �; i ˆ ' ^ '0 iff �; i ˆ ' and �; i ˆ '0.

• �; i ˆ ı' iff �; iC1 ˆ '.

• �; i ˆ Þ' iff for some j � i , we have that �; j ˆ '.

• �; i ˆ �' iff for all j � i , we have that �; j ˆ '.

• �; i ˆ 'U'0 iff for some j � i , we have that �; j ˆ '0 and for all k, i � k < j , we have that
�; k ˆ '.

A formula ' is true or satisfied in � , written � ˆ ', if �; 0 ˆ '. For determining whether a
given plan � D a0; : : : ; an�1 for a classical planning problem P D hF; I;O;Gi satisfies a temporally
extended goal expressed as an LTL formula overF , it is normally assumed that the finite state sequence
s0; : : : ; sn generated by the plan � represents the infinite state sequence s0; : : : ; sn; sn; sn; : : : where the
last state sn in the sequence is repeated forever [Bacchus and Kabanza, 2000]. is is an assumption
that can be used for many LTL formulas but not for all, as some formulas may be satisfiable but not by
sequences of this type. A formula like �.Þat.p1/ ^ Þat.p2// expressing that from any time point
on, the robot has to be eventually at position 1 and eventually at position 2, is one such example. ese
formulas require the consideration of more general infinite state sequences where one finite sequence
s0; : : : ; sn is followed by another finite state sequence sn; s0

1; : : : ; s
0
m; sn that forms a loop and is repeated

infinitely often, and where the states s0
i are different than sn. We’ll focus now on the fragment of

temporally extended goals expressed in LTL where “completed” state sequences s0; : : : ; sn; sn; sn; : : :
suffice. Following Bauer and Haslum [2010], we refer to this as the infinite-extension semantics for
LTL, or simply the IE-semantics.

We turn thus to the problem of computing a finite plan � D a0; : : : ; an�1 for a classical planning
problem P D hF; I;O;Gi such that the completed infinite state sequence s0; : : : ; sn; sn; sn; : : : that
results from the plan satisfies an LTL formula '. It turns out that this problem can be solved by
mapping the classical problem P and the formula ' into a new classical planning problem P' whose
solutions represent plans for P that satisfy ' [Baier et al., 2009, Cresswell and Coddington, 2004,
Edelkamp, 2006]. Rather than focusing on the syntactic details of the translation, we describe the
main idea semantically.

We know by now that the planning problem P D hF; I;O;Gi represents a state model
S.P / D .S; s0; SG ; A; f /, that can also be understood as a deterministic finite automaton AP D

.˙P ;QP ; qP
0 ; ı

P ; F P / where the input alphabet is ˙P D O , the states areQP D S , the initial state
is qP

0 D s0, the transition function ıP is such that s0 2 ıP .a; s/ iff s0 D f .a; s/, and the accept-
ing states are F P D SG . e LTL formula ' defines in turn a non-deterministic Büchi automaton



64 4. BEYOND CLASSICAL PLANNING: TRANSFORMATIONS

A' D .˙' ;Q' ; q
'
0 ; ı

' ; F '/ where the input alphabet is ˙' D S , and the accepted inputs are the in-
finite state sequences that satisfy ', defined as the inputs that generate state sequences over Q' that
pass through accepting states in F ' infinitely often [Gerth et al., 1995, Vardi and Wolper, 1994]. Un-
der the IE-semantics, however, it is enough to reach an accepting state once, and hence the automaton
A' can be regarded as a standard non-deterministic finite automaton, which can be determinized using
standard methods [Hopcroft and Ullman, 1979, Sipser, 2006].

erefore, under the IE-semantics, the valid plans that satisfy an LTL formula ' are the action
sequences � D a0; : : : ; an�1 that generate state sequences � D s0; : : : ; sn such that � is accepted by
the first automaton AP and � is accepted by the second automaton A' . us, the classical planning
problem P' whose solutions encode the plans for P that satisfy the LTL formula ' can be expressed as
the compact representation of the product of two deterministic automata: the deterministic automaton
AP associated with the problem P , and the deterministic version of the automatonA' associated with
the LTL goal '. e states over the problem P' , which represent the truth-valuations over the atoms
in P' , stand for pairs .s; q/ where s captures the state on the first automaton and q captures the state
on the second automaton. is construction requires the addition of atoms pq in P' for such states q,
in addition to the atoms in P . e actions in P' are the actions in P but with effects on the atoms pq

in correspondence with the second automaton. Likewise, the initial state of P' is the initial state of
P extended with the atom pq0

, and the goal in P' is the goal of P conjoined with the disjunction of
atoms pq for accepting states q. Approaches and transformations for dealing with arbitrary LTL goals,
that may require plans with loops, and “lasso” state sequences have also been developed [Albarghouthi
et al., 2009, Kabanza and iébaux, 2005, Patrizi et al., 2011, 2013].



65

C H A P T E R 5

Planning with Sensing: Logical
Models

In this chapter we focus on models and methods for planning with uncertainty and sensing. is is
usually called partial observable planning, planningwith sensing, or contingent planning. In these models
the true state of the environment is not assumed to be known or predictable, yet partial information
about the state is assumed to be available from sensors. Uncertainty is represented by sets of states,
referred to as beliefs. We will then consider probabilistic models where beliefs are not represented by sets
of states but by probability distributions. Logical and probabilistic models however are closely related.
A key difference is that, in the absence of probabilistic information, policies or plans are evaluated
by their cost in the worst case rather than their expected cost. ere may indeed be policies with small
expected cost to the goal but infinite cost in the worst case, as when the state trajectories that fail to
reach the goal in a bounded number of steps have a vanishing small probability. Still, as we will see,
the policies that ensure that the goal is achieved with certainty can be fully characterized in the logical
setting without probabilities at all as the policies that are strongly cyclic [Daniele et al., 1999].

In this chapter we consider a general model for planning with sensing, a language for expressing
these models in compact form, the notion of a solution, policy, or plan for such models, and offline and
online algorithms for action selection. Since all these algorithms require keeping track of beliefs, we
then present methods for tracking beliefs that exploit the structure of the problem and are exponential
in a problem width parameter. We also review strong cyclic policies and methods for computing them.

5.1 MODEL AND LANGUAGE
e model for planning with sensing extends the model for (non-deterministic) conformant planning
with a sensor model. More precisely, the state model for conformant planning is a tuple of the form
S D hS; S0; SG ; A; F i where

• S is a finite state space,

• S0 is a non-empty set of possible initial states, S0 � S ,

• SG is a non-empty set of goal states, SG � S ,

• A is a set of actions, with A.s/ denoting the sets of actions applicable at s 2 S ,

• F is a non-deterministic state-transition function such that F.a; s/ denotes the non-empty set
of possible successor states that follow action a in s, for a 2 A.s/, and

• c.a; s/ are positive action costs for s 2 S and a 2 A.s/.



66 5. PLANNING WITH SENSING: LOGICAL MODELS

e model extends the classical planning model by allowing uncertainty in the initial situation and
in the transition function. A solution to a conformant model is an action sequence that maps each
possible initial state into a goal state. More precisely, � D ha0; : : : ; an�1i is a conformant plan if for
each possible sequence of states s0; s1; : : : ; sn such that s0 2 S0 and siC1 2 F.ai ; si /, i D 0; : : : ; n � 1,
action ai is applicable in si and sn is a goal state.

Conformant planning can be cast as a path-finding problem over a graph whose nodes are beliefs
states: sets of states that the agent deems possible at one point. e initial node is the initial belief state
b0 D S0 and the target nodes are the goal beliefs bG , non-empty sets of goal states s 2 SG . e actions
a, whether deterministic or not, map a belief state b into the belief state ba:

ba D fs0
j there is a state s in b such that s0

2 F.a; s/g : (5.1)

For the resulting paths to encode conformant plans, an action a must be regarded as applicable in the
belief state b, written a 2 A.b/, when a is applicable in each state s in b, or equivalently, when the
preconditions of a are true (in all the states) in b.

e model for planning with sensing S D hS; S0; SG ; A; F;Oi is the model for conformant
planning extended with a sensing model O : a function O.s; a/ that maps state-action pairs into non-
empty sets of observation tokens. e expression o 2 O.s; a/ means that o is a possible observation
token when s is the true state of the system and a is the last action done. at is, every time that the
agent executes the action a resulting in the state s, the agent gets an observation token from O.s; a/.
is observation o provides partial information about the true but possibly hidden state s, since it rules
out states for which the observation token o is not possible, i.e., the states s0 for which o … O.s0; a/.
If two different observations belong to O.s; a/, then either one can be observed in s when a is the last
action. We say that the sensing is deterministic or noiseless when O.s; a/ is a singleton for every pair
.s; a/, else it is non-deterministic or noisy.

If the belief state for the agent is b and the observation o is obtained after applying the action
a in b, the new belief state, denoted as bo

a, is given by the states in ba that are compatible with o:

bo
a D fs j s 2 ba and o 2 O.s; a/g : (5.2)

An observation o is possible in a belief state ba if o 2 O.s; a/ for some state s in ba. Alternatively, the
observation o is possible in ba if and only if the resulting belief state bo

a is not empty.

LANGUAGE
Conformant models can be expressed in compact form through a set of state variables. For convenience,
in the partially observable setting, we assume that these variables are not necessarily boolean. More
precisely, a conformant planning problem is a tuple P D hV; I; A;Gi where V stands for the problem
variables X , each one with a finite and discrete domain DX , I is a set of clauses over the V -literals
defining the initial situation, A is set of actions, and G is a set of V -literals defining the goal. Every
action a has a precondition P re.a/ given by a set of V -literals, and a set of conditional effects a W

C ! E1j : : : jEn, where C and each Ei is a set (conjunction) of V -literals. e conditional effect is
non-deterministic if n > 1. A non-deterministic action is an action with one or more non-deterministic
effects.



5.2. SOLUTIONS AND SOLUTION FORMS 67

e conformant problem P D hV; I; A;Gi defines the conformant model S.P / D

hS; S0; SG ; A; F i, where S is the set of possible valuations over the variables in V , S0 and SG

are the set of valuations that satisfy I and G respectively, A.s/ is the set of actions whose precondi-
tions are true in s, and F.a; s/ is a non-deterministic state transition function where s0 2 F.a; s/ is a
possible successor state of action a in state s for a 2 A.s/. e set F.a; s/ of such possible successors s0

is defined by the conditional effects a W C ! E1j : : : jEn, n � 1, whose body C is true in s. Basically,
any logically consistent choice � of heads Ei , one for each conditional effect whose body is true in
s must define a deterministic transition function f� .a; s/. F.a; s/ is the non-deterministic transition
function that results from collecting all the successor states s0 that are possible given any of these
deterministic functions.

A partially observable problem P is a tuple P D hV; I; A;G; V 0;W i that extends the description
hV; I; A;Gi of a conformant model with a compact encoding of a sensor model. is sensor model is
defined syntactically by means of a set V 0 of variables Y with a finite domain DY that are assumed
to be observable, and a set W of formulas Wa.Y D y/ over the state variables V of the problem that
determine the states s over which the atom Y D y may be observed. More precisely, the sensor model
O.s; a/ defined by W is such that o 2 O.s; a/ iff o is a valuation over the observable variables Y 2 V 0

such that Y D y is true in o only if the formula Wa.Y D y/ is true in s for y 2 DY . In other words,
an observation o represents a maximal consistent set of partial observations Y D y where Y is an
observable variable and y is a possible value of Y . Such an observation o is possible in the state s after
doing action a if the formulas Wa.Y D y/ are all true in s.

Two last remarks. First, some of the state variables X may be observable and hence belong to
both V and V 0. In such a case, the formula Wa.X D x/ for the different actions and possible values
of X is given by X D x. Second, the formulas Wa.Y D y/ for the different values y in DY must be
logically exhaustive, as every state-action pair must give rise to some observation over each observable
variable Y . If in addition, the formulas Wa.Y D y/ for the different values y are logically exclusive,
every state-action pair gives rise to a single observation Y D y and the sensing over Y is deterministic.

As an example, if X encodes the location of an agent, and Y encodes the location of an object
that can be seen by the agent when X D Y , we can have an observable variable Z 2 fYes;Nog en-
coding whether the object is seen by the agent or not, with observation modelWa.Z D Yes/ given byW

l2D.X D l ^ Y D l/, whereD is the set of possible locations and a is any action, andWa.Z D No/

given by the negation of this formula. e resulting sensor is deterministic. A non-deterministic sensor
could be used if, for example, the agent cannot detect with certainty the presence of the object at some
other locations l 2 D0. For this,Wa.Z D Yes/ andWa.Z D No/ can be set to the disjunction of their
previous expression and the formula

W
l2D0.X D l/. e result is that the two observations Z D Yes

and Z D No will be possible in the states where the agent is at some location l 2 D0, whether the
object is in the same location or not.

5.2 SOLUTIONS AND SOLUTION FORMS
An execution for a partially observable problem is an interleaved sequence of actions ak and observations
ok , ha1; o1; a2; o2; : : :i. An execution may be finite or infinite. A finite execution ha1; o1; : : : ; ai ; oi i

is also called a history. Associated with a finite execution or history hi D ha1; o1; : : : ; ai ; oi i, there
is a belief bi . For the empty history h0, the belief is the initial belief b0, while for the history
hiC1 D hi ; aiC1; oiC1, the resulting belief biC1 is obtained from the belief bi associated with the



68 5. PLANNING WITH SENSING: LOGICAL MODELS

history hi , the action aiC1, and the observation oiC1, using Eq. 5.2 for the belief bo
a, with b D bi ,

a D aiC1, and o D oiC1.
e executions that are possible are the ones where the actions are applicable and the observations

are possible. More precisely, the possible executions or histories ha1; o1; a2; o2; : : :i are defined recur-
sively: the empty history h0 is possible, and if history hi is possible, history hiC1 D hi ; aiC1; oiC1

is possible iff the action aiC1 is applicable in the belief bi that results from the history hi , and the
observation oiC1 is possible in the belief ba for b D bi and a D aiC1.

e solution of a planning problem with sensing is a choice of actions that ensures that all the
resulting executions reach a goal belief in a finite number of steps. We make this precise below. We
consider two different types of solution forms. In both cases, the choice of the action to do depends
on the past actions and observations. In the first case, the choice is expressed as a function mapping
histories into actions; in the second, as a function mapping belief states into actions. We will refer to
these functions as control policies or simply as policies, and denote them with the symbol � . Partially
observable problems can also be solved by means of finite-state controllers, but we will not delve further
on such an alternative solution form, which can be more compact but is harder to derive (yet see
Section 4.4).

One difference between history-based and belief-based policies is that the set of histories cannot
be bounded a priori, while the set of beliefs is large but bounded: exponential in the number of states.
On the other hand, actions define a graph over histories that is acyclic (histories can only grow in size),
while the graph over beliefs can be cyclic. ese two features imply that different algorithms may be
convenient for computing one type of policy or the other.

We focus on policies � where �.hi / and �.bi / express actions a that are applicable in the history
hi or belief bi respectively. An action is applicable in a history h if it is applicable in the belief that
results from this history. e functions � , however, can be partial and don’t have to be defined for all
possible inputs. We write �.h/ D ? and �.b/ D ? to express that policy � is undefined for the history
h or belief b respectively.

e executions that are possible given a policy � , whether history or belief-based, are defined as
follows: the empty execution h0 is always possible given � , and if hi is a possible execution given � ,
the execution hi ; aiC1; oiC1 is possible given � iff 1) aiC1 is the action dictated by the policy � in hi ,
and 2) oiC1 is a possible observation after action aiC1 is applied in the belief bi that results from hi .
A possible execution h given a policy � is complete either if it is infinite or if �.h/ D ? or �.b/ D ?,
where b is the belief that results from the history h.

Finally, a policy � solves a partially observable problem P iff all the complete executions that are
possible given � are finite, and terminate in a goal belief. Assuming that the cost of actions is uniform
and equal to 1, the cost of a policy � is defined as the number of actions in the longest execution that is
possible given � . e optimal policies that solve P are the ones that minimize the cost of achieving the
goal in the worst case.

A belief-based policy � that solves a problem P induces a unique history-based policy � 0 that
solves P where � 0.h/ D �.b/ when b is the belief that results from history h. On the other hand, a
history-based policy � induces a unique belief-based policy � 0 only when there are no two histories h
and h0 with the same associated belief b such that �.h/ ¤ �.h0/. Still, if a problem has a solution in
one form, it certainly has a solution in the other form.



5.3. OFFLINE SOLUTION METHODS 69

EXAMPLE
Let us consider a problem where there is a toy in one of two closed boxes, the goal is to have the toy,
and the actions are to open a box, to inspect an open box, and to pick up the toy from a box if the
box is open and contains the toy. e problem can be modeled by boolean state variables for encoding
that a box is open (opened.box/), the toy is in a box (in.toy; box/), the contents of a box are visible
(visible.box/), and the toy is being held (hold.toy/). ese variables are all false in the initial situa-
tion, except for the variables in.toy; box/, box 2 fbox1; box2g, which are not known initially. What is
known instead is that either in.toy; box1/ or in.toy; box2/ is true. In addition, an observable variable
Y with three possible values fyes; no; ‹g can be used to model whether the toy is seen in a box. For this,
we can set the observable model formulaWa.Y D yes/ to in.toy; box/ ^ visible.box/,Wa.Y D no/

to :in.toy; box/ ^ visible.box/, for a D inspect.box/ and box 2 fbox1; box2g, and both formu-
las to false when a ¤ inspect.box/. Likewise,Wa.Y D ‹/ is :visible.box/ for a D inspect.box/,
and t rue otherwise. e action that makes the atom visible.box/ true is inspect.box/ whose pre-
condition is that the box is open. e actions of opening a box and picking up the toy from a box have
preconditions :opened.box/ and in.toy; box/ ^ opened.box/ respectively. A strategy for solving
the problem is to open box 1, inspect its contents, pick up the toy if there, and else, open box 2 and
pick up the toy from box 2. is strategy can be captured by the history-based policy � where:

�.h0/ D open.box1/ for the empty history h0 D hi,

�.h1/ D inspect.box1/ for h1 D hopen.box1/; Y D ‹i,

�.h2/ D pickup.toy; box1/ for h2 D hopen.box1/; Y D ‹; inspect.box1/; Y D yesi,

�.h0
2/ D open.box2/ for h0

2 D hopen.box1/; Y D ‹; inspect.box1/; Y D noi,

�.h0
3/ D pickup.toy; box2/ for h0

3 D hh0
2; open.box2/; Y D ‹i.

No other executions are possible given this policy. Initially the belief state contains two states differ-
ing only in the truth of the atoms in.toy; box1/ and in.toy; box2/ After the action inspect.box1/

and the resulting observation Y D yes or Y D no, the belief state reduces to a single state where
in.toy; box1/ and in.toy; box2/ are true respectively. is is because for a D inspect.box1/, the
sensor model O.s; a/ is such that o D .Y D yes/ can be observed only when the state s satisfies
the formula Wa.Y D yes/ D in.toy; box1/ ^ visible.box1/, while o D .Y D no/ can be observed
only when s satisfies the formulaWa.Y D no/ D :in.toy; box1/ ^ visible.box/. us, after the his-
tory h2, in.toy; box1/ must be true, while after the history h0

2, in.toy; box1/ must be false. Since
in.toy; box1/ is false only in the state where in.toy; box2/ is true, it follows that in.toy; box2/ must
be true after h0

2.

5.3 OFFLINE SOLUTION METHODS
As in classical planning, we consider two types of computational methods for partial observable plan-
ning: offline methods that produce policies that solve the problem, and online methods that select the
action to do next without solving the whole problem first. Clearly, online methods are more practical
and scale up better than offline methods but do not have the same guarantees. We consider two offline
methods: an exhaustive method for computing belief-based policies, and a heuristic search method for
computing history-based policies.



70 5. PLANNING WITH SENSING: LOGICAL MODELS

DYNAMIC PROGRAMMING
e cost of reaching the goal from a belief state b following a policy � , denoted as V �.b/, can be
obtained as the solution of the Bellman equation

V �.b/ D

�
0 if b is a goal belief,
c.a; b/C maxo V

�.bo
a/ otherwise (5.3)

where a D �.b/, o ranges over the observations that are possible in ba, and c.a; b/ is the cost of doing
action a in the belief state b, which in the worst case is:

c.a; b/ D maxs2b c.a; s/ (5.4)

A policy � is optimal if it minimizes the costs V �.b/ over all beliefs b. e cost function V � for an
optimal policy � D �� is the optimal cost function V �, that is the solution of Bellman’s optimality
equation

V.b/ D

�
0 if b is a goal belief,
mina2A.b/ Œc.a; b/C maxo V.b

o
a/� otherwise. (5.5)

In the absence of dead-ends i.e., belief states b from which the goal cannot be reached, Equation 5.5
can be solved by a simple dynamic programming method called Value Iteration [Bellman, 1957], where
the equation is used to update a value vector V over all beliefs b until a fixed point is reached. More
precisely, in the version of Value Iteration (VI) known as Gauss-Seidel VI [Bertsekas, 1995], one
starts with a value vector V.b/, initially set to 0 over all entries, and then iteratively updates each of
the entries V.b/ over non-goal beliefs b as:

V.b/ WD mina2A.b/ Œc.a; b/C maxo V.b
o
a/� : (5.6)

In this setting, Value Iteration converges in a finite number of steps to the single solution V D V �.
e optimal policy �� for solving the problem is then obtained from the greedy policy �V

�V .b/ D argmina2A.b/ Œc.a; b/C maxo V.b
o
a/� (5.7)

using the value function V D V �. We will see in Chapter 7 that the equations for solving POMDPs
are similar but with the subexpression maxo V.b

o
a/ representing cost in the worst case, replaced by

the expected costs
P

o ba.o/V .b
o
a/. Likewise, the beliefs b, ba, and bo

a will become then probability
distributions, and ba.o/ will stand for the probability of observing o after doing the action a in b. A
key difference when moving to POMDPs is that the set of possible beliefs b, representing probability
distributions over the set of states, will no longer be finite.

HEURISTIC SEARCH: AO*
e problem with Value Iteration is that it is an exhaustive method that considers all belief states
that are possible. While in the logical setting, this set is finite, it is still exponential in the number of
states. We switch now to an alternative method that computes history-based policies incrementally. It



5.3. OFFLINE SOLUTION METHODS 71

is based on formulating these policies as solutions of an acyclic AND/OR graph that can be solved by
the classical heuristic search algorithm AO* [Nilsson, 1980, Pearl, 1983].

An AND/OR graph is a rooted directed graph with three types of nodes: AND nodes, OR
nodes, and terminal nodes. e terminal nodes can be either goal or failure nodes (dead-ends). An
AND/OR graph is acyclic if there is no directed loop in the graph, i.e., no directed path that starts
and ends in the same node. A solution to an acyclic AND/OR graph is a subgraph that includes the
root node, one child of every OR node, all children of every AND node, and terminal nodes that are
all goal nodes. In the absence of AND nodes, an AND/OR graph becomes a normal directed graph
whose solution is a path from the root to a goal node. e childen of OR nodes represent choices,
while the children of AND nodes represent contingencies, uncontrollable events, or adversarial moves
that must all be handled in the solution of the problem. e cost of an AND/OR solution is the cost
of its root node defined recursively as follows: the cost of terminal nodes is 0 and 1 for goal and failure
nodes respectively, the cost of AND nodes is the cost of the child with MAX cost, and the cost of OR
nodes is the cost of the child with MIN cost plus one (assuming action costs equal to 1). Other cost
structures are possible over AND/OR graphs as when the max operation associated with AND nodes
is replaced by a sum or a weighted sum.

