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Abstract

The problem of planning with partial observability in the
presence of a single agent has been addressed as a contin-
gent or POMDP problem. Since the task is computationally
hard, on-line approaches have also been developed that just
compute the action to do next rather than full policies. In this
work, we address a similar problem but in a multiagent set-
ting where agents share a common goal and plan with beliefs
which are about the world and the possibly nested beliefs of
other agents. For this, we extend the belief tracking formula-
tion of Kominis and Geftner to the on-line setting where plans
are supposed to work for the true hidden state as revealed by
the observations, and develop an alternative translation into
classical planning that is used within a plan-execute-observe-
and-replan cycle. Planning is done from the perspective of the
agents, and there is a single planning agent in each replanning
episode that can change across episodes. We present empiri-
cal results and show that interesting agent dialogues arise in
this setting where agents collaborate by requesting or volun-
teering information in a goal-directed manner.

Introduction

Single-agent planning with partial observability is a hard
computational problem where even the size of the required
policies is often exponential in the problem size (Rintanen
2004). For avoiding this bottleneck, on-line approaches
have been developed that rather than computing full poli-
cies off-line, compute the next action to do given the ob-
servations gathered (Albore, Palacios, and Geffner 2009;
Brafman and Shani 2012b; Bonet and Geffner 2014).

In this work, we address the problem of online planning in
partially observable environments in the presence of multi-
ple agents that share a common goal and plan with beliefs
that can be about the world or about the possibly nested
beliefs of other agents. This setting is addressed by dy-
namic epistemic logics (van Ditmarsch, van der Hoek, and
Kooi 2007; van Ditmarsch and Kooi 2008; Van Benthem
2011), yet these logics are undecidable in general (Aucher
and Bolander 2013; Charrier, Bastien, and Schwarzentruber
2016) with special decidable fragments associated with re-
strictions on action pre and postconditions (Lowe, Pacuit,
and Witzel 2011; Bolander, Jensen, and Schwarzentruber
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2015). In this paper, we build instead on the formula-
tion developed recently by Kominis and Geffner that cor-
responds to a rich fragment of DEL, for which it provides
a convenient modeling language, a simple semantics, and
procedures akin to those used in the single-agent setting
(Kominis and Geffner 2015). In this approach, the ba-
sic assumptions are that actions are public, physical ac-
tions are deterministic, and the set of possible initial states
is common to all the agents. There is a clear tradeoff
between expressivity, simplicity, and computational effi-
ciency, and other approaches addressing planning in a mul-
tiagent setting make different tradeoffs (Baral et al. 2012;
Brafman, Shani, and Zilberstein 2013; Muise et al. 2015;
Engesser et al. 2015; Cooper et al. 2016).

For using Kominis’ and Geffner’s formulation in the on-
line setting, three issues need to be addressed. First, beliefs
must take into account the actual observations gathered by
the agents. Second, plans must be computed by the agents
themselves using their own private information. And third,
plans do not have to achieve the goal for all possible initial
states, but for the true hidden initial state only. We address
these issues by adopting a suitable formulation of truth in the
on-line setting that is used within a plan-execute-observe-
and-replan cycle along with a translation into classical plan-
ning for selecting actions. The resulting on-line planning
algorithm is guaranteed to reach the goal in a bounded num-
ber of calls to a classical planner provided that there are no
dead-ends, even if different agents are chosen to plan in the
different replanning episodes. We also show that interesting
agent dialogues arise in this setting where agents request,
provide, and volunteer information in a collaborative, goal-
directed manner.

The rest of the paper is organized as follows. We review
first the modeling language and the belief representation,
and introduce the extensions required for the on-line setting.
We then introduce the translation into classical planning, the
replanning algorithm, and its formal properties. We finally
present the examples and resulting agent dialogues, and the
experimental results.

Motivation

The Active Muddy Child (Kominis and Geftner 2015) is a
planning version of the the famous Muddy Children puz-
zle (Fagin et al. 1995). The problem is useful for illustrat-



ing the differences between the off-line and on-line settings
that when planning with epistemic goals is more crucial than
in the standard partially observable setting of single-agent
planning. While in the original puzzle, the father announces
that at least one child is muddy, and then asks the children
repeatedly whether they know whether they are muddy or
not until the muddy children all infer that they are muddy, in
the Active version, one of the children is the one asking the
questions to find out whether he is muddy or not. Moreover,
he has to ask these questions to one child at a time, whose
answer is heard by all the children. A conformant plan for
the Active Muddy Child problem, with n children, is one
where the active child asks the question to each one of the
children in turn without leaving any one out, in any order.
The plan achieves the goal regardless of the true initial state.
The problem has indeed 2" — 1 possible initial states where
different subsets of children are muddy, excluding the state
where no child is muddy that is common knowledge.

In the on-line version of the Active Muddy Child prob-
lem, the child asking the questions to figure out whether he
is muddy or not, does not have to ask each of the children in
turn whether they are muddy or not. The “planning child”,
like the other children, senses the world and can perfectly
see which children are muddy and which ones are not, ex-
cept for himself. A more effective strategy in the on-line
setting is to approach only the children that are seen to be
muddy. Any plan where the “planning child” asks the ques-
tion to each of the children that he sees muddy, will achieve
the goal.

The difference between the off-line and on-line setting is
not the presence of observations that the planning agent can
use for selecting actions, but that plans must work for all
possible initial states in the first case, and for just the true
hidden initial state in the second one. Indeed, in the single-
agent case, the solution form for contingent planning prob-
lems is a contingent tree. This tree makes use of observa-
tions but the planning method is off-line: the trees cover all
the possibilities and hence all possible initial states. The so-
lution form in on-line planning, on the other hand, is not a
tree but an action sequence, as the solution must work for
one state only: the true but hidden initial state. The planning
agent in the on-line setting may find useful to consider many
and even all possibilities before deciding what to do next, but
this is just the criterion for choosing actions. The solution of
the on-line problem is the sequence of actions that achieves
the goal. The observations are relevant because they provide
indirect information about the hidden state.

The distinction between off-line and on-line planning is
often left implicit and without formalization in the single-
agent, partial observable setting, because goals in the latter
are objective and refer to the world. In the on-line setting
of epistemic, multiagent planning, on the other hand, things
are different and force us to make explicit and formal the
conditions under which an epistemic goal is achieved from
the internal perspective of the planning agent, and hence the
role that the hidden true state plays in such conditions.

Language

We consider planning problems P = (A, F,I,O,N, S, G)
where A is the set of agent names or indexes, F is the set
of relevant atoms or fluents, I represents the initial situation
in the form of an objective formula over F', O is the set of
physical actions, N is the set of sensing actions, S is the set
of (passive) sensors, and G is the goal (Kominis and Geffner
2015). States represent truth-valuations over F', and the set
of possible initial states by is made of the states that satisfy /.
The physical actions a define a mapping f, such that f,(s)
represents the state that result from applying action a in the
state s. Syntactically, such mappings are defined through a
set of conditional effects of the form C' — L, where L is a
literal and C' is a formula over F'. A sensing action in N is
a set of expressions of the form sense[i](¢), where i is an
agent, and ¢ is an objective or epistemic formula. A result
of the action is that the truth value of ¢ is revealed to agent
7. A (parallel) sensing action in [V is a set of expressions
of the form sense[A](¢), where the truth of ¢ is revealed
to all the agents j € Aj. Unlike sensing actions, sensors
reveal information without having to act. We denote passive
sensors like sensing actions but with the letter “p” in front;
namely, as psense|[i](¢) and psense[Aj](¢). Also, we write
sense(¢) and psense(¢) when the sensing involves all the
agents, i.e. A, = A.

The goal G and the formulas ¢ above can be epistemic.
The epistemic formulas ¢ include the atoms in F', and recur-
sively, the formulas K;¢ for i € A, and the boolean combi-
nations of such formulas where K is the standard operator
in logics of knowledge (Fagin et al. 1995).

Finally, physical actions a have a precondition formula
Pre(a) that can be objective or epistemic. We assume that
each action has an ‘owner” and that the action is applicable
if the owner knows that the precondition is true (Engesser
et al. 2015). The execution of physical and sensing actions
however is public and so are the agent’s sensors.

Beliefs

Beliefs are represented by a suitable collection of sets of
states. The beliefs define a Kripke structure where arbitrary
epistemic formulas can be evaluated.

External View

The beliefs of all the agents at time step ¢, denoted as B(t),
is represented by the beliefs B(s,t) conditional on s € by
being the true initial state, given as (Kominis and Geffner
2015):

B(s’t) = <'U(S,t),7’1(8,t),7'2(8,t), '~'77'm<87t)>

where v(s,t) is the state of the world that results from the
initial state s after the action sequence 7(0),...,7(t — 1),
and r;(s,t) is the set of possible initial states s’ € by that
agent ¢ cannot distinguish at time ¢ from the actual initial
state s.

Fort = 0, v(s,t) = s and r;(s,t) = by for all agents
i, while for ¢t > 0, B(t + 1) is determined by B(¢) and the
action 7(t) at time ¢.