For capturing the history-based policies that solve a partially observable problem in terms of the
solutions of an acyclic AND/OR graph, histories h are mapped to OR nodes n.h/, histories h extended
with actions a applicable in h are mapped to AND nodes n.h; a/, and histories hh; a; oi, where o is a
possible observation after action a in history h, are mapped to the children of the AND node n.h; a/.
e root node of the graph corresponds to the empty history, and the terminal goal nodes to the
histories whose associated beliefs are goal beliefs. Solutions to such an implicit AND/OR graph must
include the empty history h, and for every included non-goal history h, an action a, and all possible
histories hh; a; oi. e history-based policy encoded by such a solution is �.h/ D a.

e algorithm AO* is a heuristic search method for solving acyclic AND/OR graphs. AO*
maintains a graph G, called the explicit graph, that incrementally explicates part of the implicit
AND/OR graph, and a second graph G�, called the best partial solution graph, that represents an
optimal solution ofG under the assumption that the tip nodes n ofG are terminal nodes whose values
are given by a heuristic h.n/. Initially, G contains the root node of the implicit graph only, and G�

is G. en, iteratively, a non-terminal tip node is selected from the best partial solution G�, and the
children of this node are explicated in G. e best partial solution G� is then revised by a simple form
of backward induction where the values of these new nodes are propagated up the (acyclic) graph. AO*
finishes when the tip nodes of the best partial graph G� are all terminal nodes. If the heuristic values
are optimistic, the best partial solutionG� is then an optimal solution to the implicit AND/OR graph.
If not, AO* produces a solution that is not necessarily optimal. Code for AO* is shown in Figure 5.1.

Informative heuristics are crucial for the performance of AO*.Heuristics for partially observable
problems estimate the cost from a belief b to any goal belief. If the actions have deterministic effects,
one of the approaches that have been used to obtain such estimates replaces the belief b by states s in
b, resulting in classical planning problems whose cost can be estimated and combined in a number of
ways [Bonet and Geffner, 2000, Bryce et al., 2006]. If estimates are admissible, the maximum over
all such states s, yields an admissible heuristic, while the sum yields a non-admissible heuristic. ese
simplifications, however, remove the uncertainty in the belief b and hence ignore the need and value
of sensing. Other heuristics for planning with sensing, called cardinality heuristics, focus exclusively on
this uncertainty, defining the heuristic for b in terms of the number of states in b [Bertoli and Cimatti,



72 5. PLANNING WITH SENSING: LOGICAL MODELS

AO*
% G and G� are explicit and best graphs, initially empty; V 0 is heuristic function.

Initialization
Insert node h0 in G where h0 is the empty history.
Initialize V.h0/ WD V 0.b0/ where V 0 is admissible heuristic and b0 initial belief.
Initialize best partial graph G� to G.

Loop
Select non-terminal tip h from best partial graph G�. If no such node, Exit.
Expand h in G: for each a 2 A.b/ where b is belief associated with h, add node
.h; a/ as child of h, and for each observation o possible in ba, add node .h; a; o/
as child of .h; a/. Initialize values V.h; a; o/ to the heuristic values V 0.bo

a/.
Update h and its ancestor AND and OR nodes in G, bottom-up as:

V.h; a/ WD 1C maxo V.h; a; o/,
V.h/ WD mina2A.b/ V.h; a/.

Mark best action in ancestor OR-nodes h to an action a with V.h/ D V.h; a/,
maintaining marked action if still best.

Recompute best partial graph G� by following marked actions in G.

Figure 5.1: AO* for Computing History-based Policies for Partially Observable Problems.

2002]. More recent approaches have appealed to the translations developed for mapping conformant
into classical planning problems (Section 4.2). Indeed, the delete-relaxation of a partially observable
problem has a conformant solution once the preconditions of actions are pushed in as additional con-
ditions of the actions’ conditional effects [Hoffmann and Brafman, 2005]. Such relaxations have the
advantage that they do not need to assume that the information is complete [Albore et al., 2009, 2011].

We have considered an exhaustive dynamic programming method (Value Iteration) for finding
policies over a potentially cyclic belief space, and a heuristic search method (AO*) for finding policies
over the acyclic space of histories. e two types of methods are not incompatible however. More
recent algorithms like LAO* [Hansen and Zilberstein, 2001] and RTDP [Barto et al., 1995] manage
to get the best of both worlds, and variations of these algorithms can be used to compute optimal and
non-optimal belief-based policies in an incremental fashion using heuristics. We will consider such
algorithms in the next chapter.

5.4 ONLINE SOLUTION METHODS
Offline solution methods have an inherent limitation: the size of the policies required for solving a
problem may have exponential size. A practical alternative is to avoid computing a whole solution



5.5. BELIEF TRACKING: WIDTH AND COMPLEXITY 73

before acting, and to decide on the action to do in the current situation, to do it, to observe the results,
and to iterate this loop until the goal is reached. is is the idea of online planning. In Section 2.4, we
have seen different methods for online planning in the classical setting, from selecting the action a to
do in a state s, greedily, by minimizing the expressionQ.a; s/ D c.a; s/C h.s0/, where h is a heuristic
function and s0 is the state that follows s after the action a is done, to various lookahead schemes where
the choice of the action a in s is based on a deeper exploration of the local space around s, to learning
schemes such as LRTA* where the heuristic function is updated as the online search progresses.

e methods for selecting actions in the classical setting are all available in the partially observ-
able setting but with two modifications: first, the local search is not over states s but over belief states
b; second, the local space to search is not an OR graph but an AND/OR graph. us, the greedy ac-
tion to do in a belief state b is the one that minimizes the expressionQ.a; b/ D c.a; b/C maxo V.b

o
a/,

where V is the heuristic over beliefs, and learning algorithms like LRTA* need to update the val-
ues V.b/ to mina2A.b/ c.a; b/C maxo h.b

o
a/. Similarly, anytime optimal algorithms to be used in the

finite-horizon version of the problem should not be based on A* but on AO* [Bonet and Geffner,
2012a].

Yet, some of the best current online partially observable planners for deterministic problems,
follow a different strategy, where the action to be done next in a belief state b is selected by solving
a classical planning problem obtained from a simplification of the problem [Bonet and Geffner, 2011,
Brafman and Shani, 2012b]. e classical plan that is obtained is executed as long as the observa-
tions that are gathered do not refute the assumptions made in the simplification. When they do, an
alternative, more informed relaxation is constructed and solved, leading to a new classical plan, and so
on. ese replanning approaches build on a formulation that extends the translation-based approach
introduced for conformant planning [Palacios and Geffner, 2009] to the partially observable setting
[Albore et al., 2009]. ey can be shown to be complete, hence reaching the goal when possible, pro-
vided that the translation is complete and that the problem features no dead-ends. In the presence
of dead-ends, these schemes can benefit from the use of lookahead schemes. Still, the completeness
of these replanners in the absence of dead-ends is no small feat given that online planners that plan
over finite horizons may fall into a loop. ese replanners, on the other hand, exhibit an exploitation-
exploration property that precludes such loops, where in every replanning episode they either reach
the goal or learn that one of the assumptions made in the simplification is wrong. ese replanners,
however, are restricted to deterministic problems only.

5.5 BELIEF TRACKING: WIDTH AND COMPLEXITY
We have assumed so far that keeping track of beliefs is sufficiently simple. In the worst case, however,
the computation of the belief state bo

a that follows the belief b after the action a and observation o, is
exponential in the number of state variables. One way to deal with beliefs b containing many states
is by representing them by logical formulas whose satisfying assignments are precisely the states in b
[Bertoli et al., 2001, Bryce et al., 2006, To et al., 2011], or by logical formulas that capture the state
trajectories that are possible given the past actions and observations, and which can be queried by
state-of-the-art solvers for determining whether certain formulas are true in b [Brafman and Shani,
2012b, Hoffmann and Brafman, 2006]. Indeed, a planner just needs to perform two types of tests on
beliefs b, namely, whether a goal X D x is true in b, and whether a precondition X D x of an action
a is true in b. e first test determines whether a given history has achieved the goal or needs to be



74 5. PLANNING WITH SENSING: LOGICAL MODELS

extended, the second, which actions a can be used to extend it. e third required test, namely, whether
an observation o is possible in ba, follows from the other two: o is impossible in ba if both X D x and
its negation hold in bo

a, implying that bo
a is empty. We will thus focus on a method for belief tracking

that is targeted at these two queries, and which is not necessarily complete for other queries. Such an
incompleteness, however, does not compromise the completeness of the resulting planners.

A key result is that it is possible to keep track of the beliefs necessary for determining the truth of
action preconditions and goals in time and space that are exponential in a width parameter associated
with the problem, which in many domains of interest is bounded and small. e result follows from
the reductions of deterministic conformant problems into classical planning problems [Palacios and
Geffner, 2009], and the extensions developed for handling partial observability [Albore et al., 2009]
and non-deterministic actions [Bonet and Geffner, 2012b]. In this last formulation, the global beliefs
b are factored into local beliefs bX , for each variable X appearing in a precondition or goal. Keeping
track of these local beliefs bX is exponential in the number of state variables that are relevant to X . If
this measure is called the width of X , w.X/, the width of the problem is the maximum w.X/ over the
state variables X appearing in preconditions or goals.

e notion of relevance underlying this complexity bound is related to the notion of relevance
in Bayesian networks [Pearl, 1988], while exploiting the structure of goals and action preconditions,
and the information that certain variables will not be observed. More precisely, a variable X is defined
as an immediate cause of a variable Y in a problem P iffX ¤ Y , and eitherX occurs in the body C of a
conditional effect C ! E1j � � � jEn where Y occurs in a head Ei , 1 � i � n, or X occurs in a formula
Wa.Y D y/ where Y is an observable variable and y 2 DY . en X is said to be causally relevant to
Y if X D Y , X is an immediate cause of Y , or X is causally relevant to a variable Z that is causally
relevant to Y . Finally, X is relevant to Y if X is causally relevant to Y , Y is causally relevant to X
and X is an observable variable, or X is relevant to a variable Z that is relevant to Y . e set of state
variables Y that are relevant to X is called the context of X , which defines the set of variables that
must be tracked concurrently with X in order to know the possible values for X after an execution.
Moreover, this context Ctx.X/ defines a projected subproblem PX that is like P but with the state
variables limited to those in Ctx.X/. Belief tracking in PX is thus exponential in the width w.X/ of
X , while sound and complete for determining the values of X that are possible after an execution. e
factored belief tracking algorithm that tracks the beliefs bX over each of the projected problems PX , for
each precondition and goal variable X in the problem P , is complete for planning and runs in time
and space that are exponential in the problem width, which may be much smaller than the number of
variables in the problem.

As an illustration, consider the DET-Ring domain [Cimatti et al., 2004] depicted in Figure 5.2,
where an agent can move forward or backward along a ring with n rooms. Each room has a window
that can be opened, closed, or locked when closed. Initially, the status of the windows is not known,
the agent does not know his initial location, and the goal is to have all windows locked. A plan for
this deterministic conformant problem is to repeat n times the actions .close; lock; f wd/, skipping
the last f wd action (alternatively, f wd can be replaced by the action bwd throughout). e state
variables for the problem encode the agent location Loc 2 f1; : : : ; ng, and the status of each window,
W.i/ 2 fopen; closed; lockedg, i D 1; : : : ; n. e location variable Loc is (causally) relevant to each
window variable W.i/, but no window variable W.i/ is relevant to Loc or to W.k/ for k 6D i . e
largest contexts are thus for the window variables which have size 2. As a result, the width of the
domain is 2, which is independent of the number of variables for the problem that grows linearly with



5.5. BELIEF TRACKING: WIDTH AND COMPLEXITY 75

W7 W3

W1

W5

Wn W2

W6 W4

Figure 5.2: Ring problem with n windows that must be closed and locked. Initially, the agent does not know its
location or the status of the windows. In NON-DET-Ring, each time the agent moves, the unlocked windows
open or close non-deterministically. In another variation of the problem, the agent needs a key to lock the windows
whose initial position is not known.

n. is means that belief tracking for this problem can be done in quadratic time since there are n
contexts that need to be tracked, each of size O.n/ as the domain size for the window variables is
constant. NON-DET-Ring is a variation of the domain where any movement of the agent, f wd or
bwd , has a non-deterministic effect on the status of all windows that are not locked, capturing the
possibility of external events that can open or close unlocked windows. is non-determinism has no
effect on the relevance relation among the variables as Loc was already relevant to each variableW.i/.
As a result, the change has no effect on the contexts or domain width that remains bounded and equal
to 2. A further variation involves a key that is needed now to lock the windows, whose initial position
is unknown. e agent may then perform a pick action that grabs the key when the key and the agent
are in the same room. In all these variations, the problem width remains bounded and small. As a
result, the belief tracking task for planning can be accomplished in low-order polynomial time even if
the number and size of the beliefs is exponential in the number of rooms.

APPROXIMATIONS
Factored belief tracking is complete for planning and exponential in the problem width, yet this is still
not good enough when problems have a large width. For such cases, however, it has been shown that it
is possible to obtain meaningful approximations that are sound, polynomial, and powerful, even if not
necessarily complete [Bonet and Geffner, 2013]. e idea is the consideration of a larger collection of
projected subproblems PX , each one involving a smaller set of variables. e algorithm being sound
means that when a literal X D x is reported as true or false after an execution, it is really true or false;
while the algorithm being incomplete means that the literal X D x may fail to be reported as true or
false after an execution when X D x is really true or false in the true belief. In the approximation, the
variables X range not only over preconditions and goal variables, but also over observable variables,
while the state variables that make it into the projected problem PX are only those that are causally
relevant to X . e result of this alternative decomposition is that there are more projected problems
PX but of smaller size whose local beliefs bX can be tracked more efficiently. In this scheme, however,
a state variable Y may be involved in two subproblems PX and PX 0 , such that Y D y is known to
be true in bX but not known to be true in bX 0 . e second step in the approximation is to enforce



76 5. PLANNING WITH SENSING: LOGICAL MODELS

a local form of consistency among the local beliefs, an operation that can be achieved in polynomial
time. e resulting approximation algorithm has been used successfully, in combination with simple
heuristics, for solving large instances of domains like Minesweeper, Battleship, and Wumpus, where
belief tracking is key [Bonet and Geffner, 2013].

5.6 STRONG VS. STRONG CYCLIC SOLUTIONS
A policy � that solves a partially observable problemP must be such that the only complete executions
that are possible given � are finite and end up in a goal belief. ere are problems, however, where these
requirements are too strong and can’t be ensured by any policy. For example, if the action of hammering
a nail into a wall has cost 1 but fails half of the time, then the expected cost of getting the nail into
the wall is 2 but the cost in the worst case is not bounded. e result is that there is no policy that
solves the problem in the logical setting, although there is a perfectly good policy in the probabilistic
setting. is policy does not guarantee that the problem will be solved in one step, but can guarantee
that the goal will be solved eventually with probability 1. Interestingly, there is a way to weaken the
requirements on policies in the logical setting so that they can capture exactly the policies that achieve
the goal with probability 1. is requires the assumption that the non-deterministic state transition
function F.a; s/ captures exactly the set of states s0 that may follow action a in the state s with non-
zero probability, even if the exact probabilities are not known. ese solutions are called proper policies
in the probabilistic setting [Bertsekas, 1995], and strong cyclic policies in the logical setting [Cimatti et
al., 2003, Daniele et al., 1999]. e solutions that we have considered so far are called strong policies,
as they solve the problem in a bounded number of steps. We characterize the strong cyclic policies
below and review methods for computing them. Since the distinction between strong and strong cyclic
policies is independent of issues pertaining to partial observability, we will assume for simplicity that
the environment is fully observable and that the initial state s0 is given.

In the fully observable setting, an execution or history is a sequence of states and actions h D

s0; a0; s1; a1; s2; : : :. An infinite execution is fair when for each state-action pair s; a that appears an
infinite number of times in the execution, the triplet s; a; s0 also appears an infinite number of times
for any s0 2 F.a; s/. In other words, the infinite execution is unfair if the action a is applied an infinite
number of times in state s, and yet there is a possible successor state s0, s0 2 F.a; s/, that only occurs
a finite number of times.

Provided with this notion of fairness, we can define the strong cyclic policies as follows: � is a
strong cyclic policy for P iff all the complete executions that are possible given � are either finite and
terminate in a goal state, or are infinite and unfair. e difference with the strong policies for P is that
infinite executions that do not reach a goal state are allowed as long as they are not fair. We will later
discuss the equivalence between strong cyclic policies and proper policies for MDPs. We focus now
on alternative methods for characterizing these policies and for computing them.

Since the cost in the worst case V �.s/ associated with a strong cyclic policy � from a state s
can be infinite, it is useful to introduce a second “optimistic” cost measure V �

min.s/ that results from
the assumption that the successor state s0 of a non-deterministic action a D �.s/ in the state s is the
“best” possible outcome for the agent. at is, while the cost in the worst-case function V �.s/ is the
solution to the equation:

V �.s/ D

�
0 if s is a goal state,
c.a; s/C maxs02F .a;s/ V

�.s0/ otherwise for a D �.s/, (5.8)



5.6. STRONG VS. STRONG CYCLIC SOLUTIONS 77

which is analogous to Eq. 5.3 under the assumption that the observations are over full states, the
“optimistic” cost function V �

min.s/ is the solution to the equation:

V �
min.s/ D

�
0 if s is a goal state,
c.a; s/C mins02F .a;s/ V

�
min.s

0/ otherwise for a D �.s/. (5.9)

at is, V �
min.s/ measures the cost from s to the goal under the assumption that it is the agent rather

than nature the one that chooses the successor state s0 2 F.a; s/ that follows an action a D �.s/ in
each state s. In particular, the cost V �

min.s/ is finite when the agent can get from s to the goal following
� if “lucky” enough, while V �

min.s/ is infinite when no amount of luck would help the agent as there
are no state trajectories linking s to the goal while following the policy � .

It turns out that � is a strong cyclic policy for a problem P with initial state s0 iff the policy �
is such that over all the states s that are reachable from s0 following � , V �

min.s/ is finite. e set of
states reachable from s0 and � is the minimal set of states S 0 that includes s0 and any state s0 such that
s0 2 F.a; s/ for s 2 S 0 and a D �.s/. In other words, � is strong cyclic when it drives the agent to
states s all of which are separated from the goal by a finite trajectory s1; s2; : : : ; sn such that s1 D s, the
state sn is a goal state, and siC1 2 F.a; si / for a D �.si /, i D 1; : : : ; n � 1. It is easy to show indeed
that infinite executions that feature a state si in the trajectory an infinite number of times, but do not
feature the successor state siC1 an infinite number of times, cannot be fair.

e simplification of the problem that underlies the optimistic cost function V �
min has been

used as a source of heuristics for non-deterministic and MDP problems where it is called themin-min
relaxation [Bonet andGeffner, 2000, 2005]. It is also closely related to a different relaxation used in FF-
Replan for solving MDPs, called the deterministic relaxation [Yoon et al., 2007]. Ignoring probabilities
for the moment and focusing on semantics rather than in syntax, the min-min relaxation replaces each
non-deterministic action a by deterministic actions a1,…, am, each one of which picks one of the possible
outcomes of a, so that for any states s and s0, s0 2 F.a; s/ is true in the non-deterministic problem
iff s0 D f .ak ; s/ for some action ak in the deterministic problem. When this relaxation is done at the
syntactic level, it produces a classical planning problem where the uncertainty about non-deterministic
transitions is now controlled by the agent. Indeed, it is easy to see that the cost function V �

min.s/ is
finite when such a classical planning problem has a solution from the state s.

is all suggests two methods for computing strong cyclic policies for non-deterministic but
fully observable problemsP . A purely semantic and exhaustivemethod is to compute first, via Value It-
eration, the optimal cost functionVmin.s/ for themin-min relaxation, whereVmin.s/ D min� V

�
min.s/.

en the states s for which Vmin.s/ D 1 are removed from the problem, and the actions a that can
possibly lead to such states from states s0 are removed from the sets A.s0/. is process of computing
the value function Vmin and pruning the action sets is iterated until the set of states s and the sets A.s/
of applicable actions do not change further.1 If the initial state s0 is removed in the process, the prob-
lem has no strong cyclic solution, else, the policy � that is greedy in the value function Vmin computed
last is one such solution [Daniele et al., 1999].

Alternatively, one can compute strong cyclic plans using classical planners over the deterministic
relaxation P 0 of the problem P . Let P 0.s/ be the classical problem obtained from P 0 by setting the
initial situation to s. Define then a complete state-plan (SP) pair hS 0; ˙i as a set of states S 0, including

1An optimization is to select the states to prune from those which are reachable from the initial state s0 with the policy � that
is greedy in Vmin. e iteration can be terminated when there are not such states.



78 5. PLANNING WITH SENSING: LOGICAL MODELS

the initial problem state s0, along with a set ˙ of classical plans �.s/ for the problem P 0.s/, one for
each state s 2 S 0. e SP pair hS 0; ˙i is consistent when the plans �.s/ in ˙ that pass through a state
s0 2 S 0 all apply the same action from P in s0. e expression ˙.s0/ is used to denote this action. In
particular, if the action is any of the determinizations ak of a in P , ˙.s/ is a. e consistent SP pair
hS 0; ˙i is closed when a state s0 is in S 0 if there is state s in S 0 such that s0 2 F.a; s/ for a D ˙.s/. It
can then be shown that the partial policy � defined as �.s/ D ˙.s/ for complete SP pairs hS 0; ˙i that
are consistent and closed, is a strong cyclic policy for P . is means that a strong cyclic policy for P can be
computed using classical planners incrementally, starting with the initial incomplete SP pair hS 0; ˙i

where S 0 D fs0g and ˙ D ;. For this, classical plans are added to ˙ to make the pair complete, and
states are added to S 0 to make the pair closed. e state-plan pair is kept consistent by forcing the
classical planner to respect the partial policy encoded by the pair. is can be achieved by adjusting
the deterministic relaxations incrementally, or by modifying the classical planner used. An algorithm
of this form will compute strong cyclic policies backtrack-free in problems with no dead-ends, but
may have to backtrack otherwise. e first use of classical planners for computing strongly cyclic plans
in this way is due to Kuter et al. [2008], and recent refinements to Fu et al. [2011] and Muise et al.
[2012]. ese are all offline algorithms. e planner FF-Replan mentioned above and to be discussed
again in the next chapter, can be regarded as an online version of these algorithms.



79

C H A P T E R 6

MDP Planning: Stochastic
Actions and Full Feedback

Markov Decision Processes (MDPs) generalize the model underlying classical planning by allow-
ing actions with stochastic effects and fully observable states. In this chapter, we look at a variety of
MDP models and the basic algorithms for solving them: from offline methods based on dynamic pro-
gramming and heuristic search, to online methods where the action to do next is obtained by solving
simplifications, like finite-horizon versions of the problem or deterministic relaxations.

6.1 GOAL, SHORTEST-PATH, AND DISCOUNTED
MODELS

ere is a variety of MDP models, some more expressive than others [Bertsekas, 1995, Boutilier et
al., 1999, Puterman, 1994]. We focus first on Goal MDPs that provide a direct generalization of the
model underlying classical planning where the deterministic transition function f .a; s/ is replaced
by transition probabilities Pa.s

0js/. At the same time, while the next state cannot be predicted with
certainty, it is assumed to be fully observed. A Goal MDP is thus given by:

• a finite and non-empty state space S ,

• an initial state s0 2 S ,

• a non-empty subset SG � S of goal states,

• sets A.s/ of actions applicable at each state s 2 S ,

• transition probabilities Pa.s
0js/ for s0 being the next state after doing the action a 2 A.s/ in the

state s 2 S , and

• positive action costs c.a; s/ for applying action a 2 A.s/ in the state s 2 S .

e planning task over Goal MDPs is to come up with an action strategy for reaching the goal with
certainty given the uncertain effect of the actions and the observations gathered. e solution form for
Goal MDPs cannot be thus a fixed action sequence as in classical planning; it must take observations
into account. is is simple to do in MDPs, however, where observations are over full states and the
dynamics and costs are Markovian, meaning that future states and costs depend on the current state
but not on the previous history. e result is that the choice of the action to do next in MDPs just
needs to take into account the last observation, and the solution form for MDPs is a function mapping
(the observed) states into actions. ese functions are called closed-loop control policies or simply policies,



80 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

denoted by the symbol � . We will assume for now that a policy � maps every non-goal state s into
an action a 2 A.s/. Policies of this type are said to be deterministic and stationary. A stochastic policy
� , on the other hand, is a function that maps states into probability distributions over actions, and a
non-stationary policy is a function of both state and time. Stochastic and non-stationary policies can
be used for controlling MDPs, but they are not strictly needed except in the setting of finite-horizon
MDPs where optimal policies can be non-stationary.

A (deterministic and stationary) MDP policy � and state s define a probability for every state
trajectory hs0; s1; : : : ; snC1i given by the product

P.s0js/ Pa0
.s1js0/ Pa1

.s2js1/ � � � Pan
.snC1jsn/ (6.1)

where ai D �.si / is the action dictated by the policy� in the state si ,Pai
.siC1jsi / is the state transition

probability, and P.s0js/ is 1 if s0 D s and else is 0.
e accumulated cost of a state trajectory hs0; s1; : : : ; snC1i given a policy � , ai D �.si /, is given

in turn by the sum

c.a0; s0/C c.a1; s1/C � � � C c.an; sn/ : (6.2)

e expected cost to reach the goal from state s using the policy � , denoted as V �.s/, stands for the sum
of the accumulated costs of the different state trajectories that are possible given � , weighted by their
probabilities. e expected cost function V � can also be characterized as the solution to a set of linear
equations. For this, it is convenient to assume that goal states are absorbing and cost-free, meaning that
some action a is applicable in each goal state s, and that such applicable actions a in a goal state s have
zero costs and null effects; i.e., c.a; s/ D 0 and Pa.sjs/ D 1. Under the assumption that every policy
� selects one of these “dummy” actions in each goal state, the expected cost of policy � from the state
s, V �.s/ can be defined by the expression

V �.s/ D E�
s

�P
i�0 c.�.Xi /; Xi /

�
(6.3)

where Xi is a random variable that represents the state at time i , and E�
s Œ�� is the expectation with

respect to the probability distribution on state trajectories that start in the state s given by (6.1).Moving
the first term of the sum out of the expectation, the following fixed point equation is obtained

V �.s/ D c.�.s/; s/C
P

s02S P�.s/.s
0js/V �.s0/ (6.4)

that defines the function V � as the solution of a system of jS j linear equations with the border condi-
tion V �.s/ D 0 for all goal states s.

It is possible to show that a policy � for a Goal MDP has a finite expected cost V �.s/ if and
only if starting in the state s, the application of the policy � leads to a goal state with probability 1.
A policy � that leads to the goal with certainty for any possible initial state is called a proper policy.
A necessary and sufficient condition for a policy � to be proper is that for any state s, there is a finite
state trajectory hs0; s1; : : : ; snC1i, starting in the state s0 D s and ending in a goal state snC1, such that
all the state transitions in the trajectory are possible given � ; i.e., P�.si /.siC1jsi / > 0 for i D 0; : : : ; n.
Notice that the exact value of these probabilities does not matter as long as they are different than
zero. is explains the correspondence between the proper policies in the probabilistic setting, and



6.1. GOAL, SHORTEST-PATH, AND DISCOUNTED MODELS 81

the strong cyclic policies in the non-deterministic setting analyzed in Section 5.6 that do not involve
probabilities at all.

We will consider Goal MDPs where there are no dead-ends, i.e., states from which the goal
cannot be reached. Formally, dead-ends are states s such that there is no state trajectory hs0; : : : ; snC1i

with s0 D s, goal state snC1, and actions a0; : : : ; an such that the transition probabilities Pai
.siC1jsi /

are all positive for i D 0; : : : ; n. Clearly, if s is a dead-end, V �.s/ is infinite for any policy � , and
alternatively, if there are no dead-ends, there must be a policy � that is proper. We will relax the no
dead-ends assumption for Goal MDPs when considering methods that compute partial policies.

A policy � is optimal for state s if V �.s/ is minimum among all policies; i.e., V �.s/ D

min� V
�.s/. While the optimal policies for Goal MDPs are the policies � that are optimal for the

given initial state s0, we will follow the standard notion that identifies the optimal policies as the policies
that are optimal over all states. e cost function V � for an optimal policy � is the optimal cost func-
tion V �, which can be characterized as the unique solution of Bellman’s optimality equation [Bellman,
1957]:

V.s/ D mina2A.s/ Œc.a; s/C
P

s02S Pa.s
0js/V .s0/� (6.5)

for all non-goal states s, and V.s/ D 0 for goal states. A deterministic, stationary optimal policy �� can
be obtained from the optimal cost function V �, from the greedy policy �V :

�V .s/ D argmina2A.s/ Œc.a; s/C
P

s02S Pa.s
0js/V .s0/� (6.6)

with the value function V set to V �. e ties in (6.6) can be broken arbitrarily.

Figure 6.1(a) depicts a simple example of a Goal MDP in which there is an agent that has to
navigate in a grid with obstacles from the cell markedA to the cell markedG. e agent can move one
cell at a time in each of the four directions as long as there are no obstacles, and the intended moves
succeed with high probability while leaving the agent in nearby cells with non-zero probability. e
panel (b) in Figure 6.1 shows a proper policy � for the problem as the action �.s/ to do at each of the
cells s, except at the cell G representing the goal state.

SHORTEST-PATH AND DISCOUNTED MDPS
Stochastic Shortest-PathMDPs (SSPs) generalize Goal MDPs by dropping the requirement that action
costs c.a; s/ over non-goal states s are positive [Bertsekas, 1995]. Instead, such action costs c.a; s/
can be either negative or zero, as long as any policy � that is not proper for a state s has an infinite
expected cost V �.s/. A policy is not proper for a state s when the probability of reaching the goal from
s following the policy is less than 1. As for Goal MDPs, SSPs assume that there exists one policy that
is proper for all the states.

Discounted Cost-based MDPs do not require the presence of absorbing and cost-free goal states,
or the assumption that action costs are positive. Instead, discounted models assume that future costs
depreciate over time according to a fixed rate 0 < 
 < 1, called the discount factor. In contrast to Eq. 6.2,
the accumulated cost associated to a state trajectory hs0; : : : ; sni under a policy � is

c.a0; s0/C 
 c.a1; s1/C � � � C 
n c.an; sn/ (6.7)



82 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

A

G G

(a) (b)

Figure 6.1: A Goal MDP in which an agent, initially at A, must reach the cell marked with G with certainty.
e grey cells are obstacles that cannot be crossed. Each action moves the agent in the intended direction with
non-zero probability but can also leave the agent in a nearby cell with non-zero probability as well. Panel (b)
shows a proper policy for the problem depicted as the action to be done in each non-goal state.

where ai D �.si /. Since the cost of any such trajectory is bounded from below and above by c=.1 � 
/

and c=.1 � 
/ respectively, where c and c are lower and upper bounds on the action costs c.a; s/, it
follows that the expected costs V �.s/ for all policies � and states s are finite. e Bellman equation
characterizing this cost function is:

V �.s/ D c.�.s/; s/C 

P

s02S P�.s/.s
0js/V �.s0/ ; (6.8)

and similarly, the optimal cost function V � for Discounted Cost-based MDPs is given by the unique
solution of the optimality equation [Bertsekas, 1995, Puterman, 1994]:

V.s/ D mina2A.s/ Œc.a; s/C 

P

s02S Pa.s
0js/V .s0/� : (6.9)

Discounted Reward-based MDPs are like Discounted Cost-based MDPs but with costs c.a; s/
replaced by rewards r.a; s/, and minimization of expected costs replaced by maximization of expected
rewards. An example of a reward-based MDP is one where an agent gets a positive reward of R every
time it reaches a piece of food, that once consumed appears randomly at a different location. A discount
factor of 
 < 1 ensures that the maximum discounted reward accumulated never exceeds R=.1 � 
/.

e results and algorithms for Goal and Stochastic-Shortest Paths apply with small modifica-
tion to Discounted MDPs. Moreover, Discounted MDPs can be easily compiled into equivalent Goal
MDPs through a simple and efficient transformation [Bertsekas, 1995]. us, while certain problems,
like the one above, can be more naturally expressed as Discounted MDPs, Discounted MDPs are not
more expressive than Goal MDPs, and actually the opposite seems to be true as there is no known
method for transforming general Goal MDPs into Discounted MDPs.1

1Some Goal MDPs can be transformed into equivalent Discounted MDPs, but the transformation is not general. For example,
a Goal MDP with action costs c.a; s/ that are all uniform and equal to 1, can be transformed into an equivalent Discounted



6.1. GOAL, SHORTEST-PATH, AND DISCOUNTED MODELS 83

In order to make precise the notion of equivalence among different types of MDPs [Bonet and
Geffner, 2009], let us say that two MDPs M and M 0, possibly of different types, are equivalent iff
they have the same set of non-goal states and actions (and hence the same space of policies), and for
any policy � , the value functions V �

M and V �
M 0 over M and M 0 are related by two constants ˛ and ˇ

through the linear equation

V �
M 0.s/ D ˛V �

M .s/C ˇ (6.10)

over all non-goal states s. e equation ensures that policies have the same relative ranking inM and
M 0; i.e., V �

M .s/ < V
� 0

M .s/ iff V �
M 0.s/ < V

� 0

M 0.s/. e constant ˛ can’t be zero, and is negative only when
M andM 0 have different signs: one being cost-based and the other reward-based.

For showing that a Discounted Reward-based MDPM can be transformed into an equivalent
Goal MDP M 0, one can show 1) that M is equivalent to a Discounted Reward-base MDP M1 that
is like M but with a negative constant R added to all rewards to make them all negative, 2) that M1

is equivalent to a Discounted Cost-based MDP M2 where these negative rewards are transformed
into positive costs, and 3) that M2 is equivalent to a Goal MDP M 0 that is like M2 but with a new
(absorbing, cost-free) goal state t added, such that the transition probabilities P 0 inM 0 are expressed
in terms of the transition probabilities P ofM ,M1, andM2 as:

P 0
a.s

0
js/ D

�

 Pa.s

0js/ if s0 ¤ t

1 � 
 if s0 D t . (6.11)

In this expression s ranges over the states in the original discounted model M , and a is an action
applicable in s. Notice that in the resulting Goal MDP, every policy is proper, as every applicable
action a in each non-goal state s, maps s into the goal state t with a non-zero probability 1 � 
 . e
equivalence between the Discounted Reward MDPM and the Goal MDPM 0 then follows from the
relation between the value functionsV �

M andV �
M 0 that satisfies (6.10) for ˛ D �1 andˇ D �R=.1 � 
/.

FINITE-HORIZON MDPS
e MDPs above are said to be infinite horizon, as the costs and rewards accumulate over a horizon that
is not bounded a priori. Finite-horizon MDPs, on the other hand, are concerned with the accumula-
tion of costs or rewards over a fixed number H of stages, called the problem horizon. Finite-horizon
MDPs can be converted into infinite-horizon MDPs by simply augmenting the problem states s with
the horizon left d . us, if s0 is the initial state of the finite-horizon MDPM with horizon H , then
the equivalent infinite-horizon MDPM 0 will have the pair hs0;H i as the initial state, the pairs hs; 0i

as the goal states, and transition probabilities P 0
a.hs

0; d � 1ijhs; d i/ equal to the transition probabil-
ities Pa.s

0js/ in M . e same transformation is used for costs. e resulting Goal MDP M 0 has an
important characteristic; namely, it is acyclic, meaning that the probability of any state trajectory start-
ing and ending in the same state is zero. is is because time moves forward, and states hs; d i can
only transition to states hs0; d � 1i, and this only when d ¤ 0. Dynamic programming procedures
like (Asynchronous) Value Iteration, to be considered next, can be used to solve finite-horizon MDPs,

Reward-based MDP with discount factor 
 , 0 < 
 < 1, and rewards r.a; s/ D 0 over non-goal states, and r.a; s/ D 1 over
goal states. e goal states remain absorbing but not cost-free in this Discounted MDP. is transformation, however, does
not ensure equivalence when the action costs c.a; s/ are not uniform.



84 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

and more generally acyclic MDPs, very efficiently, in a single pass over all the states, by considering the
states in order: first the states hs; d i with d D 1, then the states with d D 2, and so on, until reaching
the states with d D H . Still, even a single-pass over all the states may not be computationally feasible.
We will thus also consider incremental, heuristic search algorithms for solving finite-horizon MDPs
and their use in online planning over general infinite-horizon MDPs (Section 6.4).

6.2 DYNAMIC PROGRAMMING ALGORITHMS
We focus next on the two standard dynamic programming algorithms for solving MDPs. While we
focus on Goal MDPs, the methods apply to Stochastic Shortest-Path MDPs, and with minor mod-
ification, to Discounted MDPs. We assume that there are no dead-ends and hence that the goal is
reachable from all states. We will relax this assumption in the next section.

VALUE ITERATION
Value Iteration (VI) is a method for computing the optimal cost function V �, which once plugged
into the greedy policy �V in place of V , yields the optimal policy ��. e optimal cost function V � is
the unique solution to the optimality equation

V.s/ D

�
0 if s is a goal state
mina2A.s/ Œc.a; s/C

P
s02S Pa.s

0js/V .s0/� otherwise. (6.12)

Value iteration solves this equation by setting V.s/ D 0 for goal states s and initializing the value of
non-goal states arbitrarily, and then using Eq. 6.12 as an update

V.s/ WD mina2A.s/ Œc.a; s/C
P

s02S Pa.s
0js/V .s0/� (6.13)

which is performed in parallel over all non-goal states. is operation, which is implemented by means
of two value vectors V and V 0, is called a full or parallel DP update. Value iteration performs these paral-
lel updates repeatedly. In the limit, the value vector V converges to the solution of Bellman’s optimality
equation (6.12), and hence to the optimal cost function V �. Since the convergence is asymptotic, Value
Iteration is stopped when the value vector V is such that the maximum difference between the expres-
sions in the left and right-hand sides of (6.12) is small enough. If this difference, called the residual
and defined as

ResV
def
D mins2S

ˇ̌
V.s/ � Œc.a; s/C

P
s02S Pa.s

0js/V .s0/�
ˇ̌
; (6.14)

is sufficiently small, the policy �V greedy with respect to V is optimal. More generally, the value of
the residual can be used to bound the loss V �V .s0/ � V �.s0/ that results from following the greedy
policy �V from the initial state s0 rather than an optimal policy. For Discounted MDPs, this loss is no
greater than 2�
=.1 � 
/ if ResV < �. While the loss can also be bounded in SSPs and Goal MDPs,
the expression for the bound cannot be expressed in such a closed form [Bertsekas, 1995].

In a variation of VI, known as Asynchronous Value Iteration, the update in Eq. 6.13 is not
performed over all states simultaneously but over some selected states. Provided that every state is
updated infinitely often, Asynchronous VI also converges asymptotically to the optimal cost function



6.2. DYNAMIC PROGRAMMING ALGORITHMS 85

V I
Starts with value function stored in vector V with V.s/ D 0 for goal states s
repeat

flag := true
for each non-goal state s do

new-value WD mina2A.s/ Œc.a; s/C
P

s02S Pa.s
0js/V .s0/�

If jV.s/ � new-valuej � � then
V.s/ WD new-value
flag := false

end if
end for

until flag = true

Figure 6.2: Simple Version of Asynchronous Value Iteration implemented using single vector that outputs a
value function V with residual ResV smaller than the parameter �, � > 0.

V � [Bertsekas and Tsitsiklis, 1989]. is implies, among other things, that the simple variant of Value
Iteration, implemented using a single value vector that is updated one state at a time, is a form of
Asynchronous VI that also converges to V �. is version of VI is known as Gauss-Seidel VI. Code
for a version of VI that delivers a value function with residual less than a given � is shown in Figure 6.2.

A suitable version of Asynchronous Value Iteration can be used to solve acyclicMDPs, including
finite-horizon MDPs, in one pass. Recall that an MDP is acyclic when all state trajectories that start
and end in the same state have zero probability, and that finite-horizon MDPs can be cast as infinite-
horizon and acyclic MDPs where the state is extended with the information of the horizon-to-go.
All that is needed for solving acyclic MDPs in a single pass is to order the updates so that a state s
is updated before a state s0 when there is a state trajectory from s0 to s in the MDP with positive
probability. In the case of finite-horizon MDPs, it suffices to update states hs; d � 1i before states
hs0; d i. It is simple to prove by induction that the values computed in one such pass are optimal. e
procedure is also known as backward induction [Bertsekas, 1995].

POLICY ITERATION
e other standard dynamic programming algorithm for solving MDPs is Policy Iteration [Bertsekas,
1995, Howard, 1971, Puterman, 1994]. Whereas VI iterates over value functions in order to compute
the optimal value function V �, Policy Iteration (PI) iterates over policies, each one strictly better than
the one before. Since the total number of (deterministic) policies is finite, PI converges to the optimal
policy in a number of iterations that is bounded.

Policy iteration applies two operations in sequence, starting with a proper policy � D �0. First,
it computes the value of the policy V �.s/ over all states. It then finds a new policy � 0 that is proper
and improves � if � is not optimal. e first step, called Policy Evaluation, is done by solving the set
of jS j linear equations given by (6.4) that characterize the value function V � . e second step, called
Policy Improvement, uses the value function V � computed in the Policy Evaluation step, to see if there



86 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

are states s where the actions dictated by the policy � are not best, under the assumption that after
this first step, the policy � will be followed. For this,Q-factors of the form

Q�.a; s/ D c.a; s/C
P

s02S Pa.s
0js/V �.s0/ (6.15)

are computed for each non-goal state s and action a 2 A.s/. e policy � 0 that is like � except in states
s for which the following strict inequality holds

min
a2A.s/

Q�.a; s/ < Q�.�.a/; s/ D V �.s/ (6.16)

where � 0.s/ D argmina2A.s/Q
�.a; s/ is a policy that strictly improves � , i.e., V � 0

.s/ � V �.s/ with
the inequality being strict over some states. If there are no such states, � must be optimal, and Policy
Iteration terminates.

Policy iteration produces a sequence of policies �0; : : : ; �n, starting with an initial proper policy
�0 such that each policy �iC1 is proper and strictly improves the previous one. e last policy �n is
a policy that cannot be improved further and is optimal. e length of the sequence is bounded by
the total number of deterministic and stationary policies. A proper policy is needed initially in Policy
Iteration, as the Policy Improvement step may not work when the expected costs are not bounded. For
example, consider a Goal MDP with a single non-goal state s and two actions a and b such that amaps
s into itself with probability 1, and b maps s into itself with probability 1=2, and into the goal with
probability 1=2. If the initial policy � is such that �.s/ D a, then V �.s/ is infinite, and therefore both
Q�.a; s/ andQ�.b; s/ are infinite as well, so that the policy � 0.s/ D b does not appear to improve �
even if � 0 is optimal and � is not. is can’t happen, however, when � is a proper policy. Methods for
computing proper or strong cyclic policies are discussed in Section 5.6. Yet, the stochastic policy that
assigns to each state s an action in A.s/ with probability 1=jA.s/j is always proper in problems with
no dead-ends. Code for a simple implementation of Policy Iteration is shown in Figure 6.3.

6.3 HEURISTIC SEARCH ALGORITHMS
Dynamic programming methods like VI and PI are exhaustive. ey consider all the states in the prob-
lem from the very beginning, and thus cannot be used to solve problems with a large number of states;
e.g., jS j > 1010.Heuristic searchmethods, on the other hand, are incremental, and while they may end
up considering many, if not all of the states in a problem, they use information about the initial state
and lower bounds or admissible heuristic functions, to focus the search for solutions. In Sections 2.3 and
2.4, we reviewed heuristic search methods for solving directed (OR) graphs like A* and LRTA*, while
in Section 5.3, we reviewed heuristic search methods for solving acyclic AND/OR graphs like AO*. In
this section, we look at heuristic search algorithms for solving Goal MDPs, which can also be applied
to Discounted MDPs after transforming them into Goal MDPs. One of the algorithms, RTDP, is
a generalization of LRTA* to MDPs [Barto et al., 1995], another one, LAO*, is a generalization of
AO* to cyclic AND/OR graphs. A crucial idea underlying these methods is that there is no need for
computing complete policies that prescribe an action in every possible state when the initial state is
given.

A partial policy � is a function that assigns an action �.s/ to some states but not necessarily to
all of them. For a partial policy � to represent a solution to a Goal MDP, there is no need for � to be



6.3. HEURISTIC SEARCH ALGORITHMS 87

P I
Starts with proper policy � and terminates with � being optimal
repeat

Compute V � and store it in vector V
Let � 0 WD � be the new policy initialized to �
Let change := false
for each state s 2 S do

for each action a 2 A.s/ do
Q.a; s/ WD c.a; s/C

P
s02S Pa.s

0js/V .s0/

end for
LetQ WD mina2A.s/Q.a; s/

if Q < V.s/ then
� 0.s/ WD argmina2A.s/Q.a; s/

change := true
end if

end for
if change = true then � WD � 0

until change = false

Figure 6.3: Policy Iteration for Goal MDPs. e algorithm terminates when � cannot be improved further and
hence is optimal.

total, it suffices for � to be defined over the initial state of the MDP, s0, and over the states s that can
be reached from s0 while following � . is set of states, denoted as S.�; s0/, is the smallest set that
includes s0, and is closed in the following sense: if s is in S.�; s0/, and Pa.s

0js/ > 0 for a D �.s/, then
s0 must be in S.�; s0/ as well. We say that such partial policies are closed with respect to s0, or simply,
that they are closed, leaving the initial state s0 implicit. A state s is reachable from s0 with policy � iff
s 2 S.�; s0/.

e main idea underlying heuristic search algorithms for MDPs can be expressed as follows.
Let ResV .s/ be the residual of the value function V over a non-goal state s, defined as the difference
between the left and right-hand sides of Bellman’s optimality equation at state s:

ResV .s/ D
ˇ̌
V.s/ � mina2A.s/ Œc.a; s/C

P
s02S Pa.s

0js/V .s0/�
ˇ̌
: (6.17)

Bellman’s result stating that V � is the unique solution of the set of optimality equations and that
the policy �V � greedy with respect to V � is optimal, can be rephrased as saying that if V is a value
function such that the residuals ResV .s/ are zero over all the states, then �V is optimal. Heuristic
search algorithms for MDPs exploit a variation of this result that takes into account 1) the possibility
of the value function V being an admissible heuristic function, i.e. a lower bound V � V �, and 2) the
fact that many states will not be reachable from the initial state s0 and the greedy policy �V .



88 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

F--R
Starts with value function V given by admissible heuristic function h, h � V �

repeat
Find one or more states s reachable from s0 with �V such that ResV .s/ > �
Update V at those states s and possibly at other states

until no such states s found

Figure 6.4: Find-and-Revise: Computes value function V with residuals bounded by � over all the states reach-
able with greedy policy �V from the initial state s0. For sufficiently small �, the resulting greedy policy �V is
optimal for s0.