If 7(t) is a sensing action or contains such actions, the
current state given s does not change, i.e., v(s,t + 1) =
v(s,t), but the set of possible initial states compatible with
the hidden initial state s for agent ¢ given by r;(s,t + 1)
becomes:

{s'|s" € ri(s,t), B(t),s | ¢iff B(t),s E ¥,V € O;(t)}

where O;(t) represents the observables at time ¢ and con-
tains all the formulas ¢ such that the action sense[A](¢) is
in w(t) or psense[Ay](¢) is a passive sensor, in both cases
with i € Ay. The expression B(t), s = ¢ denotes that ¢ is
true in the belief B(t) conditional on s being the true hidden
state. The truth conditions for such expressions are spelled
out below.

If 7(t) is a physical action a, the current state v(s,t) as-
sociated with the hidden initial state s changes according to
the transition function f, associated with @ as v(s,t + 1) =
fa(v(s,t)), while the sets of initial states r;(s, t) change ac-
cording to the displayed formula above, where the observ-
ables in O;(t) result from the passive sensors only. In ad-
dition, if the action a is “owned” by agent j, states s €
ri(s,t + 1) where B(t),s = K;Pre(a) does not hold are
removed from 7;(s, ¢ + 1), meaning that agents ¢ learn that
action a is then applicable.

From Beliefs to Kripke Structures

A Kripke structure is a tuple K = (W, R, V), where W
is a set of worlds, R is a set of binary accessibility rela-
tions R; on W, one for each agent ¢, and V' is a mapping
from the worlds w in W into truth valuations V (w). Due to
the assumptions we make (actions are deterministic, known
and public), accessibility relations are equivalence relations.
The conditions under which an arbitrary formula ¢ is true
in a world w of a Kripke structure K = (W, R, V'), written
K, w = ¢, are defined inductively (Fagin et al. 1995):

e K, w = p for an atom p, if p is true in V (w),
KiwkEe¢Vvy if K,wlkE ¢ or K,w =1,
K,wkE (=) if C,wE ¢ implies K, w [ 9,
K,wkE K¢ if C,w' = ¢ for all w’ s.t. R;(w,w’),
KyawkE-¢ if C,w ¢

The conditions under which a possible initial state s predicts
the truth of a formula ¢ at time ¢, written B(t), s = ¢, fol-
low from replacing the belief B(¢) by the Kripke structure
K(t) = (Wt R, V') defined by B(t) where W' = {s| s €
br}, Rt ={(s,8") | s €ri(s,t) },and Vi(s) = v(s,t).

The worlds w in the structure C(¢) are thus the possible
initial states s € by, while the worlds that are accessible
from a world s to the agent ¢ are the possible initial states
s’ that are in 7;(s,t). Finally, the valuation associated to a
world s in this structure is the state v(s, t) that deterministi-
cally follows from the possible initial state s and the action
sequence up to t — 1. B(t),s |= ¢ is defined as true when
K(t),s | ¢ is true.

Agent’s View
While in the off-line setting, a formula ¢ is regarded as true
at time ¢ when KC(t), so |= ¢ is true for all possible initial

states sg € by, i.e., all worlds in the structure, in the on-line
setting, truth is defined in relation to the single actual world,
which corresponds to a true but hidden initial state denoted
as sg:

Definition 1 (On-line Truth) A formula ¢ is true at time t
in the on-line setting, written B(t) = ¢, iff K(t),s{ = ¢
where s{, € by is the hidden initial state.

This is a simple but crucial definition. No similar explicit
account for truth is required in contingent planning where
the hidden initial state sj plays an indirect role only. This
is because the goal is an objective formula and it is suffi-
cient then to keep track of the set of states that are possible
at a given time point, the so-called belief state (Bonet and
Geftner 2000), in order to determine if the goal holds or not.

Definition 1, however, can’t be applied to arbitrary for-
mulas, as the agents do not have access to the hidden state
sg- Yet, each agent ¢ can use Definition 1 to evaluate for-
mulas of the form K¢’ provided that the set S;(¢) of initial
states that are possible to agent ¢ by time ¢ is tracked. This
set depends on the actual observations gathered by agent 3.
Initially S;(0) = by and S; (¢t + 1) is:

Si(t+1) ={sls' € 8i(t), B(t), 5" =, Vv € OF (1)}

where O;f (¢) stands for the set of observations available to
agent ¢ at time ¢; namely, the formulas ) (observable) in
O;(¢) that have been observed to be true at t, and the nega-
tion of the formulas v (observable) in O;(t) that have been
observed to be false. Provided with this set of possible initial
states, the truth of formulas K¢ according to Definition 1
can be evaluated as follows:

Theorem 1 B(t) = K;¢ iff K(t),s0 = ¢,Vso € Si(t).

Indeed, for evaluating the formula K¢ in s§, the agent
does not need to know the hidden state s{; but r;(sg, t); i.e.,
the set of states that agent ¢ cannot tell apart from s§ at time
t. Yet this set is precisely S;(t).

As an illustration, if the problem P involves two agents
1 and 2, two fluents p and ¢, I = {p = ¢}, and 7 is
given by the action 7(0) = sense[1](p) followed by (1) =
sense|[2](q), we get a joint belief B(t) for t = 2 that defines
a Kripke structure K(¢) where formulas such as K1p = Ksq
hold in all the states, and formulas such as Kp and K2q do
not. Yet, if the true hidden state s; is such that p and g are
true in s, formulas such as K»q and K3 K;p would be true
in B(t) according to Definition 1 for ¢ = 2, and false for
t=1.

Planning

Planning in our setting involves the incremental compu-
tation and execution of a sequence of actions that makes
the goal true. The algorithm shown in Figure 1 com-
putes such sequences using a replanning method that is sim-
ilar to those developed for single-agent on-line planning
in partial observable settings (Brafman and Shani 2012b;
Bonet and Geffner 2014). Initially, a selected planning agent
i computes an action sequence 7 by calling a classical plan-
ner over a translation K (P, B(t), S;(¢)) that expresses a re-
laxation where agent ¢ is allowed to make a guess about the



true hidden state s§. This simplification does not make the
hidden state known to the planning agent but determines the
outcomes of all sensing actions which thus become deter-
ministic. If the planning agent i is “lucky”, the execution of
the (normalized) action sequence 7 will not reveal to agent ¢
that the choice is wrong. In such a case, the action sequence
can be applied fully, achieving K;G and hence the goal G.
On the other hand, if the execution of 7 reveals to agent
at time ¢ > t that s is not the true hidden initial state, then
s is removed from S;(¢'), and the process repeats with the
updated beliefs B(¢') and sets S;(¢’), possibly with a differ-
ent planning agent. One agent is selected as the planning
agent in each replanning episode. A fixed ordering among
the agents is also assumed so that if for the selected plan-
ning agent ¢, the classical problem K (P, B(t), S;(t)) has no
solution, the selected planning agent becomes the next agent
in the ordering. Notice that an action like sense[;j](X;¢) in
a plan computed by agent k represents information sharing
when k£ = ¢ and information request when k£ = j. Similarly,
a physical action a planned by agent ¢ and owned by agent j
represents a request from ¢ to j to do the action a.

Algorithm 1 Online planning and execution for problem P

1: Inputs: B(0), S(0), initial planning agent 4
2:t+0
3: loop
4:  Generate classical problem K (P, B(t), S;(t))
5:  Compute classical plan 7 from K (P, B(¢), S;(t))
6: Normalize 7 by removing auxiliary actions
7:  Execute 7 incrementally updating B(t) and S;(t)
til first ¢’ where K;G true or inconsistency detected
8: Agents j update S;(¢) til t = ¢’ with own observation
9: if K;G achieved then

10: exit

11:  else

12: t+t

13: Set new planning agent ¢
Properties

Before considering the translation in detail, we present the
basic properties which can also be understood as the require-
ments that the translation must fulfill. The translation in-
troduces auxiliary actions, such as assuming a hidden true
state and simulating the passive sensors. For an action se-
quence 7 obtained from the translation, the normalization
of 7, denoted as n(w), is the same sequence but with the
auxiliary actions removed. The notion of consistency results
from matching the observations assumed by the plan and the
actual observations gathered. The former follow from the
choice of the hidden state which is captured by an auxiliary
action assume(s) that must be unique and appear first in the
plan.

Definition 2 (Consistency) Let m be a prefix of a plan for
P’ = K(P,B(t),Si(t)). The normalized sequence n(m)
is consistent with the observations iff a) for any formula ¢
rendered observable by n(w) at time t’ from active or passive

sensing, B(t'), s = ¢ iff ¢ is observed to be true at time t/,
and assume(s) is the first action in w, and b) the physical
actions a in n(r) are all applicable in P (i.e., owners know
the preconditions).

The results below assume further that a physical action a
owned by agent j that is not applicable in the plan computed
by agent i # j from the translation, is replaced by a com-
munication; namely, the action sense[i](K; (Pre(a))). That
is, agent ¢ learns that the action is not applicable.

Theorem 2 (Soundness) a) If =« is plan for
K (P, B(t), S;(t)) that is consistent with the observations,
the execution of n(w) leads to the goal in P. b) Otherwise,
if ™ is the shortest prefix of ™ that is inconsistent and
includes the action assume(s), after the execution of n(rn’)
in P, s & S;(t') where t' is the resulting time step.

Theorem 3 (Completeness) If s = si € S;(t) is the true
hidden state in P and there is an action sequence that
achieves K;G for an agent i, then there is a plan 7 for
K(P,B(t),S:(t)) that starts with the action assume(s),
and any such plan is consistent.