In fact, provided that V is an admissible heuristic, it can be shown that the greedy policy �V will
be optimal for the initial state s0, if the residuals are zero over the states that can be reached with �V from
s0 [Bonet and Geffner, 2003a]; i.e.,2

V �V .s0/ D V �.s0/ if ResV .s/ D 0 for all s 2 S.�V ; s0/ and V � V �. (6.18)

is is a simple but important result that says that there is no need for the value function V to converge
over all states for the greedy policy�V to be optimal with respect to the initial state s0; convergence over
the states that are reachable from s0 by following the policy �V suffices. For this, the value function
V must be admissible, else like in A*, the optimal solutions may be missed. As an example of this,
consider a deterministic Goal MDP with two non-goal states s0 and s1 such that action a maps s0
into the goal at cost 5, while b maps s0 into s1, and s1 into the goal, in both cases at cost 1. In this
problem, b is a better action than a in the state s0. Yet, if the value function V is not admissible and
overestimates the value of the state s1, e.g., by making V.s1/ D 10, the policy �V greedy in V will
pick the action a rather than b in s0, while the residuals ResV .s/ will be zero over all the non-goal
states s that are reachable from s0 with the policy �V . Actually, in this deterministic MDP, the same
suboptimal solution would result from A* with the same non-admissible heuristic function. us, the
admissibility of V in (6.18) is a necessary condition for the optimality of the policy �V with respect to
the initial state s0.

e principle expressed in (6.18) suggests a simple generic method for computing admissible
value functions V such that the residuals ResV .s/ over the states s reachable from the initial state
S0 and the greedy policy �V do not exceed a certain threshold � > 0. e generic method, shown in
Figure 6.4, is called Find-and-Revise [Bonet and Geffner, 2003a]. Find-and-Revise proceeds in two
stages: it first searches for one or more states s in S.�V ; s0/ with residuals ResV .s/ > �, and then
updates such states as in Asynchronous Value Iteration. is process is repeated until there are no
more such states. If the initial value function V D h is monotonic, the process terminates in at most
1
�

P
s2S V

�.s/ � h.s/ iterations.
e notion of monotonicity or consistency is well known in heuristic search over directed graphs,

where it refers to heuristics h that satisfy the triangular inequality h.n0/ � c.n; n0/C h.n/ for every
2We assume that a value function V determines a unique greedy policy �V . is is easy to enforce by assuming a static ordering
among actions so that ties in the choice of the action �V .s/ are broken by using this ordering, e.g., preferring action a to b
if a precedes b in the ordering.



6.3. HEURISTIC SEARCH ALGORITHMS 89

LRTA*
% Initial value function V given by admissible heuristic h
% Changes to V stored in hash table
Let s WD s0
While s is not a goal state do

Evaluate each action a 2 A.s/ as:Q.a; s/ WD c.a; s/C V.s0/ where s0 D f .a; s/

Select best action a WD argmina2A.s/Q.a; s/

Update value V.s/ WD Q.a; s/
Set s WD f .a; s/

end while

Figure 6.5: Trial of Learning Real Time A*: LRTA* can be seen as instance of Find-and-Revise for determin-
istic MDPs and � D 0. LRTA* would still converge to an optimal solution as an instance of Find-and-Revise if
trials were interrupted right after the first update that changes the value function.

pair of nodes n and n0 that are connected through an edge with cost c.n; n0/. e use of a mono-
tonic heuristic in an algorithm like A* ensures that the evaluation function f .n/ of the nodes selected
for expansion never decreases. In the probabilistic setting, the monotonicity of V translates into the
inequality V.s/ � c.a; s/C

P
s02S Pa.s

0js/V .s0/ for each state s 2 S and action a 2 A.s/. Since up-
dates preserve monotonicity (and admissibility), an initial monotonic value function guarantees that
state values V.s/ never decrease after updates. Also, since these values are bounded from above by
the finite optimal costs V �.s/, they cannot change more than .V �.s/ � h.s//=� times, where h is the
initial admissible and monotonic value function.

In the implementation of Find-and-Revise procedures, the initial value function V is usually
given by a heuristic function h, and changes in the value function are stored in a hash table. e search
step in Find-and-Revise can be implemented in O.jS j/ time with a standard depth-first traversal that
keeps track of visited nodes. A version of Find-and-Revise that combines such a depth-first search with
a labeling procedure formarking states s as solved when the residual over all the states that are reachable
from s and the greedy policy�V is bounded by �, is known asHDP for heuristic dynamic programming
[Bonet and Geffner, 2003a]. We consider other Find-and-Revise variants below, starting with the
LRTA* algorithm for deterministic problems presented in Section 2.4.

LRTA*
Learning Real Time A* (LRTA*) is a simple but powerful online search algorithm for finding paths
in graphs [Korf, 1990]. As explained in Section 2.4, LRTA* evaluates the actions a applicable in the
current state s, starting with the initial state s0, by computing the factors Q.a; s/ D c.a; s/C V.s0/,
where V is a value function initialized to a given heuristic h and s0 is the successor state s0 D f .a; s/.
LRTA* chooses then the action a thatminimizes theseQ.a; s/ values, revises the value V.s/ toQ.a; s/,
and iterates in this way by setting s to s0 until reaching a goal state (Figure 6.5).

LRTA* can be seen as an Asynchronous Value Iteration algorithm over a deterministic MDP
model, where the states that are updated are obtained by running simulations from the initial state,



90 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

RTDP
% Heuristic h is the initial value function V
% Changes to V stored in a hash table
Let s WD s0
While s is not a goal state do

Evaluate each action a 2 A.s/ as:Q.a; s/ WD c.a; s/C
P

s02S Pa.s
0js/V .s0/

Select best action a WD argmina2A.s/Q.a; s/

Update value V.s/ WD Q.a; s/
Select next state s0 with probability Pa.s

0js/ and set s WD s0

end while

Figure 6.6: Trial of RTDP: RTDP generalizes LRTA* to MDPs by evaluating actions using the Q-factors
corresponding to MDPs, and by sampling the successor states.

selecting in each state s the action �V .s/ that is greedy in V . Yet, Asynchronous Value Iteration is an
exhaustive algorithm, while LRTA* is not. Indeed, LRTA* can converge to the optimal (partial) policy
�V without visiting most of the states in the problem. is is because LRTA* is not only an instance
of Asynchronous VI, but of the general Find-and-Revise schema, and it thus exploits property (6.18),
taking advantage of both a known initial state s0 and an initial admissible value function. Actually,
LRTA* would still converge to an optimal solution if trials were interrupted right after the first update
that changes the value of a state. e resulting algorithm would be a version of Find-and-Revise with
� D 0, where a single state is revised in each iteration, found by executing the greedy policy�V from the
initial state. e extra work done in each single trial by LRTA* is thus not necessary for convergence.
Moreover, in the presence of dead-ends in the problem, LRTA* can be trapped into a dead-end, while
this variant does not, if the problem has a solution.

REAL-TIME DYNAMIC PROGRAMMING
Real Time Dynamic Programming (RTDP) is a generalization of LRTA* for general Goal MDPs
[Barto et al., 1995] that inherits its two main properties: in the absence of dead-ends, each trial even-
tually reaches the goal, and successive trials eventually converge to a value function V such that the
policy �V greedy in V is optimal for the initial state s0. For this, two changes are done to LRTA*. First,
the Q-factors for evaluating a in the state s are computed using the expression corresponding to the
Bellman equation for MDPs; i.e.,Q.a; s/ D c.a; s/C

P
s02S Pa.s

0js/V .s0/. Second, in the simulated
executions of the policy �V , the state s0 that follows action a in the state s is sampled with probability
Pa.s

0js/. e resulting RTDP algorithm is shown in Figure 6.6.
By sampling successor states stochastically, RTDP converges more quickly on the states that

matter the most, but less quickly on the states that are encountered with low probability. Indeed,
if the value function V is such that there is a single state s with a residual greater than � that is
reachable with the greedy policy �V from s0, RTDP does not guarantee that this state will be found
and updated in O.jS j/ time. is may actually take a large and unbounded number of trials if the
probability of reaching s from s0 while following the policy �V is small. e algorithm Labeled RTDP



6.3. HEURISTIC SEARCH ALGORITHMS 91

is a modification of the RTDP algorithm that improves its convergence by ensuring that at least one
such state is found in every RTDP trial when there are such states. If not, Labeled RTDP terminates
[Bonet and Geffner, 2003b]. is is achieved, as in the algorithm HDP mentioned above, by labeling
states s as solved when all the states s0 that are reachable with the policy �V from s have residuals
ResV .s

0/ no greater than �. LRTDP terminates when the initial state s0 is solved. Since the MDP
can contain cycles, the labeling procedure is not done bottom-up, from children to parents, but using a
version of Tarjan’s algorithm [Tarjan, 1972] for detecting and labeling strongly connected components
[Bonet and Geffner, 2003a,b].

LAO*
In Section 5.3 we considered the AO* algorithm for solving acyclic AND/OR graphs [Nilsson, 1980].
LAO* [Hansen and Zilberstein, 2001] is an extension of AO* for solving cyclic AND/OR graphs,
whose solutions may contain cycles as well. Since Goal MDPs can be cast as cyclic AND/OR graphs
whose (optimal) solutions encode the (optimal) solutions for Goal MDPs, LAO* can be used for
solving Goal MDPs, and hence Discounted MDPs. In the AND/OR graph corresponding to a Goal
MDP, the OR nodes correspond to the non-goal states s, the AND nodes correspond to the state-
action pairs .s; a/ where a is an action applicable in s, and the terminal nodes are goal states, and states
from which no action can be applied. e children of the OR node s are the AND nodes .s; a/, and
the children of the AND node .s; a/ are terminal or OR nodes s0 for which Pa.s

0js/ > 0.
AO* explicates the implicit AND/OR graph incrementally, starting with the graphG that con-

tains just the root node, and maintains the subgraph G� of G that encodes the optimal solution of G
under the assumption that the nodes in G that have not yet been explicated (its children added to
G), are terminal nodes n with values V.n/ given by a heuristic h.n/. AO* then proceeds to pick one
of these tip nodes of G� that are not terminal nodes of the original problem, and expands it in G,
updating both G and its best solution subgraph G�. AO* terminates when the tip nodes in G� are all
terminal nodes. e solution to the AND/OR graph is given then by G�. e solution is optimal if
the heuristic h is admissible.

e best solution subgraph G� is obtained from G incrementally by propagating the values of
the last children added to G to its parents and ancestors. is propagation is a single pass of Value
Iteration (backward induction) that takes advantage of the acyclic structure of the AND/OR graph. If
the acyclic AND/OR graph represents an acyclic MDP, the valueQ.a; s/ of an AND node .s; a/ is the
functionQ.a; s/ D c.a; s/C

P
s0 Pa.s

0js/V .s0/ of its children s0, while the value of an OR node V.s/
is the minimum valueQ.a; s/ of its children. e best solution subgraphG� is updated by picking the
best child .a; s/ of each OR node s encountered during the bottom-up propagation of values.

In the presence of cycles, this method for maintaining the best subgraph G� of G is no longer
correct. Indeed, if the AND/OR graph represents a cyclic MDP, a single pass of Value Iteration over
the ancestors of the nodes last added to the explicit graph G does not necessarily produce optimal
values. Instead, Value Iteration must be run until the residuals over such nodes are smaller than a given
� parameter. is is precisely what LAO* does [Hansen and Zilberstein, 2001]. Since running Value
Iteration until convergence in each expansion step of LAO* is too time consuming, an alternative to
LAO*, called Improved LAO* or simply ILAO*, is normally used instead. e two key changes from
LAO* to ILAO* are that ILAO* expands all non-terminal tip nodes of G� in each step, and that the
values are propagated up from the new nodes by updating the node values once. Conveniently, both
operations can be done with a single depth-first traversal of the subgraph G� in which the updates



92 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

are done during backtracks. e result is that the resulting values are no longer optimal over G, and
hence that G� is not necessarily a best solution subgraph of G (so ILAO* is not a best-first algorithm
like AO* or LAO*). us, when the termination condition of AO* and LAO* is reached in ILAO*,
and G� contains no tip that can be expanded (because such tips are terminal nodes), ILAO* runs
Value Iteration until the residuals over the nodes in G� are smaller than �. If the optimal subgraph
G� does not change as a result, ILAO* terminates, else ILAO* continues using the revised subgraph
G�. ILAO* is not an exact instance of Find-and-Revise as the expansion of tip nodes of G� does not
necessarily imply that their residuals exceed � (although this will often be the case). Still at termination,
the states in G�, which are those reachable with the greedy policy �V from s0, have all residuals that
are bounded by �. Further details on heuristic search algorithms for MDPs can be found in the book
by Mausam and Kolobov [2012].

6.4 ONLINE MDP PLANNING
Online planning methods are not aimed at computing partial or complete policies, but at the selection
of the action to do next in a planning-and-execution cycle. While they don’t offer the guarantees of
offline methods, they are usually informed by offline methods, and are more practical as they can be
used over larger problems. In Sections 2.4 and 5.4, we reviewed online planning methods for classical
and partially observable problems. All these methods can be adapted to the context of MDPs: greedy
action selection using a heuristic function to estimate expected cost-to-go, less greedy selection methods
following an exhaustive lookahead up to a certain depth H , adaptive greedy action selection following
a number of iterations of LRTA* or RTDP that combine simulations and updates, as well as choices
based on the solution of suitable problem relaxations. ese various approaches are not incompatible
with each other and admit a number of variations. Below we focus on two relaxation-based methods
for online MDP planning: one that relies on the use of classical planners over deterministic relaxations of
the MDP, and one that relies on finite-horizon relaxations solved by anytime optimal methods. Anytime
optimal methods solve the problem incrementally, producing optimal solutions if given sufficient time,
and (hopefully) good solutions when given shorter time windows.

CLASSICAL REPLANNING FOR MDPS
In Section 5.4 we considered the use of classical planners for computing strong cyclic solutions to fully
observable non-deterministic problems. is same idea can be used for MDPs, by just replacing the
transition probabilities P in the MDP by a non-deterministic state transition function F such that
s 2 F.a; s/ iff a is an action applicable in the state s and Pa.s

0js/ > 0. e (possibly partial) strong
cyclic policies for the resulting non-deterministic problem capture exactly the (possibly partial) proper
policies for the MDP. e strong cyclic policies are computed by running a classical planner multi-
ple times over a deterministic relaxation where each non-deterministic action a is replaced by a set of
deterministic actions a1; : : : ; am with the same preconditions as a, each of which captures a possible
effect of a; i.e., for any state s where action a is applicable, s0 2 F.a; s/ iff s0 D f .ai ; s/ for some
i 2 f1; : : : ; mg. is deterministic relaxation, which is implemented at the level of the compact repre-
sentation of non-deterministic models and MDPs, can be used for online planning in those settings
too. For this, in a state s, a classical plan is obtained using a classical planner over the compact repre-
sentation of the deterministic relaxation, and the plan is executed until a state s0 is observed that does
not agree with the state predicted by the plan in the relaxation. In such a case, a classical planner is



6.4. ONLINE MDP PLANNING 93

invoked again on the deterministic relaxation with s0 as the initial state, and the process is repeated
until a goal state is reached. is classical replanning approach to MDPs that selects actions ignoring
the non-determinism and the actual probabilities (except for whether they are 0 or not) works sur-
prisingly well in many domains, as shown by the online MDP planner FF-Replan [Yoon et al., 2007].
is basic approach can be improved in a number of ways such as mapping probabilities into costs, and
using then a classical planner for approximating the minimum cost plans, which would then encode
the most likely plans in the relaxation [Keyder and Geffner, 2008b, Mausam and Kolobov, 2012].
Alternatively, the resulting action selection mechanism can be used as a suitable base policy for seeding
algorithms like UCT.

ANYTIME ALGORITHMS FOR FINITE-HORIZON RELAXATION
A second type of simplification used for infinite-horizon MDP planning is the finite-horizon relax-
ation. For a given state s and horizon H , this relaxation defines a finite-horizon MDP with initial
state s, with the same transition probabilities and costs. is finite-horizon MDP represents a differ-
ent infinite-horizon MDP that is acyclic, whose states s are augmented with information about the
horizon-to-go d , and whose goals are extended to include the terminal states .s; d/ for d D 0. Opti-
mal or approximate algorithms can then be used to compute a policy for this relaxed MDP. e action
dictated by this policy in the current state s is then applied, the resulting state is observed, and the
process is repeated until a goal state of the original MDP is reached. However, rather than using small
horizons H that result in finite-horizon MDPs that can be solved optimally in real-time, it has been
found useful to consider larger horizons in combination with anytime optimal methods. We consider
two such methods below. For the use of RTDP in an online MDP planning setting; see Kolobov et
al. [2012a,b].

UCT
UCT is a Monte-Carlo Tree Search (MCTS) algorithm for solving finite-horizon MDPs and, more
generally, AND/OR trees [Chaslot et al., 2008, Kocsis and Szepesvári, 2006]. UCT has been suc-
cessfully used in a number of settings, including the game of Go [Gelly and Silver, 2007], real-time
strategy games [Balla and Fern, 2009], and general game playing [Finnsson and Björnsson, 2008].
Like the standard heuristic search algorithm AO* for acyclic AND/OR graphs, UCT builds an ex-
plicit graph G incrementally. ere are however four main differences between UCT and AO*. First,
UCT selects the tip node to expand in G by running a simulation from the root node, which may add
at most one new node to G. Second, UCT evaluates tip nodes by simulating a given base policy from
the node. ird, values are propagated up the tree by means of Monte-Carlo updates. Four, UCT has
no termination condition and its optimality over finite-horizon MDPs is only asymptotic. We explain
these aspects of UCT in more detail below. Code for UCT is shown in Figure 6.7.

UCT consists of a sequence of stochastic simulations that start at the root node of the AND/OR
tree for the finite-horizon MDP. When this simulation reaches a node that is not in the explicit graph,
the node is added to the graph, and the heuristic value of the node is obtained by executing a given
base policy from the node. e processing done by UCT is aimed at improving the quality of this
base policy at the root node. While the simulation traverses internal nodes of the explicit graph, the
successor states are sampled stochastically, as in RTDP, but the choice of the actions is not greedy on
theQ-values, but on the sum of theQ-values plus a bonus term equal to



94 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

� C

q
2 logN.s; d/=N.a; s; d/ (6.19)

that ensures that all the applicable actions would be tried infinitely often at suitable rates. In Eq. 6.19,C
is an exploration constant, andN.s; d/ andN.a; s; d/ are counters that track the number of simulations
that have passed through the node .s; d/ in the tree, and the number of times that action a has been
selected at such node. If a has never been tried at s,N.a; s; d/ D 0 and the bonus term is �1, forcing
a to be selected unless there are other unexplored actions. e bonus term is based on a similar term
used in UCB [Auer et al., 2002], a regret-optimal algorithm for the multi-armed bandit problem.

e counters N.s; d/ and N.a; s; d/ are maintained for the nodes in the explicit graph only.
When a node .s; d/ is generated that is not in the explicit graph, the node is added to the explicit
graph, the counters N.s; d/, N.a; s; d/, and Q.a; s; d/ are allocated and initialized to 0, and a cost
c.�; s; d/ is sampled by simulating the base policy � for H � d steps starting at s, and propagating
this sampled cost upward along the nodes in the simulated path. ese values are not propagated
using full Bellman backups as in AO*, RTDP or VI, but through Monte-Carlo backups that update
the current average with a new sampled value. For a successful use of a UCT-like algorithm in domain-
independent MDP planning, see Keller and Eyerich [2012].

ANYTIME AO*
Anytime AO* is a simple variation of the AO* algorithm for AND/OR trees aimed at bridging the
gap between AO* and UCT [Bonet and Geffner, 2012a]. Like UCT and unlike AO*, Anytime AO*
is anytime optimal even in the presence of non-admissible or random heuristics. A random heuristic is
a heuristic that corresponds to a random variable that can be sampled such as the cost of a base policy.
On the other hand, Anytime AO* like AO* and unlike UCT has a clear termination condition that is
achieved when there are no more nodes to add to the explicit graph.

Anytime AO* is the result of two small changes in AO*. e first, designed to handle non-
admissible heuristics, is that rather than always selecting non-terminal tip nodes from the explicit
graph G that are part of the best partial solution graph G�, Anytime AO* selects non-terminal tip
nodes from G nG� with some positive probability. e second change, designed for dealing with
random heuristics h, is that when the value V.s; d/ of a tip node .s; d/ is set to a heuristic h.s; d/ that
is a random variable, such as the cost obtained by following a base policy � for d steps from s, Anytime
AO* uses samples of h.s; d/ until the node .s; d/ is expanded. Until then, each time the value V.s; d/
is required, which occurs each time that a parent node of .s; d/ is updated, a new sample of h.s; d/
is obtained which is averaged with the previous samples. is is implemented in standard fashion by
incrementally updating the value V.s; d/ using a counter N.s; d/ and the new sample.

Anytime AO* has been tried as an online planning algorithm over different types of MDPs,
including problems like the Canadian Traveller Problem where it appears to do as well as UCT, which
represents the state-of-the-art [Eyerich et al., 2010]. An advantage of Anytime AO* is that it can
potentially benefit from a number of techniques developed for speeding up A* and AO* like the use
of weights W > 1 in the heuristic term [Chakrabarti et al., 1988]. Two advantages of UCT, on the
other hand, are that it is a model-free method that can work perfectly well with a simulator rather than
a model, and that it is less affected by large branching factors that obtain when the number of states s0

that may result from doing an action a in a state s is large.



6.5. REINFORCEMENT LEARNING, MODEL-BASED RL, AND PLANNING 95

UCT.s; d/

if d D 0 or s is goal then return 0

if .s; d/ is not in explicit graph G then
Add node .s; d/ to explicit graph G
Initialize N.s; d/ WD 0 and N.a; s; d/ WD 0 for all a 2 A.s/

Obtain sampled accumulated cost c.�; s; d/ by simulating base policy � for
H � d steps starting at s
return c.�; s; d/

if node .s; d/ is in explicit graph G then

Bonus.a/ WD C
p
2 logN.s; d/=N.a; s; d/ if N.a; s; d/ > 0, else 1, for a 2 A.s/

a� WD argmina2A.s/ŒQ.a; s; d/ � Bonus.a/�

Sample state s0 with probability Pa.s
0js/

Let Cost WD c.a; s/C UCT.s0; d � 1/

Increment N.s; d/ and N.a; s; d/
SetQ.a; s; d/ WD Q.a; s; d/C ŒCost �Q.a; s; d/�=N.a; s; d/

return Cost

Figure 6.7: UCT for finite-horizon cost-based MDPs: H is the horizon, G is the explicit graph (initially
empty), � is the base policy, and C is the exploration constant. Procedure is called over node .s;H/ where s
is the current state. When time runs out, UCT selects the action applicable at s that minimizesQ.a; s;H/.

6.5 REINFORCEMENT LEARNING, MODEL-BASED RL,
AND PLANNING

Reinforcement learning methods are algorithms that learn a control policy by trial-and-error through
a process that seeks to maximize expected rewards [Sutton and Barto, 1998]. Modern reinforce-
ment learning algorithms can actually be understood as solving a Discounted Reward-based MDP
whose probabilistic and reward parameters are not known to the agent, who can nevertheless inter-
act with a real or simulated world that is governed by such an MDP. Q-learning is one of the sim-
plest such algorithms [Watkins, 1989]. Starting with arbitraryQ.a; s/ values, and given an execution
s0; a0; r0; s1; a1; r1; : : : where si , ai , and ri represent the states, actions, and rewards received at time
i , Q-learning updates the valueQ.ai ; si / of action ai in the state si after observing the next state siC1

and getting the reward riC1 through the expression:

Q.ai ; si / WD .1 � ˛i /Q.ai ; si / C ˛i

�
riC1 C 
 maxa2A.siC1/Q.a; siC1/

�
(6.20)

where 
 stands for the discount factor and the ˛i parameters represent the learning rate. e term

riC1 C 
 maxa2A.siC1/Q.a; siC1/ (6.21)



96 6. MDP PLANNING: STOCHASTIC ACTIONS AND FULL FEEDBACK

can be understood as a stochastic sample of the termP
s2S Pai

.sjsi /
�
r.si ; ai ; s/C 
 maxa2A.s/Q.a; s/

�
; (6.22)

which would be used to update the Q.ai ; si / factor if the probability and reward parameters were
known.3 e reason for learning Q.a; s/ values as opposed to V.s/ values, is that the latter cannot be
used for selecting actions without knowing the probabilities and rewards. e key result for this type of
stochastic updates is that they converge to the optimalQ-values in the limit when all actions are tried in
all states sufficiently often, provided that the constants ˛i comply with basic requirements [Bertsekas
and Tsitsiklis, 1996, Sutton and Barto, 1998, Szepesvári, 2010]. In Q-learning this convergence is
achieved by choosing a random action in each state s with small but non-zero probability �, choosing
otherwise the greedy action a, i.e., the action that appears to be best according to the currentQ-values,
namely, a D argmaxa2A.s/Q.a; s/.

Q-learning is a model-free algorithm for solving MDPs as it learns the behavior but not the
model (parameters). Model-based reinforcement learning algorithms, on the other hand, are aimed at
learning both the model and the behavior, which they derive from the model like any planning-based
method. Interestingly, some of the best known model-based RL algorithms like R-MAX [Brafman
and Tennenholtz, 2003] actually map the learning problem into a planning problem. Indeed, R-MAX
plans in an optimistic model where rewards r.s; a; s0/ that are not yet known are replaced by known,
optimistic rewards R, r.s; a; s0/ � R, and similarly, transition probabilities Pa.s

0js/ that are not yet
known are replaced by known transition probabilities Pa.sRjs/ D 1, where sR is a new and absorbing
“nirvana” state where the rewards r.sR; a; sR/ are all equal to the upper bound R. Planning in this
“optimistic” model directs the learning agent to states s and actions a that lead to the “nirvana” state
sR. By repeating this process over and over, a sufficient number of samples is obtained for the un-
known parameters Pa.s

0js/ and r.s; a; s0/ until they become known with sufficient confidence. When
this happens, the optimistic values for these parameters are replaced by the learned values, and the
optimistic MDP model becomes less optimistic and more accurate. By iterating this planning and
learning process, R-MAX ends up producing a nearly optimal policy in polynomial time.

3In Reinforcement Learning, it is common to consider rewards of the form r.s; a; s0/ that are a function of the action applied,
the current state s, and the following state s0. Such rewards, unlike the rewards r.a; s/ that we have considered so far, need
to be pushed inside the summation as shown in (6.22). When the model parameters are known, as in planning, these 3-place
rewards r.s; a; s0/ can be replaced by the 2-place rewards r.a; s/ by setting r.a; s/ D

P
s02S Pa.s0js/r.s; a; s0/.



97

C H A P T E R 7

POMDP Planning: Stochastic
Actions and Partial Feedback

Partially observable MDPs (POMDPs) generalize MDPs by allowing states to be partially observ-
able through sensors that map the true state of the world into observable tokens according to known
probabilities. A POMDP can be understood as an MDP over belief states where a belief state is a
probability distribution over the states. In Goal POMDPs, the task is to reach the goal with certainty
given a known initial belief and actions and observations that change the world and the beliefs. In this
chapter, we look at Goal and Discounted POMDP models, and at the basic exact and approximate
methods for solving them.

7.1 GOAL, SHORTEST-PATH, AND DISCOUNTED
POMDPS

e differences between Goal POMDPs and Goal MDPs are in the initial situation, that is no longer
assumed to be known, and in the feedback, that no longer provides full information about the state
of the world. Instead, the initial situation is characterized by an initial belief b0, and observations are
characterized by means of a sensor model where tokens o 2 O are observed with probabilities Pa.ojs/

where s is the true but possibly hidden state of world and a is the last action executed. AGoal POMDP
is thus given by:

• a finite state space S ,

• a probability distribution b0 over the states such that b0.s/ stands for the probability of s being
the true initial state,

• a non-empty subset SG � S of observable goal states,

• sets of actions A.s/ applicable at each state s 2 S ,

• transition probabilities Pa.s
0js/ for s0 being the next state after action a 2 A.s/ is applied in

state s,

• positive action costs c.a; s/ incurred after applying action a 2 A.s/ in the state s, and

• sensor probabilitiesPa.ojs/ of receiving observation token o 2 O in state s when the last applied
action was a.

As for Goal MDPs, rather than regarding goal states as terminal states to be reached, it is often con-
venient to regard them as absorbing, cost-free states, i.e., states s for which the transition probabilities



98 7. POMDP PLANNING: STOCHASTIC ACTIONS AND PARTIAL FEEDBACK

arePa.s
0js/ D 1 iff s0 D s, and costs are c.a; s/ D 0 for any action a. In Goal POMDPs, goal states are

assumed to be observable so that there is never uncertainty about whether the goal has been reached or
not—an assumption that guarantees that any policy that does not reach the goal with certainty incurs
in infinite expected cost. We will see that Discounted POMDPs, whether cost or reward-based, can
be easily transformed into equivalent Goal POMDPs that obey these restrictions.

e selection of the best action for achieving the goal in a POMDP depends on the observed
execution ha0; o0; a1; o1; : : :i. However, in POMDPs, it’s no longer the case that the last observation
summarizes the previous execution, and that optimal policies map the last observation into an action.
is is because, while the dynamics and cost structure of the model are still Markovian as in MDPs, the
state of the system is no longer known. Yet, while the last observation does not summarize the past
execution, the probability distribution over the states does [Astrom, 1965, Smallwood and Sondik,
1973, Striebel, 1965]. is probability distribution is called the belief state of the agent. e initial
belief is given by the prior probability b0 in the model, and the beliefs following an execution are
defined inductively from it as follows. If b is the belief state before the agent performs an action a, the
belief state ba that results after the action a is:

ba.s/ D
P

s02S Pa.sjs
0/b.s0/ : (7.1)

en if the observation token o is obtained, the belief that results from b after the action a and the
observation o, denoted as bo

a, is:

bo
a.s/ D Pa.ojs/ba.s/=ba.o/ ; (7.2)

where ba.o/ is the probability of observing o after doing the action a in the belief b:

ba.o/ D
P

s2S Pa.ojs/ba.s/ : (7.3)

Equations 7.1 and 7.2 for POMDPs generalize Eqs. 5.1 and 5.2 for the non-deterministic,
partial observable models considered in Chapter 5, by taking probabilities into account, both in the
system dynamics and in the sensors.

Provided that the set A.b/ of actions that are applicable in a belief state b is defined as the set
of actions that are applicable in each of the states that are possible according to b, and that the cost
c.a; b/ of applying an action a in a belief state b is defined as the expected cost

c.a; b/ D
P

s2S c.a; s/b.s/ ; (7.4)

it is simple to transform a Goal POMDPM into an equivalent fully observable Goal MDP over belief
statesM 0 where:

• the states b inM 0 are the belief states overM ,

• the initial state inM 0 is the belief state b0,

• the goal states inM 0 are the goal beliefs bG such that bG.s/ D 0 if s is not a goal state inM ,

• the set of actions A.b/ applicable in b is comprised of the actions a such that a 2 A.s/ for all s
such that b.s/ > 0,



7.2. EXACT OFFLINE ALGORITHMS 99

• the transition probabilities Pa.b
0jb/ are equal to ba.o/ if b0 D bo

a, and otherwise equal to 0, and

• the costs c.a; b/ are given by (7.4), and are positive (and bounded away from zero) except when
b is a goal belief in which case c.a; b/ D 0.

e solution to this beliefMDP is a policymapping belief states into actions that yields a solution
to the original POMDP. In particular, the equations determining the expected costs V �.b/ of a policy
� from belief b are:

V �.b/ D c.a; b/C
P

o2O ba.o/V
�.bo

a/ (7.5)

for non-goal beliefs b, and V.b/ D 0 for goal beliefs, while the optimal cost function V �.b/ is the
solution of the equation

V.b/ D mina2A.b/ Œc.a; b/C
P

o2O ba.o/V .b
o
a/� (7.6)

for non-goal beliefs b, and V.b/ D 0 for goal beliefs. e problem in solving the belief MDP, however,
is that unlike the MDPs considered in the last chapter, it has a continuous and infinite state space
given by the probability distributions over the states in the POMDP. e exact methods for solving
POMDPs must address this challenge. As for MDPs, we will assume that there are no dead-end beliefs
b fromwhich goal beliefs cannot be reached, or alternatively, that there is a proper policy � that ensures
that a goal belief will be reached from any belief with probability 1.

SHORTEST-PATH AND DISCOUNTED MODELS
As in the case of MDPs, one can define Stochastic Shortest-Path POMDPs as Goal POMDPs where
the action costs c.a; s/ are not required to be positive over non-goal states s. In such a case, however,
for the model and the solutions to be well defined, every policy � that does not achieve the goal with
certainty from a belief b must have infinite cost V �.b/.

Discounted Cost and Reward-based POMDPs are defined as for MDPs with no requirement
on the presence of terminal goal states or in the sign of action costs or rewards. Rather, a discount fac-
tor 0 < 
 < 1 is used to discount future costs or rewards at a geometric rate. e expected accumulated
discounted cost or reward of any policy is then always bounded. As in the case of MDPs (Section 6.1),
Discounted Reward POMDPs can be compiled into equivalent Goal POMDPs by means of three
transformations that also preserve equivalence in the POMDP setting, namely, the addition of a con-
stant rewardR to make all rewards negative, the transformation of rewards to be maximized into costs
to be minimized, and the elimination of the discount factor by the addition of a dummy, observable
goal state [Bonet and Geffner, 2009].

7.2 EXACT OFFLINE ALGORITHMS
Since the number of belief states in POMDPs is infinite, policies and value functions cannot be stored
explicitly in memory. is is the first obstacle when trying to solve a POMDP with methods like Value
or Policy Iteration. Indeed, in Value Iteration, the full parallel DP update should map a value vector
Vk over all beliefs b into the value vector VkC1:



100 7. POMDP PLANNING: STOCHASTIC ACTIONS AND PARTIAL FEEDBACK

0.0 1.0

10y = 6x+ 17

5y = −x+ 21

15y = −29x+ 198

b

f(b)

Figure 7.1: Example of a piecewise linear and concave (pwlc) function f .b/ over beliefs b. e function f
is represented by a finite set � of jS j-dimensional vectors such that f .b/ D min˛2�

P
s2S b.s/˛.s/. In the

example, S contains two states and � contains three planes (lines). Every belief state b on S corresponds to a
point in the interval Œ0; 1� and the value f .b/ is determined by the projection of the point b on the concave hull
of � .

VkC1.b/ D mina2A.b/ c.a; b/C
P

o2O ba.o/Vk.b
o
a/ : (7.7)

Yet such an update cannot be implemented by iterating over all possible belief states. In 1973, however,
Sondik observed that if Value Iteration starts from a piecewise linear and concave (pwlc) function V0,
then all functions Vk resulting from these updates remain pwlc. A pwlc function f on the continuous
belief space over S is a combination of linear functions given as

f .b/ D min˛2�

P
s2S b.s/˛.s/ (7.8)

where � is a finite set of jS j-dimensional real vectors. e pwlc function f can be stored in finite
space as the set of vectors � . Figure 7.1 shows an example of a pwlc function. Clearly, any constant
function f .b/ � v is a pwlc function that corresponds to the singleton � D f˛g where the vector ˛ is
such that ˛.s/ D v for all states s.

Sondik’s result is fundamental as it provides a feasible way for implementing Value Iteration:
starting from a set �0 of vectors that represent the pwlc value function V0, a new set of vectors �1 is
computed that represents the pwlc value function V1 that results from a full DP update of V0, and so
on, until a value function Vk is obtained with residuals that do not exceed a given �. We will follow
Sondik in showing how these updates can be carried out. We use a formulation with a discount factor

 , 0 < 
 < 1, that ensures convergence to a given residual in a bounded number of iterations, and
assume that all actions a 2 A are applicable in all states so that A.b/ D A for any belief b. We also
assume a cost setting; for rewards, costs c.a; s/must be replaced by rewards r.a; s/, and minimizations
by maximizations.

Given an initial pwlc value function V0, and assuming inductively that the value function Vk

can be characterized by a set of vectors �k as:

Vk.b/ D min˛2�k

P
s2S b.s/˛.s/ ; (7.9)



7.2. EXACT OFFLINE ALGORITHMS 101

we need to show that the function VkC1, given as the full DP update of the function Vk :

VkC1.b/ D mina2A Œc.a; b/C 

P

o2O ba.o/Vk.b
o
a/� (7.10)

D mina2A Œc.a; b/C 

P

o2O ba.o/
�
min˛2�k

P
s2S b

o
a.s/˛.s/

�
� : (7.11)

is also a pwlc function, given by a finite set of vectors �kC1 defined in terms of the vectors in �k and
the parameters of the POMDP.

Notice that for each observation o, the outer sum in the right-hand side of (7.11) “picks” a
vector ˛ for the inner sum, and that such vectors can be summarized with a choice function � W O ! �k .
Moreover, since the outer sum picks vectors that minimize the inner sum, the min inside can be pulled
out by converting it into a minimization over the collection Vk

def
D f� j � W O ! �kg of all the j�kjO

choice functions. If � is one such choice function and �.o/ D ˛, the notation �.o/.s/ below stands for
˛.s/:

VkC1.b/ D mina2A Œc.a; b/C min�2Vk



P
o2O ba.o/

P
s2S b

o
a.s/�.o/.s/� (7.12)

D mina2A Œc.a; b/C min�2Vk



P
s2S

P
o2O �.o/.s/ba.o/b

o
a.s/� : (7.13)

Making use of the definitions of the probabilities bo
a.s/ and ba.o/ in Eqs. 7.2 and 7.3 respectively, it

follows that:

VkC1.b/ D mina2A Œc.a; b/C min�2Vk



P
s;o �.o/.s/

P
s0 b.s0/Pa.sjs

0/Pa.ojs/� (7.14)
D mina2A min�2Vk

Œc.a; b/C 

P

s;o �.o/.s/
P

s0 b.s0/Pa.sjs
0/Pa.ojs/� (7.15)

and by plugging the definition of c.a; b/ and regrouping terms, that

VkC1.b/ D mina2A;�2Vk

P
s0 b.s0/

�
c.a; s0/C 


P
s;o �.o/.s/Pa.sjs

0/Pa.ojs/
�

(7.16)
D min˛2�kC1

P
s2S b.s/˛.s/ (7.17)

where �kC1
def
D f˛a;� j a 2 A; � 2 Vkg is the collection of vectors ˛a;� defined by

˛a;�.s/
def
D c.a; s/C 


P
s0;o �.o/.s

0/Pa.s
0js/Pa.ojs

0/ : (7.18)

e set �kC1 contains at most jAj j�kjjOj different vectors ˛a;� , one for each action and choice function
� W O ! �k . However, some of these vectors are dominated by others in the sense that they do not
yield the minimum at any belief b. Such vectors can be identified by solving a linear program and
removed [Kaelbling et al., 1998]. Similarly, a linear program can be used to check if the residual of the
value function represented by �k falls below � for terminating Value Iteration. Figure 7.2 shows the
result of applying a full DP update over the function shown in Figure 7.1.

In spite of the exponential complexity of the full DP update, Sondik’s representation is ubiqui-
tous in exact and approximated methods, including recent state-of-the-art algorithms that use it in a
more selective type of updates, known as point-based updates.



102 7. POMDP PLANNING: STOCHASTIC ACTIONS AND PARTIAL FEEDBACK

0.0 1.0b 0.0 1.0b

Figure 7.2: e left panel shows the concave hull for a set � of vectors that define a pwlc value function (cf.
Figure 7.1). e right panel shows the result of applying a full update on � as described in the text. Only the
non-dominated vectors on both sets are shown.

7.3 APPROXIMATE AND ONLINE ALGORITHMS
e complexity of solving POMDPs has limited the applicability of exact algorithms to large problems
where approximation methods are used instead. We review some of these methods below.

POINT-BASED BACKUP ALGORITHMS
e exponential blow up in the number of vectors that results from a single DP update is a consequence
of updating the value function over all beliefs. An alternative is to update the value function at a
restricted subset of belief points, generating fewer vectors, and hence keeping the size of the value
function representation smaller. Some of the state-of-the-art algorithms for POMDPs are based on
this idea of point-based value updates.

If V is a pwlc function given by a set of vectors � , a point-based update or backup of V over a
set of belief points F refers to the pwlc value function bV given by a new set of vectors b� such thatbV .b/ D Vfb.b/ for every b 2 F , where Vfb is the full backup on V . If F is the whole belief space, bV is
equal to Vfb; otherwise the size of F can be used to control the complexity of the point-based backup.
Point-based POMDP algorithms [Pineau et al., 2006, Shani et al., 2012] compute the new set of
vectors b� from � by adding one vector backup.V; b/ for each belief b in F . e vector backup.V; b/
is the one that assigns the value Vfb.b/ to b:

backup.V; b/ D argmin˛2�fb

P
s2S b.s/˛.s/ (7.19)

where �fb D f˛a;� j a 2 A; � 2 Vg is the set of vectors for Vfb and V D f� j � W O ! � g is the set of
choice functions for � . is expression however requires the computation of the set �fb whose size
O.jAj j� jjOj/ is exponential in the number of possible observations. e method below computes the
single vector backup.V; b/ for an arbitrary belief b in polynomial time. For this, observe first that the
sum on the right-hand side of the Bellman equation for updating V.b/ can be expressed as:

P
o2O ba.o/V .b

o
a/ D

P
o2O ba.o/

�
min˛2�

P
s2S b

o
a.s/˛.s/

�
(7.20)



7.3. APPROXIMATE AND ONLINE ALGORITHMS 103

D
P

o2O

�
min˛2�

P
s;s0;s002S Pa.ojs

00/Pa.s
00js0/b.s0/˛.s/

�
(7.21)

D
P

o2O

�
min˛2�

P
s02S g

˛
a;o.s

0/b.s0/
�

(7.22)

where g˛
a;o is the vector defined as

g˛
a;o.s/

def
D

P
s02S ˛.s

0/Pa.ojs
0/Pa.s

0js/ : (7.23)

If we write the inner sum as a dot product and observe that

min˛2� g
˛
a;o � b D Œargminfg˛

a;o � b jg˛
a;o; ˛ 2 � g� � b ; (7.24)

we obtain

P
o2O ba.o/V .b

o
a/ D

P
o2O

�
min˛2� g

˛
a;o � b

�
(7.25)

D
P

o2O

˚�
argminfg˛

a;o � b jg˛
a;o; ˛ 2 � g

�
� b

	
(7.26)

D
�P

o2O argminfg˛
a;o � b jg˛

a;o; ˛ 2 � g
�

� b (7.27)

where the sum in (7.27) is a (point-wise) sum of vectors. Finally, if ga;b is defined as the vector with
entries

ga;b.s/
def
D c.a; s/C 


P
o2O g

b
a;o.s/ (7.28)

where the vector gb
a;o is the one that minimizes the scalar product g˛

a;o � b for ˛ 2 � . en, the value
of the full backup of V at the belief b becomes:

Vfb.b/ D mina2A c.a; b/C 

�P

o2O argminfg˛
a;o � b jg˛

a;o; ˛ 2 � g
�

� b (7.29)
D mina2A

�
ga;b � b

�
(7.30)

so that

backup.V; b/ D argminga;b ; a2A

�
ga;b � b

�
: (7.31)

is derivation provides an efficient method for computing the vector that encodes the update
of the value function V at the belief point b. ere are indeed jAj vectors ga;b , each one of which
can be computed in O.jS jjOjj� j/ time provided that the vectors g˛

a;o are precomputed and stored,
an operation that requires O.jAjjOjjS j/ time. Moreover, the vectors g˛

a;o do not depend on the belief
point b and thus, once computed, can be reused when computing the backup over other beliefs.

e different point-based POMDP algorithms differ mainly on the set of beliefs F selected for
update in each iteration, in the initial set of vectors, and in the termination condition [Shani et al.,
2012]. Like the RTDP algorithm for POMDPs below, recent point-based algorithms aim to exploit
the information about the initial belief state, use admissible value functions, and focus on the belief
states that are reachable from the initial belief state following greedy policies.



104 7. POMDP PLANNING: STOCHASTIC ACTIONS AND PARTIAL FEEDBACK

RTDP-B
% Initial value function V given by heuristic h
% Changes to V stored in a hash table using discretization function d.�/
Let b WD b0 the initial belief
Sample state s with probability b.s/
While b is not a goal belief do

Evaluate each action a 2 A.b/ as:Q.a; b/ WD c.a; b/C
P

o2O ba.o/V .b
o
a/

Select best action a WD argmina2A.b/Q.a; b/

Update value V.b/ WD Q.a; b/
Sample next state s0 with probability Pa.s

0js/ and set s WD s0

Sample observation o with probability Pa.ojs/

Update current belief b WD bo
a

end while

Figure 7.3: RTDP-Bel is RTDP over the belief MDP with an additional provision: for reading or writing the
value V.b/ in the hash table, b is replaced by d.b/ where d is a discretization function.

RTDP-BEL
RTDP-Bel [Bonet and Geffner, 2009, Geffner and Bonet, 1998] is a direct adaptation to Goal
POMDPs of the RTDP algorithm developed for Goal MDPs [Barto et al., 1995] reviewed in Chap-
ter 6, where states are replaced by belief states and the updates are done using the expression (7.7)
for POMDPs. e code for RTDP-Bel is shown in Figure 7.3. ere is just one difference between
RTDP-Bel and RTDP: in order to bound the size of the hash table and make the updates more ef-
fective, each time that the hash table is accessed for reading or writing the value V.b/, the belief b is
discretized. e discretization function d maps each entry b.s/ into the entry d.b.s// D ceil.D � b.s//

whereD is a positive integer (the discretization parameter), and ceil.x/ is the least integer greater than
or equal to x. For example, ifD D 10 and b is the vector .0:22; 0:44; 0:34/ over the states s 2 S , d.b/
is the vector .3; 5; 4/. e discretization is used in the operations for accessing the hash table and does
not affect the beliefs that are generated during a trial. Using a terminology that is common in Re-
inforcement Learning, the discretization is a function approximation device [Bertsekas and Tsitsiklis,
1996, Sutton and Barto, 1998], where a single parameter, the value stored at cell d.b/ in the hash
table, is used to represent the value of all beliefs b0 that discretize into d.b0/ D d.b/. is approxima-
tion relies on the assumption that the value of beliefs that are close, should be close as well. Moreover,
the discretization preserves supports (the states s with b.s/ > 0) and never collapses the values of two
beliefs if there is a state that is excluded by one but not by the other.

Belief discretization makes the value function representation finite at the cost of theoretical
properties that do not carry automatically from RTDP to RTDP-Bel. First, convergence of RTDP-
Bel is not guaranteed and actually the value in a cell may oscillate. Second, the value function approx-
imated in this way does not remain necessarily a lower bound.

RTDP and RTDP-Bel can be used both for offline and online planning. For Goal MDPs,
RTDP trials are guaranteed to reach a goal state provided that there are no dead-ends in the prob-



7.4. BELIEF TRACKING IN POMDPS 105

lem. e same is usually true for RTDP-Bel but this cannot be guaranteed due the approximation
introduced by the discretization. In any case, if the input problem is a Discounted POMDP, whether
reward or cost-based, it must first be converted into an equivalent Goal POMDP before RTDP-Bel is
run. is transformation has been applied to the existing benchmarks for Discounted Reward-based
POMDPs in order to compare RTDP-Bel with point-based POMDP algorithms [Bonet andGeffner,
2009].