These properties of the translation ensure that Algo-
rithm 1 is a sound and complete replanning algorithm for
P provided that no execution of P can reach a dead-end,
i.e., a situation from which no action sequence can lead to
K, G for any agent ¢:

Theorem 4 (Goal Achievement) If the executions in P
cannot reach a dead-end, Algorithm 1 will solve P after a
number of calls to the classical planner that is bounded by
|br| x |A|%, where by is the set of initial states in P and A is
the set of agents.

In the worst case, a protocol may have to iterate over all
the agents until finding an agent ¢ that can find a plan in
the translation for the goal K;G. The execution of that plan
ensures that the goal K;G is reached or that at least one state
s is removed from S;(t). The number of such removals is
bounded by |b7| x |A|.

The Translation

The language for the translation P’ = K(P, B(t), S;(t))
in Algorithm 1 is STRIPS extended with negation, con-
ditional effects, and axioms. The primitive fluents in P’
are used to represent the states v(s,t) and the collection
of states ;(s,t) that define the beliefs B(t). For encod-
ing the states v(s,t), P’ contains atoms L/s that express
that the objective literal L is true in the current state if s
is the initial state, while for encoding the sets r;(s,t), P’
contains fluents D;(s, s") that are true when s & r;(s,t).
P’ also features atoms T'(s) for representing that s is the
assumed true initial state, and atoms D;(s) for represent-
ing that s & S;(t). Formulas appearing in action precondi-
tions, goals, and sensing expressions in P are assumed to be
all literals or conjunctions of possibly epistemic literals L.
A positive epistemic literal is an objective literal preceded
by a sequence of epistemic operators possibly separated by
negations, like K,— KK .p. The axioms in the translation
are used to maintain the truth of epistemic literals. We de-
note the set of objective literals in P as Ly (P), the set of



positive epistemic literals in P as Ly (P), and the set of
positive epistemic literals L that are suffixes of literals in
Ly (P) as Lx(P). The literals ¢/t in the translation are
used to encode the truth of formulas ¢ in the assumed ini-
tial state; i.e., ¢/t iff ¢/s and T'(s). Such formulas ¢ are
the ones appearing in sensing and preconditions. The ac-
tions in K (P, B(t), S;(t)) comprise the physical actions in
P, the auxiliary actions assume(s) for guessing the initial
state, the action & for capturing the effects of passive sens-
ing, and the sensing actions sense[A](¢) in P. The action
assume(s) must appear first in any plan for some possible
s, excluding all other assume(s’) actions from being ap-
plied.

Definition 3 The classical problem with axioms
K(P,B(t),S.()) = (F,I'O',G',X') where « is
the planning agent and P = (A, F,I,O,N,S,G) is such
that:

o F" ={L/s: LeLp(P),s€br}U{T(s):s€br}U
{Di(s,s'):i€A,s,8'€br} U{Dqy(s): s€bs},

o I'"={L/s:L¢€Lp(P),secb(t),s=L}U{Dy(s):
s € brys & So(t)} UA{D,(s,s") : s,8 € br,s &
ri(s',t),i € A}

o G' = Nsep, (Da(s) VG/s)

o Axioms X':

- KZL/S WAS’EbI [L/S/ vV Di(s7s’)], KL € Lx(P) @]
Lx(P

= @/t iff Asev, [T(s) V ¢/s], ¢ in sensing and precon-
ditions

e Actions O':

— auxiliary actions assume(s), for s € by, with prec.
—D,(s) and effect T(s),

— physical actions a € O owned by j have
prec. K;(Pre(a))/t and effects =K ;(Pre(a))/s —
Di(s,s") AN Dy(8) for s,s" € by and C/s — E/s for
each s € by and effect C — E of a in P

— sensing actions sense|B](¢) € N with a ¢ B mapped
into same action without precs, and effects:

x &/sN—¢/s' — D;(s,s"),Di(s,s) for s,s" inbr and
1€ B,
— sensing actions sense|B](¢) € N with a € B mapped
into the same action, with effects

x @/sN—¢/s — Dy(s,s"),D;i(s',s) for s, s inbr and
1€ B, and

x O/t N—g/s = Dy(s),

x @/t Np/s — Dy(s), for s € by,

— auxiliary action & with effects

x ¢/s N —p/s — Di(s,s"),D;(s,s) for each pair of
states s,s' in by, psense|B(¢) in S, and i € B,

x T(S)NP/s N—¢/s — Dy(s), ifa € B, s,8" € by.

In the above translation we omit the auxiliary literals
used for specifying ordering of actions that force an action
assume(s) as the first action, and the action £ after each
other action. Also, while not covered in the above descrip-
tion, parallel sensing actions are also accommodated.

The translation is quadratic in the number of possible ini-
tial states |b;|, and hence exponential in the number of atoms
in the worst case. The same is true however for sound and
complete translations in the single-agent setting (Brafman
and Shani 2012a).