PO-UCT
PO-UCT is in turn a generalization of the UCT algorithm for POMDPs [Silver and Veness, 2010].
Adapting UCT to POMDPs is less direct than adapting RTDP because, as a model-free algorithm,
PO-UCT cannot keep track of the exact beliefs. PO-UCT thus keeps track of executions or histories,
sequences of actions and observations h D ha0; o0; a1; o1; : : : ; ak ; oki, and for each history h, it ap-
proximates the belief that would result from such an execution and a given initial belief state b0, by a
set of state samplesB.h/. e nodes in the tree built by PO-UCT refer to executions h0 that extend the
real execution h, starting with the empty execution h0 D hi. If h is the real execution so far, PO-UCT
performs a number of simulations starting in states s sampled from B.h/, applies the action a that
minimizes the costs V.ha/, gets the observation o, and resumes the loop with the history hao. As in
UCT, the nodes h are associated with two fields in addition to the set of samples B.h/: the value V.h/
associated to the execution, and a counterN.h/ that tracks the number of simulations that have passed
through the node h.

e planning tree is expanded by performing simulations that start at states s sampled from the
belief B.h/ associated with the real execution h so far. Actions are selected in a node h of the tree as in
UCT, using the current values V.ha/ of the actions a in h, and the number of visits N.h/ and N.ha/.
When the action a is performed in a state s, the simulator returns an observation o, a next state s0,
and a sampled cost c. If the resulting node hao is not in the tree, it is added to the tree, and a rollout
of the base policy is used to initialize the value of the node and to update the ancestor nodes using
Monte-Carlo updates. If the node hao is in the tree, the same process is applied from that node and
the associated state s0. In either case, the counter N.hao/ is adjusted and the sample s0 is added to
B.hao/.

When the planning episode finishes and an action a is selected for execution following the
current execution h, the action is executed and an observation o is gathered. e next planning episode
starts from the resulting history hao. Nodes h0 in the tree that are not extensions of the execution so
far can be pruned. Code for a cost-based version of the PO-UCT algorithm is shown in Figure 7.4. A
problem for PO-UCT arises from the way it approximates beliefs by samples, which does not prevent
reaching real executions h with very few samples B.h/ that limit the information that can be obtained
by planning from h. By using domain-specific methods for adding new samples in such cases, PO-
UCT has been shown to exhibit excellent performance over a collection of large POMDPs, including
games such as Battleship and a partially observable version of Pacman [Silver and Veness, 2010].

7.4 BELIEF TRACKING IN POMDPS
Like in the logical partially observable setting (Section 5.5), belief tracking in POMDPs is intractable
for problems represented in compact form, with Eqs. 7.1 and 7.2 defining a plain belief tracking
algorithm for computing the next belief bo

a from the belief b, the action a, and the observation o, that



106 7. POMDP PLANNING: STOCHASTIC ACTIONS AND PARTIAL FEEDBACK

S.h/
repeat

Sample s according to b0 if h D hi or B.h/ otherwise
S.s; h; 0/

until time is up
return argmina V.hhai/

S.s; h; depth/
if 
depth < � then return 0
if h does not appear in tree T then

for all action a 2 A do
Insert hhai in tree as T .hhai/ WD h0; 0;;i

end for
return R.s; h; depth/

end if
a� WD argmina V.hhai/ � C

p
logN.h/=N.hhai/

Sample .s0; o; c/ using simulator with state s and action a�

Cost WD c C 
 � S.s0; hhaoi; 1C depth/

B.h/ WD B.h/ [ fsg

Increment N.h/ and N.hhai/

V .hhai/ WD V.hhai/C ŒCost � V.hhai/�=N.hhai/

return Cost

R.s; h; depth/
if 
depth < � then return 0
Let a WD �.h/

Sample .s0; o; c/ using simulator with state s and action a
return c C 
 � R.s0; hhaoi; 1C depth/

Figure 7.4: PO-UCT algorithm for Discounted Cost-based POMDPs. Each node in the tree corresponds to
an execution history h that is associated with a triplet hN.h/; V .h/; B.h/i made up of a counterN.h/, a value V.h/
for the node, and a set of samples B.h/. e policy � is the base policy used in PO-UCT. e action selected
for execution after the history h is the one returned by S.h/. is action a is applied, the observation o is
obtained, and the process resumes with h WD hao.



7.5. OTHER MDP AND POMDP SOLUTION METHODS 107

is exponential in the number of problem variables. e problem of computing the belief that results
at time k C 1 from a given execution h D ha0; o0; : : : ; ak ; oki, starting in a given initial belief b0, can
be expressed as a probabilistic inference problem over a Dynamic Bayesian Network [Pearl, 1988,
Russell and Norvig, 2009]. Exact probabilistic inference over Bayesian Networks is exponential in a
parameter associated with the underlying directed graph, known as the treewidth, which is related to
the maximum number of variables in the network that have to be collapsed into a single variable so
that the result is a Bayesian Tree. Since often the treewidth is not bounded, approximation algorithms
are common. In the case of Dynamic Bayesian Networks (DBN), a usual algorithm is particle filtering
where beliefs are approximated by a set of states or particles [Doucet et al., 2000]. In its most basic
form, given a set of samples Bk providing an approximate representation of the belief bk after an
execution hk D ha0; o0; : : : ; ak ; oki, a new set of samples BkC1 can be obtained for approximating the
belief bkC1 that results from the action akC1 and the observation okC1, by the following three steps.
First, each sample state sk inBk is propagated into a state skC1 sampled with the transition probability
Pak

.skC1jsk/. Second, the new samples skC1 are assigned a weight given by the observation probability
Pak

.okC1jskC1/.ird, the set of weighted samples is resampled to yield the set of unweighted samples
BkC1 [Russell and Norvig, 2009]. e initial set of samplesB0 is obtained by sampling the initial belief
b0. e probability that a given formula is true at time k C 1 is obtained from the ratio of samples
in BkC1 where the formula is true. Particle filtering does best when there are few zero entries in the
transition and observation probabilities. e PO-UCT algorithm above approximates beliefs from
histories using a particle filter of this type.

7.5 OTHER MDP AND POMDP SOLUTION METHODS
We close this chapter by pointing to other solution methods for MDPs and POMDPs.

Finite-State Controllers. When the value function is expressed by a set of vectors, Value Iteration
results in policies that can be understood as finite-state controllers. One of the advantages of such
policies as opposed to policies represented as functions over beliefs, is that the former do not require
keeping track of beliefs. Following Kaelbling et al. [1998], one can compute an automaton Mk for
solving the k-horizon version of a Discounted POMDP. Such an automaton consists of controller
states associated with actions a, and transitions that map observations o into other controller states.
e automataM0;M1; : : : ;MkC1 are constructed iteratively in a way thatMkC1 is obtained from the
set �kC1 of vectors defining the value function VkC1 and the previous automaton Mk . Recall that
each vector in �kC1 is associated with at least one action a and a choice function � in Vk through
Eq. 7.18. us, a vector ˛a;� in �kC1, where � W O ! �k , can be understood as prescribing the action
a and picking up a vector in �k for each observation o. erefore, starting from a singleton �0 and
automatonM0, the automatonMkC1 is built by adding j�kC1j new nodes toMk , one for each vector
˛a;� 2 �kC1, setting as a the action to do at nodes corresponding to vectors ˛a;� , and adding transitions
to the nodes �.o/ inMk for each observation o. In any of these automataMkC1, the initial execution
node for a given belief b is the one associated with the vector argmin˛2�k

˛ � b. If k is large enough
so that the residual of Vk is less than �, then the automatonMk defines a non-stationary policy that is
�-optimal. While this approach for computing controllers for POMDPs has the same computational
limitations as Value Iteration, it suggests other approaches that can be understood as a form of Policy
Iteration implemented on a class of controllers [Hansen, 1998, Poupart and Boutilier, 2003]. More
recent approaches cast the problem of devising the best finite-state controller with a given number N



108 7. POMDP PLANNING: STOCHASTIC ACTIONS AND PARTIAL FEEDBACK

of controller states, as a non-linear optimization problem [Amato et al., 2010]. Solutions of this form
are common in multiagent POMDP models known as Decentralized POMDPs or DEC-POMDPs
[Bernstein et al., 2002].

Symbolic Methods for MDPs and POMDPs. A value function over states that assigns values x to
variables X can be often expressed in compact form as a value function over formulas built from the
atoms X D x. e set of entries V.s/ D v that share the same value v can then be expressed as a
single entry V.'/ D v where ' is the formula that is true precisely in the states s such that V.s/ D v.
is is the basic idea exploited in symbolic approaches that make use of data structures known as
algebraic decision diagrams for representing and operating on value function of this type. Symbolic
methods have been developed for problems with a finite number of states [Hoey et al., 1999] and for
problems with an infinite number of states [Boutilier et al., 2001, Sanner and Boutilier, 2009]. e
common principle is the compact representation of value functions, a feature that is often independent
of the planning algorithm. In addition, MDP and POMDP algorithms have been transformed into
symbolic algorithms by expressing their basic operations in terms of the symbolic representation [Feng
and Hansen, 1999, Feng et al., 2002, Sanner and Kersting, 2010]. Symbolic methods have also been
used in model-checking and non-probabilistic planning [Cimatti et al., 2003, Clarke et al., 2000,
Edelkamp and Schrödl, 2012].

Finite-horizonPOMDPsandProbabilistic Inference. In analogy to the SAT approach to determin-
istic planning, it is possible to map POMDP problems over finite horizons into probabilistic inference
problems over Dynamic Bayesian Networks [Attias, 2003, Botvinick and An, 2008, Toussaint and
Storkey, 2006]. While the reduction of planning to inference, deductive or probabilistic, is concep-
tually appealing, the scalability-quality tradeoff in the probabilistic case, unlike the SAT approach in
the deductive case, is yet to be analyzed.



109

C H A P T E R 8

Discussion
e selection of the action to do next is one of the central problems faced by autonomous agents. As
discussed in Chapter 1, the problem is normally addressed in three different ways: in the hardwired
approach, the control is set by nature or by a programmer, in the learning-based approach, the control
is learned by trial-and-error, in the model-based approach, the control is derived from a model of the
actions, sensors, and goals. Planning is the model-based approach to autonomous behavior, and in this
book we have considered the main planning models and methods. In this last chapter, we list some
challenges in current planning research, and discuss briefly how the work in scalable computational
models of planning can contribute to the understanding of one of the most unique human features,
namely, the ability to plan, often in the context of other agents that have goals and make plans too.

8.1 CHALLENGES AND OPEN PROBLEMS
ere aremany open problems in planning research.We list a few that we regard as particularly relevant
and important.

Multiagent Planning. One important open problem is planning in the presence of other agents that
plan, often called multiagent planning. People do this naturally all the time: walking on the street,
driving, etc. e first question is how plans should be defined in that setting. is is a subtle problem
and many proposals have been put forward, often building on equilibria notions from game theory
[Bowling et al., 2003, Brafman et al., 2009], yet currently there are no models, algorithms, and imple-
mentations of domain-independent planners able to plan meaningfully and efficiently in such settings.
is is probably not too surprising given the known limitations of game theory as a descriptive theory
of human behavior. It is possible indeed that domain-independent multiagent planners based on a nar-
row view of human rationality that ignores the social dimension, cannot get off the ground. Planners
able to capture the interactions that appear in simple tales such as Little Red Riding Hood may have
to be built on different foundations. ere has been work in AI on models for multiagent planning
like DEC-POMDPs [Bernstein et al., 2002], but the models are too complex computationally, and
yet lack crucial features such as the need for representing the beliefs of other agents. e limitations
suggest the need to explore other formulations as well.

Factored and Scalable POMDP Planning. Terms like “factored MDPs” and “factored POMDPs”
have been used to refer to MDP and POMDP models represented in compact form over a set of
variables. Often, however, general MDP and POMDP algorithms, whether based on dynamic pro-
gramming or heuristic search, throw the variables away and just deal with states or belief states, the
exception being symbolic methods. e situation is different in classical planning and in most work
in contingent and conformant planning that either leverage on classical planners or use heuristics
extracted from the compact representation to guide the search to the goal. In this sense, there is dis-
continuity in the book, with Chapters 2–5 building on top of each other, and Chapters 6–7 on MDPs



110 8. DISCUSSION

and POMDPs starting almost from scratch. Yet, the only difference between contingent and POMDP
models is that the former represent uncertainty by means of sets, and the latter by means of probability
distributions. Probabilistic methods, both model-based and model-free, have often appealed to func-
tion approximation schemes for representing the value function and for scaling up, yet such methods
do not compete, for example, with classical planners in deterministic problems. ere is thus a com-
putational gap to be bridged between logical and probabilistic methods. Planners such as FF-Replan
have been shown to be quite effective for a wide range of MDPs by ignoring the actual probability val-
ues and using relaxations into classical planning for selecting the action to do next. Of course, this is a
rough way to exploit compact representations computationally, yet it cannot be neglected. In particu-
lar, approaches of this type, as well as similar approaches developed for partially observable problems,
can be used to generate suboptimal but meaningful base policies for MDPs and POMDPs that can
then be improved in anytime optimal fashion by UCT-like algorithms. Other options are certainly
possible.

Learning to search. Learning can play several roles in model-based approaches, the first of which is
learning the model itself from experience and partial observations (see below). Learning, however, has
also a role to play in the search for solutions; a role that has been crucial in the context of SAT [Biere
et al., 2012], but has not been fully exploited in planning except in the context of planning as SAT
[Kautz and Selman, 1996]. For example, consider an agent that has to deliver a large package to one
of two cells A or B in a grid, by going to the cell and dropping the package. Furthermore, assume that
A is closer to the agent than B but A cannot be entered while holding a large package. Most current
classical planning heuristics will drive the search toward A in a way resembling a fly that wants to get
past a closed window. Unlike flies, however, search algorithms avoid revisiting the same states, and
would eventually solve the problem after partially exhausting the space around A. A more intelligent
strategy would be to note that the failed search around A is the result of an interaction ignored by the
heuristic that should be fixed. is is precisely what SAT solvers do: they identify the causes for failure
and fix them while searching. Traditional heuristic methods cannot replicate this behavior because
they ignore the structure of the heuristic function, yet this structure is available to heuristic search
methods in planning that should be able to exploit it. is same limitation applies to heuristic search
algorithms like LRTA* and those used for solving MDPs and POMDPs: the values of states and
belief states are learned very slowly because there is no analysis for explaining what was wrong with
the updated estimates. It’s an open question whether something akin to the conflict-directed learning
from SAT could be used in a cost-effective way in the setting of heuristic search.

Generalized Planning. e problem of model and feature learning are related to the problem of gen-
eralized planning reviewed in Section 1.5 where a policy is sought not just for one planning instance
but for many instances, e.g., all block world instances. Often general policies of this type can be ex-
pressed in a compact way provided the right features. e question is how to get simultaneously the
right features and the policies. One approach that has been pursued to do this learns compact policies
from examples using features obtained from the potentially infinite collection of predicates defined by
a domain-independent grammar and a given set of primitive domain predicates [Fern et al., 2003].
is is an inductive, learning-based approach. An open question is whether these types of compact,
generalized policies can also be synthesized from a model by suitable transformations of the problem.
e derivation of finite-state controllers using planners considered in Section 4.4 goes in this direc-
tion. Also, for example, the generalized planning problem of picking up a green block from a tower of



8.2. PLANNING, SCALABILITY, AND COGNITION 111

blocks of any size can be cast as a non-deterministic partially observable planning problem over integer
variables, that can be modeled and solved with the methods developed by Srivastava et al. [2011b].
Hierarchies. Hierarchies form a basic component of Hierarchical Task Networks (HTNs), an al-
ternative model for planning that is concerned with the encoding of strategies for solving problems
(Section 3.11). Hierarchies, however, play no role in state-of-the-art domain-independent planners
that are completely flat. Yet, it is clear that most real plans involve primitive actions that can be exe-
cuted along with high level actions that are abstractions of those. For example the action of picking
up a block involves displacements of the robot gripper that must be opened and closed on the right
block. A basic question that has not been fully answered yet is how these abstractions can be formed
automatically, and how they are to be used to speed up the planning process. For instance, the standard
blocks world is an abstraction of a problem where blocks are at certain locations, and the gripper has to
move between locations. is abstraction, however, is not adequate when the table has no space for all
the blocks, or when the gripper cannot get past towers of a certain height. e open question is how to
automatically compile detailed planning descriptions into more abstract ones that can be used to solve
the problems more effectively. ere is a large body of work on abstract problem solving that is rele-
vant to this question [Bacchus and Yang, 1994, Jonsson, 2007, Knoblock, 1990, Korf, 1987, Marthi
et al., 2007, McIlraith and Fadel, 2002, Sacerdoti, 1974], but none so far that solves this problem in
a general manner.
Model Learning. We have discussed briefly model-based reinforcement learning algorithms that ac-
tively learn model parameters such as probabilities and rewards, yet a harder problem is learning the
states themselves from partial observations. Several attempts to generalize reinforcement learning al-
gorithms to such setting have been made, some of which learn to identify useful features and feature
histories [Veness et al., 2011], but none so far that can come up with the states and models themselves
in a robust and scalable manner from streams of observations and actions.

8.2 PLANNING, SCALABILITY, AND COGNITION
e relevance of the early work in artificial intelligence to cognitive science was based on intuition:
programs provided a way for specifying intuitions precisely and for trying them out. e more recent
work on domain-independent solvers in AI is more technical and experimental, and is focused not as
much on reproducing intuitions but on scalability. is may give the impression that recent work in
AI is less relevant to cognitive science than work in the past. is impression, however, may prove
to be wrong for two reasons. First, intuition is not what it used to be, and it is now regarded as the
tip of an iceberg whose bulk is made of massive amounts of shallow, fast, but unconscious inference
mechanisms that cannot be rendered explicit [Gigerenzer, 2007, Hassin et al., 2005, Kahneman, 2011,
Wilson, 2002]. Second, whatever these mechanisms are, they appear to work pretty well and to scale
up. is is no small feat, given that most methods, whether intuitive or not, do not. By focusing on
the study of meaningful models and the computational methods for dealing with them effectively, AI
may prove its relevance to the understanding of human cognition in ways that may go well beyond
the rules, cognitive architectures, and knowledge structures of the 80s. Human cognition, indeed, still
provides the inspiration and motivation for a lot of research in AI. e use of Bayesian Networks in
developmental psychology for understanding how children acquire and use causal relations [Gopnik et
al., 2004], and the use of reinforcement learning algorithms in neuroscience for interpreting the activity
of dopamine cells in the brain [Schultz et al., 1997], are two examples of general AI techniques that



112 8. DISCUSSION

have made it recently into cognitive science. As AI focuses on models and solvers able to scale up, more
techniques are likely to follow. In this short book, we have reviewed work in computational models of
planning with an emphasis on deterministic planning models where automatically derived relaxations
and heuristics manage to integrate information about the current situation, the goal, and the actions
for directing an agent effectively toward a goal. e computational model of goal appraisals that is
based on the solution of low-polynomial relaxations may shed light on the computation, nature, and
role of other type of appraisals, and on why appraisals are opaque to cognition and cannot be rendered
conscious or articulated in words.1

1is section is taken from Geffner [2010, 2013b] where these issues are discussed in more detail.



113

Bibliography
P. E. Agre and D. Chapman. Pengi: An implementation of a theory of activity. In Proc. 6th Nat. Conf.
on Artificial Intelligence, pages 268–272, 1987. 12

A. Albarghouthi, J. A. Baier, and S. A. McIlraith. On the use of planning technology for verification.
In Proc. ICAPS’09 Workshop VV&PS, 2009. 64

A. Albore, H. Palacios, and H. Geffner. A translation-based approach to contingent planning. In
Proc. 21st Int. Joint Conf. on Artificial Intelligence, pages 1623–1628, 2009. 57, 72, 73, 74

A. Albore, M. Ramírez, and H. Geffner. Effective heuristics and belief tracking for planning with
incomplete information. In Proc. 21st Int. Conf. on Automated Planning and Scheduling, pages 2–9,
2011. 72

C. Amato, D. S. Bernstein, and S. Zilberstein. Optimizing fixed-size stochastic controllers for
POMDPs and decentralized POMDPs. Journal of Autonomous Agents and Multi-Agent Systems,
21(3):293–320, 2010. DOI: 10.1007/s10458-009-9103-z 108

E. Amir and B. Engelhardt. Factored planning. In Proc. 18th Int. Joint Conf. on Artificial Intelligence,
2003. 35

K. Astrom. Optimal control of Markov Decision Processes with incomplete state estimation. Journal
of Mathematical Analysis and Applications, 10:174–205, 1965. 98

H. Attias. Planning by probabilistic inference. In Proc. 9th Int. Workshop on Artificial Intelligence and
Statistics, 2003. 108

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2):235–256, 2002. DOI: 10.1023/A:1013689704352 94

F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for planning.
Artificial Intelligence, 116:123–191, 2000. DOI: 10.1016/S0004-3702(99)00071-5 63

F. Bacchus and Q. Yang. Downward refinement and the efficiency of hierarchical problem solving.
Artificial Intelligence, 71:43–100, 1994. DOI: 10.1016/0004-3702(94)90062-0 111

C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computational Intelligence,
11(4):625–655, 1995. DOI: 10.1111/j.1467-8640.1995.tb00052.x 25

J. A. Baier, F. Bacchus, and S. A. McIlraith. A heuristic search approach to planning
with temporally extended preferences. Artificial Intelligence, 173(5–6):593–618, 2009. DOI:
10.1016/j.artint.2008.11.011 63

http://dx.doi.org/10.1007/s10458-009-9103-z
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1016/S0004-3702(99)00071-5
http://dx.doi.org/10.1016/0004-3702(94)90062-0
http://dx.doi.org/10.1111/j.1467-8640.1995.tb00052.x
http://dx.doi.org/10.1016/j.artint.2008.11.011
http://dx.doi.org/10.1016/j.artint.2008.11.011


114 BIBLIOGRAPHY

C. L. Baker, R. Saxe, and J. B. Tenenbaum. Action understanding as inverse planning. Cognition,
113(3):329–349, 2009. DOI: 10.1016/j.cognition.2009.07.005 59

R. K. Balla and A. Fern. UCT for tactical assault planning in real-time strategy games. In Proc. 21st
Int. Joint Conf. on Artificial Intelligence, pages 40–45, 2009. 93

D. Ballard, M. Hayhoe, P. Pook, and R. Rao. Deictic codes for the embodiment of cognition. Be-
havioral and Brain Sciences, 20(4):723–742, 1997. DOI: 10.1017/S0140525X97001611 10, 61

A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming. Artificial
Intelligence, 72:81–138, 1995. DOI: 10.1016/0004-3702(94)00011-O 72, 86, 90, 104

A. Bauer and P. Haslum. LTL goal specifications revisited. In Proc. 19th European Conf. on Artificial
Intelligence, pages 881–886, 2010. DOI: 10.3233/978-1-60750-606-5-881 63

R. Bellman. Dynamic Programming. Princeton University Press, 1957. 70, 81

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. e complexity of decentralized con-
trol of markov decision processes. Mathematics of Operations Research, 27(4):819–840, 2002. DOI:
10.1287/moor.27.4.819.297 108, 109

P. Bertoli and A. Cimatti. Improving heuristics for planning as search in belief space. In Proc. 6th Int.
Conf. on Artificial Intelligence Planning Systems, pages 143–152, 2002. 71

P. Bertoli, A. Cimatti,M. Roveri, and P. Traverso. Planning in nondeterministic domains under partial
observability via symbolic model checking. In Proc. 17th Int. Joint Conf. on Artificial Intelligence,
pages 473–478, 2001. 73

P. Bertoli, A. Cimatti, M. Pistore, and P. Traverso. A framework for planning with extended goals
under partial observability. In Proc. 13th Int. Conf. on Automated Planning and Scheduling, pages
215–225, 2003. 62

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice
Hall, 1989. 85

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996. 96, 104

D. P. Bertsekas. Dynamic Programming and Optimal Control, Vols 1 and 2. Athena Scientific, 1995.
6, 31, 70, 76, 79, 81, 82, 84, 85

A. Biere, M. Heule, H. Van Maaren, and T. Walsh, editors. Handbook of Satisfiability: Frontiers in
Artificial Intelligence and Applications. IOS Press, 2012. 45, 110

A. Blum and M. Furst. Fast planning through planning graph analysis. In Proc. 14th Int. Joint Conf.
on Artificial Intelligence, pages 1636–1642, 1995. DOI: 10.1016/S0004-3702(96)00047-1 13, 31,
45, 49

B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proc. 5th European Conf. on
Planning, pages 359–371, 1999. DOI: 10.1007/10720246_28 44, 45

http://dx.doi.org/10.1016/j.cognition.2009.07.005
http://dx.doi.org/10.1017/S0140525X97001611
http://dx.doi.org/10.1016/0004-3702(94)00011-O
http://dx.doi.org/10.3233/978-1-60750-606-5-881
http://dx.doi.org/10.1287/moor.27.4.819.297
http://dx.doi.org/10.1287/moor.27.4.819.297
http://dx.doi.org/10.1016/S0004-3702(96)00047-1
http://dx.doi.org/10.1007/10720246_28


BIBLIOGRAPHY 115

B. Bonet and H. Geffner. Planning with incomplete information as heuristic search in belief space.
In Proc. 5th Int. Conf. on Artificial Intelligence Planning Systems, pages 52–61, 2000. 55, 71, 77

B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, 129(1–2):5–33, 2001.
DOI: 10.1016/S0004-3702(01)00108-4 27, 30, 31, 41

B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with uncertainty and full
feedback. In Proc. 18th Int. Joint Conf. on Artificial Intelligence, pages 1233–1238, 2003. 88, 89, 91

B. Bonet and H. Geffner. Labeled RTDP: Improving the convergence of real-time dynamic program-
ming. In Proc. 13th Int. Conf. on Automated Planning and Scheduling, pages 12–31, 2003. 91

B. Bonet and H. Geffner. mGPT: A probabilistic planner based on heuristic search. Journal of Artificial
Intelligence Research, 24:933–944, 2005. DOI: 10.1613/jair.1688 77

B. Bonet and H. Geffner. Solving POMDPs: RTDP-Bel vs. point-based algorithms. In Proc. 21st
Int. Joint Conf. on Artificial Intelligence, pages 1641–1646, 2009. 83, 99, 104, 105

B. Bonet and H. Geffner. Planning under partial observability by classical replanning: eory and
experiments. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 1936–1941, 2011. DOI:
10.5591/978-1-57735-516-8/IJCAI11-324 57, 73

B. Bonet and H. Geffner. Action selection for MDPs: Anytime AO* versus UCT. In Proc. 26nd Conf.
on Artificial Intelligence, pages 1749–1755, 2012. 73, 94

B. Bonet and H. Geffner. Width and complexity of belief tracking in non-deterministic conformant
and contingent planning. In Proc. 26nd Conf. on Artificial Intelligence, pages 1756–1762, 2012. 74

B. Bonet and H. Geffner. Causal belief decomposition for planning with sensing: Completeness and
practical approximation. In Proc. 23rd Int. Joint Conf. on Artificial Intelligence, 2013. 75, 76

B. Bonet and M. Helmert. Strengthening landmark heuristics via hitting sets. In Proc. 19th European
Conf. on Artificial Intelligence, pages 329–334, 2010. 42

B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism for planning.
In Proc. 14th Nat. Conf. on Artificial Intelligence, pages 714–719, 1997. 13, 24, 30

B. Bonet, H. Palacios, and H. Geffner. Automatic derivation of memoryless policies and finite-state
controllers using classical planners. In Proc. 19th Int. Conf. on Automated Planning and Scheduling,
pages 34–41, 2009. 10, 60, 61, 62

B. Bonet. Conformant plans and beyond: Principles and complexity. Artificial Intelligence, 174:245–
269, 2010. DOI: 10.1016/j.artint.2009.11.001 54

M. Botvinick and J. An. Goal-directed decision making in the prefrontal cortex: a computational
framework. In Proc. 22nd Annual Conf. on Advances in Neural Information Processing Systems, pages
169–176, 2008. 108

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and com-
putational leverage. Journal of Artificial Intelligence Research, 1:1–93, 1999. DOI: 10.1613/jair.575
79

http://dx.doi.org/10.1016/S0004-3702(01)00108-4
http://dx.doi.org/10.1613/jair.1688
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-324
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-324
http://dx.doi.org/10.1016/j.artint.2009.11.001
http://dx.doi.org/10.1613/jair.575


116 BIBLIOGRAPHY

C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-order MDPs. In Proc.
17th Int. Joint Conf. on Artificial Intelligence, pages 690–700, 2001. 108

M. Bowling, R. Jensen, and M. Veloso. A formalization of equilibria for multiagent planning. In
Proc. 18th Int. Joint Conf. on Artificial Intelligence, pages 1460–1462, 2003. 109

R. I. Brafman and C. Domshlak. Factored planning: How, when, and when not. In Proc. 21st Nat.
Conf. on Artificial Intelligence, pages 809–814, 2006. 35

R. I. Brafman and G. Shani. A multi-path compilation approach to contingent planning. In Proc.
26nd Conf. on Artificial Intelligence, pages 1868–1874, 2012. 57

R. I. Brafman and G. Shani. Replanning in domains with partial information and sensing actions.
Journal of Artificial Intelligence Research, 1(45):565–600, 2012. DOI: 10.1613/jair.3711 55, 57, 73

R. I. Brafman and M. Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2003. DOI:
10.1162/153244303765208377 96

R. I. Brafman, C. Domshlak, Y. Engel, and M. Tennenholtz. Planning games. In Proc. 21st Int. Joint
Conf. on Artificial Intelligence, pages 73–78, 2009. 109

D. Bryce, S. Kambhampati, and D. E. Smith. Planning graph heuristics for belief space search. Journal
of Artificial Intelligence Research, 26:35–99, 2006. DOI: 10.1613/jair.1869 55, 71, 73

M. Buckland. Programming Game AI by Example. Wordware Publishing, Inc., 2004. 10

T. Bylander. e computational complexity of propositional STRIPS planning. Artificial Intelligence,
69:165–204, 1994. DOI: 10.1016/0004-3702(94)90081-7 8, 16, 34, 35

P. P. Chakrabarti, S. Ghose, and S. C. De Sarkar. Best first search in AND/OR graphs. In Proc. 16th
Annual ACM Conf. on Computer Science, pages 256–261, 1988. DOI: 10.1145/322609.322650 94

D. Chapman. Penguins can make cake. AI Magazine, 10(4):45–50, 1989. 10, 12, 61

G. M. J. Chaslot, M. H. M. Winands, H. Herik, J. Uiterwijk, and B. Bouzy. Progressive strategies for
Monte-Carlo tree search. New Mathematics and Natural Computation, 4(3):343–357, 2008. DOI:
10.1142/S1793005708001094 93

H. Chen and O. Giménez. Act local, think global: Width notions for tractable planning. In Proc.
17th Int. Conf. on Automated Planning and Scheduling, pages 73–80, 2007. 35

A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence, 147(1):35–84, 2003. DOI: 10.1016/S0004-
3702(02)00374-0 76, 108

A. Cimatti, M. Roveri, and P. Bertoli. Conformant planning via symbolic model checking and heuris-
tic search. Artificial Intelligence, 159:127–206, 2004. DOI: 10.1016/j.artint.2004.05.003 55, 74

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000. 108

http://dx.doi.org/10.1613/jair.3711
http://dx.doi.org/10.1162/153244303765208377
http://dx.doi.org/10.1162/153244303765208377
http://dx.doi.org/10.1613/jair.1869
http://dx.doi.org/10.1016/0004-3702(94)90081-7
http://dx.doi.org/10.1145/322609.322650
http://dx.doi.org/10.1142/S1793005708001094
http://dx.doi.org/10.1142/S1793005708001094
http://dx.doi.org/10.1016/S0004-3702(02)00374-0
http://dx.doi.org/10.1016/S0004-3702(02)00374-0
http://dx.doi.org/10.1016/j.artint.2004.05.003


BIBLIOGRAPHY 117

A. J. Coles, A. Coles, M. Fox, and D. Long. Temporal planning in domains with linear processes. In
Proc. 21st Int. Joint Conf. on Artificial Intelligence, pages 1671–1676, 2009. 48

A. J. Coles, A. Coles, A. García Olaya, S. Jiménez, C. Linares López, S. Sanner, and S. Yoon. A
survey of the seventh international planning competition. AI Magazine, 33(1):83–88, 2012. 34, 39

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 3rd edition,
2009. 6, 16, 17, 31

S. Cresswell and A. M. Coddington. Compilation of LTL goal formulas into PDDL. In Proc. 16th
European Conf. on Artificial Intelligence, pages 985–986, 2004. 63

J. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence, 14(3):318–334, 1998.
DOI: 10.1111/0824-7935.00065 41

W. Cushing, S. Kambhampati, Mausam, and D. S. Weld. When is temporal planning really temporal?
In Proc. 20th Int. Joint Conf. on Artificial Intelligence, pages 1852–1859, 2007. 49

M. Daniele, P. Traverso, and M. Y. Vardi. Strong cyclic planning revisited. In Proc. 5th European
Conf. on Planning, pages 35–48, 1999. DOI: 10.1007/10720246_3 65, 76, 77

G. de Giacomo and M. Y. Vardi. Automata-theoretic approach to planning for temporally extended
goals. In Proc. 5th European Conf. on Planning, pages 226–238, 1999. DOI: 10.1007/10720246_18
62

T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Planning with deadlines in stochastic domains.
In Proc. 11th Nat. Conf. on Artificial Intelligence, pages 574–579, 1993. 13

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 49:61–95,
1991. DOI: 10.1016/0004-3702(91)90006-6 47

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003. 35, 46

D. C. Dennett. Kinds of minds. Basic Books New York, 1996. 2

E. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269–271,
1959. DOI: 10.1007/BF01386390 6

M. B. Do and S. Kambhampati. Solving the planning-graph by compiling it into CSP. In Proc. 5th
Int. Conf. on Artificial Intelligence Planning Systems, pages 82–91, 2000. 46

M. B. Do and S. Kambhampati. Sapa: A domain-independent heuristic metric temporal planner. In
Proc. 6th European Conf. on Planning, pages 82–91, 2001. 30, 48

A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-blackwellised particle filtering for dynamic
bayesian networks. In Proc. 16th Conf. on Uncertainty on Artificial Intelligence, pages 176–183, 2000.
107

S. Edelkamp and S. Schrödl. Heuristic Search – eory and Applications. Academic Press, 2012. 17,
19, 23, 108

http://dx.doi.org/10.1111/0824-7935.00065
http://dx.doi.org/10.1007/10720246_3
http://dx.doi.org/10.1007/10720246_18
http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/10.1007/BF01386390


118 BIBLIOGRAPHY

S. Edelkamp. Planning with pattern databases. In Proc. 6th European Conf. on Planning, 2001. 41

S. Edelkamp. On the compilation of plan constraints and preferences. In Proc. 16th Int. Conf. on
Automated Planning and Scheduling, pages 374–377, 2006. 48, 63

K. Erol, J. Hendler, and D. S. Nau. HTN planning: Complexity and expressivity. In Proc. 12th Nat.
Conf. on Artificial Intelligence, pages 1123–1123, 1994. 11, 49

P. Eyerich, T. Keller, and M. Helmert. High-quality policies for the canadian traveler’s problem. In
Proc. 24th Conf. on Artificial Intelligence, pages 51–58, 2010. 94

Z. Feng and E. A. Hansen. Symbolic heuristic search for factored Markov decision processes. In Proc.
16th Nat. Conf. on Artificial Intelligence, pages 455–460, 1999. 108

Z. Feng, E. A. Hansen, and S. Zilberstein. Symbolic generalization for on-line planning. In Proc.
18th Conf. on Uncertainty on Artificial Intelligence, pages 209–216, 2002. 108

A. Fern, S. Yoon, and R. Givan. Approximate policy iteration with a policy language bias. In Proc. 17th
Annual Conf. on Advances in Neural Information Processing Systems, 2003. DOI: 10.1613/jair.1700
12, 110

R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 1:27–120, 1971. DOI: 10.1016/0004-3702(71)90010-5 12, 24

H. Finnsson and Y. Björnsson. Simulation-based approach to general game playing. In Proc. 23th
Conf. on Artificial Intelligence, pages 259–264, 2008. 93

M. Fox and D. Long. PDDL 2.1: An extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20:61–124, 2003. 49

E. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM, 29(1):24–32, 1982.
DOI: 10.1145/322290.322292 35

J. Fu, V. Ng, F. Bastani, and I. Yen. Simple and fast strong cyclic planning for fully-observable
nondeterministic planning problems. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages
1949–1954, 2011. DOI: 10.5591/978-1-57735-516-8/IJCAI11-326 78

B. Gazen and C. Knoblock. Combining the expressiveness of UCPOP with the efficiency of Graph-
plan. In Proc. 4th European Conf. on Planning, pages 221–233, 1997. 26, 51

H. Geffner and B. Bonet. Solving large POMDPs using real time dynamic programming, 1998.
AAAI Fall Symposium on POMDPs. 104

H. Geffner. Heuristics, planning, cognition. In R. Dechter, H. Geffner, and J. Y. Halpern, editors,
Heuristics, Probability and Causality. A Tribute to Judea Pearl. College Publications, 2010. 112

H. Geffner. Artificial Intelligence: From Programs to Solvers. AI Communications, 2013. DOI:
10.3233/978-1-58603-925-7-4 8

H. Geffner. Computational models of planning. Wiley Interdisciplinary Reviews: Cognitive Science, 2,
2013. DOI: 10.1002/wcs.1233 112

http://dx.doi.org/10.1613/jair.1700
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1145/322290.322292
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-326
http://dx.doi.org/10.3233/978-1-58603-925-7-4
http://dx.doi.org/10.3233/978-1-58603-925-7-4
http://dx.doi.org/10.1002/wcs.1233


BIBLIOGRAPHY 119

C. W. Geib and R. P. Goldman. A probabilistic plan recognition algorithm based on plan tree gram-
mars. Artificial Intelligence, 173(11):1101–1132, 2009. DOI: 10.1016/j.artint.2009.01.003 57

S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Proc. 24th Int. Conf. on
Machine Learning, pages 273–280, 2007. DOI: 10.1145/1273496.1273531 93

A. E. Gerevini, A. Saetti, and I. Serina. An approach to efficient planning with numeri-
cal fluents and multi-criteria plan quality. Artificial Intelligence, 172(8):899–944, 2008. DOI:
10.1016/j.artint.2008.01.002 48

A. E.Gerevini, P.Haslum,D. Long, A. Saetti, and Y.Dimopoulos. Deterministic planning in the fifth
international planning competition: PDDL3 and experimental evaluation of the planners. Artificial
Intelligence, 173(5–6):619–668, 2009. DOI: 10.1016/j.artint.2008.10.012 25, 62

R. Gerth, D. A. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear
temporal logic. In Proc. Int. Symposium on Protocol Specification, Testing and Verification, pages 3–18,
1995. 64

M. Ghallab, D. Nau, and P. Traverso. Automated Planning: theory and practice. Morgan Kaufmann,
2004. xi, 13, 46, 49

G. Gigerenzer. Gut feelings: e intelligence of the unconscious. Viking Books, 2007. 111

M. L. Ginsberg. Universal planning: An (almost) universally bad idea. AI Magazine, 10(4):40–44,
1989. 12

R. P. Goldman and M. S. Boddy. Expressive planning and explicit knowledge. In Proc. 3rd Int. Conf.
on Artificial Intelligence Planning Systems, pages 110–117, 1996. 54

A. Gopnik, C. Glymour, D. Sobel, L. Schulz, T. Kushnir, and D. Danks. A theory of causal
learning in children: Causal maps and bayes nets. Psychological Review, 111(1):3–31, 2004. DOI:
10.1037/0033-295X.111.1.3 111

E. A.Hansen andR. Zhou. Anytime heuristic search. Journal of Artificial Intelligence Research, 28:267–
297, 2007. DOI: 10.1613/jair.2096 19

E. A. Hansen and S. Zilberstein. LAO*: A heuristic search algorithm that finds solutions with loops.
Artificial Intelligence, 129:35–62, 2001. DOI: 10.1016/S0004-3702(01)00106-0 72, 91

E. A. Hansen. Solving POMDPs by searching in policy space. In Proc. 14th Conf. on Uncertainty on
Artificial Intelligence, pages 211–219, 1998. 107

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of min-
imum cost paths. IEEE Trans. on Systems Science and Cybernetics, 4:100–107, 1968. DOI:
10.1109/TSSC.1968.300136 17

P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In Proc. 5th Int. Conf. on
Artificial Intelligence Planning Systems, pages 70–82, 2000. 13, 33, 41

http://dx.doi.org/10.1016/j.artint.2009.01.003
http://dx.doi.org/10.1145/1273496.1273531
http://dx.doi.org/10.1016/j.artint.2008.01.002
http://dx.doi.org/10.1016/j.artint.2008.01.002
http://dx.doi.org/10.1016/j.artint.2008.10.012
http://dx.doi.org/10.1037/0033-295X.111.1.3
http://dx.doi.org/10.1037/0033-295X.111.1.3
http://dx.doi.org/10.1613/jair.2096
http://dx.doi.org/10.1016/S0004-3702(01)00106-0
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136


120 BIBLIOGRAPHY

P. Haslum and P. Jonsson. Some results on the complexity of planning with incomplete information.
In Proc. 5th European Conf. on Planning, pages 308–318, 1999. DOI: 10.1007/10720246_24 54

P. Haslum, A. Botea, M. Helmert, B. Bonet, and S. Koenig. Domain-independent construction of
pattern database heuristics for cost-optimal planning. In Proc. 22nd Conf. on Artificial Intelligence,
pages 1007–1012, 2007. 42

R. Hassin, J. Uleman, and J. Bargh. e New Unconscious. Oxford University Press, 2005. 111

M. Helmert and C. Domshlak. Landmarks, critical paths and abstractions: What’s the difference
anyway? In Proc. 19th Int. Conf. on Automated Planning and Scheduling, pages 162–169, 2009. 41,
42

M. Helmert, P. Haslum, and J. Hoffmann. Flexible abstraction heuristics for optimal sequential
planning. In Proc. 17th Int. Conf. on Automated Planning and Scheduling, pages 176–183, 2007. 42

M. Helmert, M. B. Do, and I. Refanidis. 2008 IPC Deterministic planning competition. In 6th Int.
Planning Competition Booklet (ICAPS 2008), 2008. 39, 51

M. Helmert. e Fast Downward planning system. Journal of Artificial Intelligence Research, 26:191–
246, 2006. DOI: 10.1613/jair.1705 33, 38, 39

M. Helmert. Concise finite-domain representations for PDDL planning tasks. Artificial Intelligence,
173(5):503–535, 2009. DOI: 10.1016/j.artint.2008.10.013 26

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using decision diagrams.
In Proc. 15th Conf. on Uncertainty on Artificial Intelligence, pages 279–288, 1999. 108

J. Hoffmann and R. I. Brafman. Contingent planning via heuristic forward search with implicit belief
states. In Proc. 15th Int. Conf. on Automated Planning and Scheduling, pages 71–80, 2005. 72

J. Hoffmann and R. I. Brafman. Conformant planning via heuristic forward search: A new approach.
Artificial Intelligence, 170:507–541, 2006. DOI: 10.1016/j.artint.2006.01.003 55, 73

J. Hoffmann and B. Nebel. e FF planning system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253–302, 2001. DOI: 10.1613/jair.855 13, 31, 37, 39

J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning. Journal of Artificial Intel-
ligence Research, 22:215–278, 2004. DOI: 10.1613/jair.1492 13, 38, 39

J. Hoffmann, C. Gomes, B. Selman, and H. A. Kautz. SAT encodings of state-space reachability
problems in numeric domains. In Proc. 20th Int. Joint Conf. on Artificial Intelligence, pages 1918–
1923, 2007. 34, 46

J. Hoffmann. e Metric-FF planning system: Translating “ignoring delete lists” to numeric state
variables. Journal of Artificial Intelligence Research, 20:291–341, 2003. DOI: 10.1613/jair.1144 48

J. Hoffmann. Where ‘ignoring delete lists’ works: Local search topology in planning benchmarks.
Journal of Artificial Intelligence Research, 24:685–758, 2005. DOI: 10.1613/jair.1747 35

http://dx.doi.org/10.1007/10720246_24
http://dx.doi.org/10.1613/jair.1705
http://dx.doi.org/10.1016/j.artint.2008.10.013
http://dx.doi.org/10.1016/j.artint.2006.01.003
http://dx.doi.org/10.1613/jair.855
http://dx.doi.org/10.1613/jair.1492
http://dx.doi.org/10.1613/jair.1144
http://dx.doi.org/10.1613/jair.1747


BIBLIOGRAPHY 121

J. Hoffmann. Analyzing search topology without running any search: On the connection be-
tween causal graphs and hC. Journal of Artificial Intelligence Research, 41:155–229, 2011. DOI:
10.1613/jair.3276 35

J. Hopcroft and J. Ullman. Introduction to Automata eory, Languages, and Computation. Addison-
Wesley, 1979. 64

R. Howard. Dynamic Probabilistic Systems – Volume I: Markov Models. Wiley, 1971. 85

Y. Hu and G. de Giacomo. Generalized planning: Synthesizing plans that work for multiple en-
vironments. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 918–923, 2011. DOI:
10.5591/978-1-57735-516-8/IJCAI11-159 11

P. Jonsson and C. Bäckström. Tractable planning with state variables by exploiting structural restric-
tions. In Proc. 12th Nat. Conf. on Artificial Intelligence, pages 998–1003, 1994. 35

A. Jonsson. e role of macros in tractable planning over causal graphs. In Proc. 20th Int. Joint Conf.
on Artificial Intelligence, pages 1936–1941, 2007. 111

A. Junghanns and J. Schaeffer. Sokoban: Enhancing general single-agent search methods us-
ing domain knowledge. Artificial Intelligence, 129(1):219–251, 2001. DOI: 10.1016/S0004-
3702(01)00109-6 23

F. Kabanza and S. iébaux. Search control in planning for temporally extended goals. In Proc. 15th
Int. Conf. on Automated Planning and Scheduling, pages 130–139, 2005. 64

L. P. Kaelbling,M. L. Littman, andA. Cassandra. Planning and acting in partially observable stochas-
tic domains. Artificial Intelligence, 101(1–2):99–134, 1998. DOI: 10.1016/S0004-3702(98)00023-
X 6, 13, 101, 107

Daniel Kahneman. inking, fast and slow. Farrar, Straus and Giroux, 2011. 111

S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement search: A unified framework for
evaluating design tradeoffs in partial-order planning. Artificial Intelligence, 76(1–2):167–238, 1995.
DOI: 10.1016/0004-3702(94)00076-D 47

E. Karpas and C. Domshlak. Cost-optimal planning with landmarks. In Proc. 21st Int. Joint Conf. on
Artificial Intelligence, pages 1728–1733, 2009. 41

M. Katz and C. Domshlak. Optimal additive composition of abstraction-based admissible heuris-
tics. In Proc. 18th Int. Conf. on Automated Planning and Scheduling, pages 174–181, 2008. DOI:
10.1016/j.artint.2010.04.021 42

M. Katz and C. Domshlak. Structural patterns heuristics via fork decomposition. In Proc. 18th Int.
Conf. on Automated Planning and Scheduling, pages 182–189, 2008. 42