Protocols

We consider four protocols, each either identifying the next
planning agent or forcing information sharing.

In fixed agent, the initial planning agent remains so
throughout the execution until reaching the goal.

In last-agent, when the shortest inconsistent plan ends
with a sensing action sense[B](K;¢) or a physical action
owned by an agent j different than the planning agent, the
control is given to agent j.

Third is the volunteering protocol. When the shortest in-
consistent plan ends with a sensing action involving agent j
(e.g., sense[i](K;L)) and i is the planning agent, j “volun-
teers” information to ¢. This is achieved by selecting and
applying the most informative sensing action of the form
sense[i|(K;L"). The most informative sensing action is the
one that removes the largest number of states from the set of
states R that ¢+ may consider possible, according to j. For-
mally, R = {s|s € r;i(s',t) and s’ € S;(t)} is the set of
states ¢ may consider possible, from the perspective of j.
Then, for all possible sensing actions sense[:](K;L’'), we
define R(K ;L") = {s|s € R, B(t),s = K;L"iff B(t) |=
K;L'}, the set of states in R which agree with the truth value
of K;L'. The action with the smallest | R(K;L")| is chosen
as the most informative. Ties are broken randomly and no
sensing action is applied if there is no |R(K,;L")| < |R|.

The last protocol is the vol-mutex protocol. Similarly
to the volunteering protocol, when the shortest inconsis-
tent plan ends with a sensing action involving agent j (eg
sense[:](K;L)), and ¢ is the planning agent, j “volunteers”
information to 4. The difference is that instead of j volun-
teering the most informative information, he will volunteer
the information most relevant to L. We define this relevance
using sets of mutually exclusive (mutex) literals that are pre-
computed in low polynomial time: two literals L and L’ are
relevant if they are mutex. If the plan ended with a sensing
action sense(i|(K; L), where ¢ expected K; L to be true but
he actually sensed that it is false, and there exists a literal L'
relevant to L such that j knows L’, then the sensing (com-
municative) action sense[:](K;L’) is applied. If for all L’
relevant (mutex) to L we have that B(t) = K; L', then the
actions sense[i|(K;L’) are done in parallel, thus communi-
cating j-ignorance about such literals.

The difference between the volunteering and the vol-
mutex protocol is a subtle one. We can see that in the volun-
teering protocol the agent shares the knowledge which will
have possibly the biggest impact, yet it is possible that the
information is irrelevant to the asking agent. Imagine a prob-
lem where two balls are placed in a grid. Ball 1 has 20 pos-
sible positions while ball 2 only four, the four corners of the
grid. Imagine agent j knows the positions of both balls, and
i, who is the planning agent, has as goal to learn the posi-
tion of ball 2 only. Agent 7 may execute a plan where ball
2 is assumed to be in a specific corner of the grid, asking



then j to confirm. If the ball is in a different corner in the
true hidden state, 5 will reply negatively. The volunteering
protocol specifies that j will then announce the position of
ball 1, as this removes the largest number of states. The vol-
mutex protocol, on the other hand, will make agent j share
the position of the ball 2, that is more relevant to the question
even if it doesn’t convey as much information as measured
by the number of states that agent ¢ would no longer view as
possible.

From plans to dialogues

It is useful to display the trace left by the executions of plans
in this on-line, multiagent, epistemic setting, as dialogues.
For this, we follow some conventions:

e Acting: a physical action a with owner ¢ and precondi-
tions Pre(a) is translated into ”i: T apply a”.

e Requesting: a physical action a with owner j and precon-
ditions Pre(a) is translated into ”i: j, apply action a”, to
which a response will follow: ”j: I applied a” or ”j: 1
cannot apply a”, depending on whether K; Pre(a). If the
action has no preconditions, no response will follow since
it is known that the action can be applied.

e Providing: a sensing action sense[D](K;L) is translated
into “i: I tell all agents in D whether I know L”, and if
D = A — {i} then into "i: T do know L”, or "i: T do not
know L”, depending on the hidden true state.

o Asking: a sensing action sense[D](K,L), where i ¢ D,
is translated into 7i: j, tell all agents in D whether you
know L”, to which a response will follow ”j: I did tell all
agents in D”. If ¢ € D, the response depends on the view
of the plan we have: if we present it from the point of view
of the planning agent, the response will be ”’j: I do (not)
know L”, otherwise it would be ”j: 1 did tell all agents in
D”. If D = A — {;j}, then the the question would be ”j:
do you know L?”, while the response will be ’j: Yes, I do
know L’ or ’j: I do not know L”.

A more natural mapping is possible, given the names of
the actions. For example, if we have sense[:](/; L), where
L represents the fact that j sees the red ball, and ¢ is the
planning agent, then the action can be translated as “: 7, tell
me that you see the red ball”.