H. A. Kautz and J. F. Allen. Generalized plan recognition. In Proc. 5th Nat. Conf. on Artificial
Intelligence, pages 32–37, 1986. 57

http://dx.doi.org/10.1613/jair.3276
http://dx.doi.org/10.1613/jair.3276
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-159
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-159
http://dx.doi.org/10.1016/S0004-3702(01)00109-6
http://dx.doi.org/10.1016/S0004-3702(01)00109-6
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1016/0004-3702(94)00076-D
http://dx.doi.org/10.1016/j.artint.2010.04.021
http://dx.doi.org/10.1016/j.artint.2010.04.021


122 BIBLIOGRAPHY

H. A. Kautz and B. Selman. Planning as satisfiability. In Proc. 10th European Conf. on Artificial
Intelligence, pages 359–363, 1992. 45

H. A. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic
search. In Proc. 13th Nat. Conf. on Artificial Intelligence, pages 1194–1201, 1996. 13, 45, 110

H. A. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Proc. 16th Int. Joint
Conf. on Artificial Intelligence, pages 318–327, 1999. 45, 46

T. Keller and P. Eyerich. PROST: Probabilistic planning based on UCT. In Proc. 22nd Int. Conf. on
Automated Planning and Scheduling, pages 119–127, 2012. 94

E. Keyder and H. Geffner. Heuristics for planning with action costs revisited. In Proc. 18th European
Conf. on Artificial Intelligence, pages 588–592, 2008. DOI: 10.3233/978-1-58603-891-5-588 32

E. Keyder and H. Geffner. e HMDPP planner for planning with probabilities. In 6th Int. Planning
Competition Booklet (ICAPS 2008), 2008. 93

E. Keyder and H. Geffner. Soft goals can be compiled away. Journal of Artificial Intelligence Research,
36:547–556, 2009. DOI: 10.1613/jair.2857 52, 53

E. Keyder, S. Richter, and M. Helmert. Sound and complete landmarks for And/Or graphs. In Proc.
19th European Conf. on Artificial Intelligence, pages 335–340, 2010. 39

C. A. Knoblock. Learning abstraction hierarchies for problem solving. In Proc. 8th Nat. Conf. on
Artificial Intelligence, pages 923–928, 1990. 111

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In Proc. 17th European Conf. on
Machine Learning, pages 282–293, 2006. DOI: 10.1007/11871842_29 93

S. Koenig and X. Sun. Comparing real-time and incremental heuristic search for real-time situ-
ated agents. Journal of Autonomous Agents and Multi-Agent Systems, 18(3):313–341, 2009. DOI:
10.1007/s10458-008-9061-x 23

A. Kolobov, P. Dai, Mausam, and D. S. Weld. Reverse iterative deepening for finite-horizon MDPs
with large branching factors. In Proc. 22nd Int. Conf. on Automated Planning and Scheduling, pages
146–154, 2012. 93

A. Kolobov, Mausam, and D. S. Weld. LRTDP versus UCT for online probabilistic planning. In
Proc. 26nd Conf. on Artificial Intelligence, pages 1786–1792, 2012. 93

R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence,
27(1):97–109, 1985. DOI: 10.1016/0004-3702(85)90084-0 19

R. E. Korf. Planning as search: A quantitative approach. Artificial Intelligence, 33(1):65–88, 1987.
DOI: 10.1016/0004-3702(87)90051-8 34, 111

R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42:189–211, 1990. DOI: 10.1016/0004-
3702(90)90054-4 21, 89

http://dx.doi.org/10.3233/978-1-58603-891-5-588
http://dx.doi.org/10.1613/jair.2857
http://dx.doi.org/10.1007/11871842_29
http://dx.doi.org/10.1007/s10458-008-9061-x
http://dx.doi.org/10.1007/s10458-008-9061-x
http://dx.doi.org/10.1016/0004-3702(85)90084-0
http://dx.doi.org/10.1016/0004-3702(87)90051-8
http://dx.doi.org/10.1016/0004-3702(90)90054-4
http://dx.doi.org/10.1016/0004-3702(90)90054-4


BIBLIOGRAPHY 123

U. Kuter, D. S. Nau, E. Reisner, and R. P. Goldman. Using classical planners to solve nondeterministic
planning problems. In Proc. 18th Int. Conf. on Automated Planning and Scheduling, pages 190–197,
2008. 78

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. eTraveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. Wiley, 1985. 23, 43

N. Lipovetzky and H. Geffner. Searching for plans with carefully designed probes. In Proc. 21st Int.
Conf. on Automated Planning and Scheduling, pages 154–161, 2011. 39

N. Lipovetzky and H. Geffner. Width and serialization of classical planning problems. In Proc. 20th
European Conf. on Artificial Intelligence, pages 540–545, 2012. DOI: 10.3233/978-1-61499-098-7-
540 35, 39

M. L. Littman, J. Goldsmith, and M. Mundhenk. e computational complexity of probabilistic
planning. Journal of Artificial Intelligence Research, 9:1–36, 1998. DOI: 10.1613/jair.505 8

M. L. Littman. Memoryless policies: eoretical limitations and practical results. In D. Cliff, editor,
From Animals to Animats 3. MIT Press, 1994. 60

Y. Liu, S. Koenig, and D. Furcy. Speeding up the calculation of heuristics for heuristic search-based
planning. In Proc. 18th Nat. Conf. on Artificial Intelligence, pages 484–491, 2002. 31

B. Marthi, S. J. Russell, and J. Wolfe. Angelic semantics for high-level actions. In Proc. 17th Int. Conf.
on Automated Planning and Scheduling, pages 232–239, 2007. 111

M. Martin and H. Geffner. Learning generalized policies in planning using concept languages. In
Proc. 7th Int. Conf. on Principles of Knowledge Representation and Reasoning, pages 667–677, 2000.
12

M. J. Mataric. e Robotics Primer. MIT Press, 2007. 10

Mausam and A. Kolobov. Planning with Markov Decision Processes: An AI Perspective. Morgan &
Claypool, 2012. DOI: 10.2200/S00426ED1V01Y201206AIM017 92, 93

D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proc. 9th Nat. Conf. on Artificial
Intelligence, pages 634–639, 1991. 13, 47

D. V. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. S. Weld, and
D. Wilkins. PDDL – e Planning Domain Definition Language. Technical Report CVC TR-98-
003/DCS TR-1165, Yale Center for Computational Vision and Control, New Haven, CT, 1998.
26

D. V. McDermott. A heuristic estimator for means-ends analysis in planning. In Proc. 3rd Int. Conf.
on Artificial Intelligence Planning Systems, pages 142–149, 1996. 13, 24

D. V. McDermott. Using regression-match graphs to control search in planning. Artificial Intelligence,
109(1–2):111–159, 1999. DOI: 10.1016/S0004-3702(99)00010-7 27, 31

http://dx.doi.org/10.3233/978-1-61499-098-7-540
http://dx.doi.org/10.3233/978-1-61499-098-7-540
http://dx.doi.org/10.1613/jair.505
http://dx.doi.org/10.2200/S00426ED1V01Y201206AIM017
http://dx.doi.org/10.1016/S0004-3702(99)00010-7


124 BIBLIOGRAPHY

S. A. McIlraith and R. Fadel. Planning with complex actions. In Proc. 9th Int. Workshop on Non-
Monotonic Reasoning, pages 356–364, 2002. 111

M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961. DOI:
10.1109/JRPROC.1961.287775 23

C. Muise, S. A. McIlraith, and J. C. Beck. Improved non-deterministic planning by exploiting state
relevance. In Proc. 22nd Int. Conf. on Automated Planning and Scheduling, pages 172–180, 2012. 78

R. R. Murphy. An Introduction to AI Robotics. MIT Press, 2000. 10

B. Nebel. On the compilability and expressive power of propositional planning formalisms. Journal of
Artificial Intelligence Research, 12:271–315, 2000. DOI: 10.1613/jair.735 26

A. Newell and H. A. Simon. GPS, a program that simulates human thought. In H. Billing, editor,
Lernende Automaten, pages 109–124. R. Oldenbourg, 1961. 12

A. Newell, J. C. Shaw, and H. A. Simon. Report on a general problem-solving program. In Proc. of
the Int. Conf. on Information Processing, pages 256–264, 1959. xi, 12

X. L. Nguyen and S. Kambhampati. Reviving partial order planning. In Proc. 17th Int. Joint Conf. on
Artificial Intelligence, pages 459–466, 2001. 13, 47

N. Nilsson. Principles of Artificial Intelligence. Tioga, 1980. 44, 71, 91

H. Palacios and H. Geffner. Compiling uncertainty away in conformant planning problems with
bounded width. Journal of Artificial Intelligence Research, 35:623–675, 2009. DOI: 10.1613/jair.2708
54, 55, 57, 73, 74

F. Patrizi, N. Lipovetzky, G. de Giacomo, and H. Geffner. Computing infinite plans for LTL goals
using a classical planner. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 2003–2008,
2011. DOI: 10.5591/978-1-57735-516-8/IJCAI11-334 64

F. Patrizi, N. Lipovetzky, and H. Geffner. Fair LTL synthesis for non-deterministic systems using
strong cyclic planners. In Proc. 23rd Int. Joint Conf. on Artificial Intelligence, 2013. 64

J. Pearl. Heuristics. Addison-Wesley, 1983. 17, 18, 19, 23, 71

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988. 58, 74, 107

E. Pednault. ADL: Exploring the middle ground between Strips and the situation calcules. In Proc.
1st Int. Conf. on Principles of Knowledge Representation and Reasoning, pages 324–332, 1989. 26

J. Penberthy and D. S. Weld. UCPOP: A sound, complete, partiall order planner for ADL. In Proc.
3rd Int. Conf. on Principles of Knowledge Representation and Reasoning, pages 103–114, 1992. 12

J. Pineau, G. J. Gordon, and S. run. Anytime point-based approximations for large POMDPs.
Journal of Artificial Intelligence Research, 27:335–380, 2006. DOI: 10.1613/jair.2078 102

A. Pnueli. e temporal logic of programs. In Proc. 18th Annual Symposium on the Foundations of
Computer Science, pages 46–57, 1977. DOI: 10.1109/SFCS.1977.32 62

http://dx.doi.org/10.1109/JRPROC.1961.287775
http://dx.doi.org/10.1109/JRPROC.1961.287775
http://dx.doi.org/10.1613/jair.735
http://dx.doi.org/10.1613/jair.2708
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-334
http://dx.doi.org/10.1613/jair.2078
http://dx.doi.org/10.1109/SFCS.1977.32


BIBLIOGRAPHY 125

P. Poupart and C. Boutilier. Bounded finite state controllers. In Proc. 17th Annual Conf. on Advances
in Neural Information Processing Systems, pages 823–830, 2003. 107

M. Puterman. Markov Decision Processes – Discrete Stochastic Dynamic Programming. John Wiley and
Sons, 1994. DOI: 10.1002/9780470316887 79, 82, 85

M. Ramírez and H. Geffner. Probabilistic plan recognition using off-the-shelf classical planners. In
Proc. 24th Conf. on Artificial Intelligence, pages 1121–1126, 2010. 58, 59

M. Ramírez and H. Geffner. Goal recognition over POMDPs: Inferring the intention of a POMDP
agent. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 2009–2014, 2011. DOI:
10.5591/978-1-57735-516-8/IJCAI11-335 59

S. Richter and M. Westphal. e LAMA planner: Guiding cost-based anytime planning with land-
marks. Journal of Artificial Intelligence Research, 39:127–177, 2010. DOI: 10.1613/jair.2972 13, 20,
33, 38, 39

S. Richter, M. Helmert, and M. Westphal. Landmarks revisited. In Proc. 23th Conf. on Artificial
Intelligence, pages 975–982, 2008. 39

S. Richter, J. T. ayer, and W. Ruml. e joy of forgetting: Faster anytime search via restarting. In
Proc. 20th Int. Conf. on Automated Planning and Scheduling, pages 137–144, 2010. 20

J. Rintanen. Complexity of planning with partial observability. In Proc. 14th Int. Conf. on Automated
Planning and Scheduling, pages 345–354, 2004. 54

J. Rintanen. Distance estimates for planning in the discrete belief space. In Proc. 19th Nat. Conf. on
Artificial Intelligence, pages 525–530, 2004. 55

J. Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence, 193:45–86, 2012. DOI:
10.1016/j.artint.2012.08.001 46

G. Röger and M. Helmert. e more, the merrier: Combining heuristic estimators for satisficing
planning. In Proc. 20th Int. Conf. on Automated Planning and Scheduling, pages 246–249, 2010. 38

S. J. Russell and P. Norvig. Artificial Intelligence: AModern Approach. Prentice Hall, 3rd edition, 2009.
xi, 1, 13, 107

E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5(2):115–135,
1974. DOI: 10.1016/0004-3702(74)90026-5 111

E. Sacerdoti. e nonlinear nature of plans. In Proc. 4th Int. Joint Conf. on Artificial Intelligence, pages
206–214, 1975. 13

R. Sanchez and S. Kambhampati. Planning graph heuristics for selecting objectives in over-
subscription planning problems. In Proc. 15th Int. Conf. on Automated Planning and Scheduling,
pages 192–201, 2005. 51

S. Sanner and C. Boutilier. Practical solution techniques for first-order MDPs. Artificial Intelligence,
173(5–6):748–788, 2009. DOI: 10.1016/j.artint.2008.11.003 108

http://dx.doi.org/10.1002/9780470316887
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-335
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-335
http://dx.doi.org/10.1613/jair.2972
http://dx.doi.org/10.1016/j.artint.2012.08.001
http://dx.doi.org/10.1016/j.artint.2012.08.001
http://dx.doi.org/10.1016/0004-3702(74)90026-5
http://dx.doi.org/10.1016/j.artint.2008.11.003


126 BIBLIOGRAPHY

S. Sanner and K. Kersting. Symbolic dynamic programming for first-order POMDPs. In Proc. 24th
Conf. on Artificial Intelligence, pages 1140–1146, 2010. 108

M. J. Schoppers. Universal plans for reactive robots in unpredictable environments. In Proc. 10th Int.
Joint Conf. on Artificial Intelligence, pages 1039–1046, 1987. 12

W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and reward. Science,
275(5306):1593–1599, 1997. DOI: 10.1126/science.275.5306.1593 111

G. Shani, J. Pineau, and R. Kaplow. A survey of point-based POMDP solvers. Journal of Autonomous
Agents and Multi-Agent Systems, pages 1–51, 2012. Online-First Article. DOI: 10.1007/s10458-
012-9200-2 102, 103

D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Proc. 24th Annual Conf. on
Advances in Neural Information Processing Systems, pages 2164–2172, 2010. 105

H. A. Simon. A behavioral model of rational choice. eQuarterly Journal of Economics, 69(1):99–118,
1955. DOI: 10.2307/1884852 23

H. A. Simon. e sciences of the artificial. MIT Press, 3rd edition, 1996. 34

M. Sipser. Introduction to eory of Computation. omson Course Technology, Boston, MA, 2nd
edition, 2006. 8, 45, 64

R. Smallwood and E. Sondik. e optimal control of partially observable Markov processes over a
finite horizon. Operations Research, 21:1071–1088, 1973. DOI: 10.1287/opre.21.5.1071 98

D. E. Smith and D. S. Weld. Conformant graphplan. In Proc. 15th Nat. Conf. on Artificial Intelligence,
pages 889–896, 1998. 54

D. E. Smith and D. S. Weld. Temporal planning with mutual exclusion reasoning. In Proc. 16th Int.
Joint Conf. on Artificial Intelligence, pages 326–337, 1999. 49

D. E. Smith, J. Frank, and A. K. Jonsson. Bridging the gap between planning and scheduling. e
Knowledge Engineering Review, 15(1):47–83, 2000. DOI: 10.1017/S0269888900001089 47, 48

D. E. Smith. Choosing objectives in over-subscription planning. In Proc. 14th Int. Conf. on Automated
Planning and Scheduling, pages 393–401, 2004. 30, 51

S. Srivastava, N. Immerman, and S. Zilberstein. A new representation and associated algorithms for
generalized planning. Artificial Intelligence, 175(2):615–647, 2011.
DOI: 10.1016/j.artint.2010.10.006 11

S. Srivastava, S. Zilberstein, N. Immerman, and H. Geffner. Qualitative numeric planning. In Proc.
25th Conf. on Artificial Intelligence, pages 1010–1016, 2011. 111

K. Stanley, B. Bryant, and R. Miikkulainen. Real-time neuroevolution in the NERO video game.
IEEE Trans. on Evolutionary Computation, 9(6):653–668, 2005.
DOI: 10.1109/TEVC.2005.856210 12

http://dx.doi.org/10.1126/science.275.5306.1593
http://dx.doi.org/10.1007/s10458-012-9200-2
http://dx.doi.org/10.1007/s10458-012-9200-2
http://dx.doi.org/10.2307/1884852
http://dx.doi.org/10.1287/opre.21.5.1071
http://dx.doi.org/10.1017/S0269888900001089
http://dx.doi.org/10.1016/j.artint.2010.10.006
http://dx.doi.org/10.1109/TEVC.2005.856210


BIBLIOGRAPHY 127

C. Striebel. Sufficient statistics in the control of stochastic systems. Journal of Mathematical Analaysis
and Applications, 12:576–592, 1965. DOI: 10.1016/0022-247X(65)90027-2 98

R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press, 1998. 95, 96, 104

C. Szepesvári. Algorithms for reinforcement learning. Morgan & Claypool Publishers, 2010. DOI:
10.2200/S00268ED1V01Y201005AIM009 96

R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972. DOI: 10.1137/0201010 91

A. Tate. Generating project networks. In Proc. 5th Int. Joint Conf. on Artificial Intelligence, pages
888–893, 1977. 13

S. T. To, E. Pontelli, and T. Cao Son. On the effectiveness of CNF and DNF representations in
contingent planning. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence, pages 2033–2038, 2011.
DOI: 10.5591/978-1-57735-516-8/IJCAI11-339 55, 73

J. Tooby and L. Cosmides. e psychological foundations of culture. In J. Barkow, L. Cosmides, and
J. Tooby, editors, e Adapted Mind. Oxford, 1992. 8

M. Toussaint and A. Storkey. Probabilistic inference for solving discrete and continuous state markov
decision processes. In Proc. 23rd Int. Conf. on Machine Learning, pages 945–952, 2006. DOI:
10.1145/1143844.1143963 108

M. van den Briel and S. Kambhampati. Optiplan: Unifying IP-based and graph-based planning.
Journal of Artificial Intelligence Research, 24:919–931, 2005. DOI: 10.1613/jair.1698 48

M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation,
115(1):1–37, 1994. DOI: 10.1006/inco.1994.1092 64

J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A Monte-Carlo AIXI approximation. Journal
of Artificial Intelligence Research, 40:95–142, 2011. DOI: 10.1613/jair.3125 111

V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL plan-
ner based on constraint programming. Artificial Intelligence, 170(3):298–335, 2006. DOI:
10.1016/j.artint.2005.08.004 13, 47, 48

C. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University, 1989. 95

D. S. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27–61, 1994. 44,
46, 47

T. D. Wilson. Strangers to Ourselves. Belknap Press, 2002. 111

Q. Yang. Activity recognition: Linking low-level sensors to high-level intelligence. In Proc. 21st Int.
Joint Conf. on Artificial Intelligence, pages 20–25, 2009. 57

S. Yoon, A. Fern, and R. Givan. FF-replan: A baseline for probabilistic planning. In Proc. 17th Int.
Conf. on Automated Planning and Scheduling, pages 352–359, 2007. 77, 93

L. Zhu and R. Givan. Landmark extraction via planning graph propagation. In ICAPS Doctoral
Consortium, pages 156–160, 2003. 39

http://dx.doi.org/10.1016/0022-247X(65)90027-2
http://dx.doi.org/10.2200/S00268ED1V01Y201005AIM009
http://dx.doi.org/10.2200/S00268ED1V01Y201005AIM009
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-339
http://dx.doi.org/10.1145/1143844.1143963
http://dx.doi.org/10.1145/1143844.1143963
http://dx.doi.org/10.1613/jair.1698
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1613/jair.3125
http://dx.doi.org/10.1016/j.artint.2005.08.004
http://dx.doi.org/10.1016/j.artint.2005.08.004




129

Authors’ Biography

HECTOR GEFFNER
Hector is interested in artificial intelligence and cognitive science, having worked on both planning
and plan recognitionmethods for generating and recognizing autonomous behavior usingmodel-based
methods. He is an ICREA Research Professor at the Universitat Pompeu Fabra in Barcelona where he
heads the AI group and directs the Master in Intelligent Interactive Systems. He was born and grew
up in Buenos Aires, and then obtained an EE degree from the Universidad Simón Bolívar in Caracas,
and a Ph.D. in Computer Science from UCLA. He received the 1990 ACM Dissertation Award for
a thesis done under the supervision of Judea Pearl, and the 2009 and 2010 ICAPS Influential Paper
Awards. Hector is a fellow of AAAI and ECCAI, and Associate Editor of Artificial Intelligence and the
Journal of Artificial Intelligence Research. He is the author of the book Default Reasoning, MIT Press,
1992, and co-editor with Rina Dechter and Joseph Halpern of the book Heuristics, Probability and
Causality: A Tribute to Judea Pearl, College Publications, 2010.

BLAI BONET
Blai is a Professor in the Computer Science Department at Universidad Simón Bolívar in Caracas,
Venezuela. His main research interests are automated planning, knowledge representation and search.
He obtained B.Sc. and M.Sc. degrees in Computer Science from Universidad Simón Bolívar and a
Ph.D. in Computer Science from UCLA. He received the 2009 ICAPS Influential Paper Award.
Blai is Associate Editor of Artificial Intelligence and the Journal of Artificial Intelligence Research, and
member of the Executive Council of ICAPS (Int. Conf. on Automated Planning and Scheduling).


	Preface
	Planning and Autonomous Behavior
	Autonomous Behavior: Hardwired, Learned, and Model-based
	Planning Models and Languages
	Generality, Complexity, and Scalability
	Examples
	Generalized Planning: Plans vs. General Strategies
	History

	Classical Planning: Full Information and Deterministic Actions
	Classical Planning Model
	Classical Planning as Path Finding
	Search Algorithms: Blind and Heuristic
	Online Search: Thinking and Acting Interleaved
	Where do Heuristics come from?
	Languages for Classical Planning
	Domain-Independent Heuristics and Relaxations
	Heuristic Search Planning
	Decomposition and Goal Serialization
	Structure, Width, and Complexity

	Classical Planning: Variations and Extensions
	Relaxed Plans and Helpful Actions
	Multi-Queue Best-First Search
	Implicit Subgoals: Landmarks
	State-of-the-Art Classical Planners
	Optimal Planning and Admissible Heuristics
	Branching Schemes and Problem Spaces
	Regression Planning
	Planning as SAT and Constraint Satisfaction
	Partial-Order Causal Link Planning
	Cost, Metric, and Temporal Planning
	Hierarchical Task Networks

	Beyond Classical Planning: Transformations
	Soft Goals and Rewards
	Incomplete Information
	Plan and Goal Recognition
	Finite-State Controllers
	Temporally Extended Goals

	Planning with Sensing: Logical Models
	Model and Language
	Solutions and Solution Forms
	Offline Solution Methods
	Online Solution Methods
	Belief Tracking: Width and Complexity
	Strong vs. Strong Cyclic Solutions

	MDP Planning: Stochastic Actions and Full Feedback
	Goal, Shortest-Path, and Discounted Models
	Dynamic Programming Algorithms
	Heuristic Search Algorithms
	Online MDP Planning
	Reinforcement Learning, Model-based RL, and Planning

	POMDP Planning: Stochastic Actions and Partial Feedback
	Goal, Shortest-Path, and Discounted POMDPs
	Exact Offline Algorithms
	Approximate and Online Algorithms
	Belief Tracking in POMDPs
	Other MDP and POMDP Solution Methods

	Discussion
	Challenges and Open Problems
	Planning, Scalability, and Cognition

	Bibliography
	Author's Biography