Examples and Experimental results

We present the dialogue traces for three problems, using
various protocols. We obtained the results using the on-
line replanning algorithm shown, and the FD planner as the
classical planner (Helmert 2006), over a Linux machine at
2.93GHz with 4GB of RAM. In our implementation, each
planning phase is a different call to FD, with the correspond-
ing PDDL files. We present experimental results as tuples
(S, T, R) next to each problem and protocol used. In these
tuples, S stands for the average search time , T is the average
total time, and R is the average number of replans. Search
(total) time is the average search (total) time for each plan-
ning phase, while the average number of replans is taken by
running the experiments over each possible initial state as

the true initial state. An asterisk ‘*’ next to an action indi-
cates that a replanning phase occurred after the action, and
we report when a change of planning agent or a volunteer-
ing occurred. Due to space, we collapse actions when the
execution is clear. For example, a “j, move right twice. Do
you see [?” indicates two consecutive physical actions and a
sensing action, all relating to j.

Meeting Problem

We have two agents (a, b) and a ring-shaped grid of size six
(p1, .., ps)- Within the grid there are three landmarks (I, g, 7),
each one positioned in either po, p4 or pg, and no two land-
marks can be in the same position. The agents do not know
the actual position of the landmarks. It is commonly known
that a is initially positioned in either p; or p,, while b in one
of p2, ps and pg. An agent can see a landmark only if they
are in the same position. The goal is for agent a to know that
both agents are in p;.

Each agent has a physical action “move-clockwise” and
“move-anticlockwise”, three sensors for seeing a landmark,
and three actions for communicating if he is in the same
position with one of the landmarks. We introduce auxiliary
derived atoms i@ L with definition \/we{2’476} 1Qp,. A LQp,,
where i the agent, L one of the landmarks and i@p,, that i
is in position p,. Agents can sense their respective auxiliary
derived atoms.

We have in total 4 physical actions: “move-clockwise(z)”
with conditional effects iQps — —i@pg A @p; and
iQp, — —iQp, A iQp,q for z € {1..5}, and “move-
anticlockwise(z)” with conditional effects {@Qp; — —i@p; A
iQ@Qpg and iQp, — —iQp, A i@Qp,_, forz € {2..6} and i €
{a,b}. There are 6 sensors psense[i](iQL), for i € {a,b}
and 6 sensing actions, sense[a|(K,bQL), sense[b](K,aQL,
for L € {l,r,q}, representing what the agent sees in the
position he is at and what he communicates. The num-
ber of possible initial states are 36: 6 possible states due
to the initial unknown positioning of landmarks, 2 possi-
ble states due to the uncertainty of a’s position, and 3 pos-
sible states concerning b’s positioning (6 * 2 * 3). Goal
G = K,aQp, N K,bQp;.

The following executions assume a hidden true state
where « is positioned at p;, b is positioned at p4, and the
position of the landmarks is: r@Qps, ¢@p, and [@pg.

Fixed-agent protocol. Experiments: (0.3s,1.9s,2.1).

twice. Do you not see [?
6. B: No, Idoseel.”
7. A: 1 move anticlockwise. 1
move clockwise.
8. A: B, move clockwise.

. A: B,doyousee l?

. B: No, I do not see [.*

. A: B, do you not see ¢q?

. B: No, I dosee q.”

. A: B, move clockwise

O N B

In order for a to achieve the goal he needs to learn the
position of b in terms of landmarks and the position of
the landmarks on the grid. After the first two questions, a
knows b sees ¢q. He then moves b to a different location and
a learns that b sees [. Up to this point, a knows that he is in
p1 since he sees no landmark, has learned that [ is clockwise
next to g and that b is now at the same position with [.



Then, a moves to po, and by seeing r learns the actual po-
sitions of the landmarks, and, subsequently, the position of b.

Last-agent protocol. Experiments: (0.3s,1.9s, 3.3).

1. A: B, do yousee [? 9. A: B, move clockwise
2. B: No, I do not see 1.* twice. Do you not see [?
3. B: A, do you see ¢? 10. B: No, I do see I.*

4. A: No, Ido not see ¢.” 11. B: A, do you see [?

5. A: B, do you not see ¢? 12. A:No, I donotseel.”

6. B: No, Ido see ¢.” 13. A: I move anticlockwise. I
7. B: A, do you see r? move clockwise. B, move
8. A:No, Ido not see r.* clockwise.

In the above execution, we see that both agents, when
they are the planning agent, try first to reduce their uncer-
tainty. We have a constant exchange of information, up to
the point where a happens to become the planning agent
while he knows the hidden true state. If a was at pq, his
last response would have made his position known to b, as
well as the fact that he knows b’s position as well, allowing
b to achieve the goal K, K,a@p; A Ky K,bQp;.

Vol-mutex protocol. Experiments: (0.3s,1.9s,1.7).

1. A: B, do you see {?

2. B: No, I do not see [. 5. B:No, Idoseel.”

3. B: 1do see q." (volunteer- 6. A: I move anticlockwise. I
ing) move clockwise. B, move

4. A: B, move clockwise clockwise.

twice. Do you not see [?

Literals bQgq, b@r and QI are mutexes: since b can be in
only one position, he can see only one landmark. When he is
asked about [ and he responds negatively, he volunteers the
information of what he actually sees, saving a from asking
another question.

A general strategy for solving the problem would be for
a to move to a position with a landmark, asking b if he sees
the same landmark, and if he does not, move him to another
position and ask him again the same question. Such a policy
is good since it takes into account the issue that replans may
be needed. Though such a plan is possible to be found by
our approach, the fact that a state is assumed as true in every
planning phase leads to optimistic plans, in terms of that
assumption. Imagine a assuming a state where he is right
next to landmark [/ and b is in the same position as [. From
a’s point of view, the plan where he asks first b if he sees
| and then a moves left and sees [ himself, is the same as
first moving to [ and then asking b. Yet, the second plan is
better considering the possibility of replanning since he at
least knows the position of one landmark, while in the first
he only learns where b isn’t.

Situated dialogue

In this problem, we have a table of size 6x6 (with the (0, 0)
coordinates on the top left), six objects (Q, W, E, R, T,Y)
placed on it in different positions, and two agents a and b.
Each agent can see only part of the table: a can see the entire
table except of five positions which are hidden to him, and
it is known that object () is placed in one of these positions.

Figure 1: Situated dialog example: on the left we see what agent
a knows, in the middle what b knows and on the right the hidden,
true state. Covered positions on the table indicate the positions that
the respective agent cannot see.

Similarly, there are five, different that a’s, positions which
are hidden for agent b, and it is known that object W is in
one of them. In other words, it is known that each agent can
see 5 out of 6 objects and the the positions of four of them
(E, R,T,Y) are known to both, leading to 25 possible initial
states (5 for the position of W and 5 for the position of Q).

Objects E, R,T and Y can be moved in four directions
by b, and agents can communicate only spatial relation-
ships: they cannot communicate the position of the objects
W and () but they can communicate whether that object is
on left/right/over/under another object. The goal is for a to
know the position of @) and for agent b to know the position
of W.

We have four physical actions for each of the four ob-
jects, "move-object-X-right/left/up/down”, each with condi-
tionals effect X@Qp, , - =X Qp, , A XQp, v, for X €
{E,R,T,Y}, and for all positions p, , to a new position
Dq .y » depending on which direction the object is move.

Agent a can communicate whether object W is on
the left/right/over/under of one of the F, R, T, and Y,
and agent b similarly, for object (). This means that
we have in total 32 sensing actions: 16 sensing ac-
tions of @ communicating sense[b](K,WrZ), and 16 sens-
ing actions for b: sense[b](KQrZ), both with r €
{right,left, over,under} and Z € {E, R, T,Y}. Literals
XrZ are derived literals with definitions indicating whether
the spatial relationship between X and Z holds. As an ex-
ample, WoverFE is derived by a DNF formula with terms
WQ@p, , AN EQp, 11, where x, y are the five possible initial
positions of W (since W cannot be moved there is no reason
to define the derived literal over all possible positions of the
grid).

The goal is written as G = (K,QQpg 3 V K,QQp; 4 V
K,QQps 3 vV K,QQpy 1 V K,QQpyo) A (KpyWQpy g V
KyW@p, 3V KyWQps o V K,WQps 4V K,WQpy 1).

The true hidden initial state for the executions below is
shown in Figure 1.

Fixed agent protocol. Experiments: (0.92s,2.86s,2.1).

A: B, do you know Q@ is left of £?

B: No, I do not know.*

A: B, do you know Q@ is left of Y?

B: No, I do not know.*

A: B, do you know @ is under of Y'?

B: No, I do not know.*

A: B, move E down. Do you know @ is under £?

B: Yes, I do know.

A: B, move R right. Move R up. I do know W over R.



Initially, agent « tries to find out the position of (), learn-
ing that ) does not have a spatial relationship with any ob-
ject. Object E is then moved next to the remaining possible
positions of (), creating the necessary relationships. When
a learns the position of (), object R is moved to allow a to
communicate his knowledge of the position of .

Volunteering protocol. Experiments: (1.1s,2.9s,1.4).

: B, do you know Q) is left of E?

: No, I do not know @ is left of F.

: I do not know Q under Y.* (volunteering)

: B, do you know Q) is left of Y'?

: No, I do not know Q) is left of Y.*

: B, move E down. B, do you know @ is under £?

: Yes, I do know Q is under F.

: B, move Rright. B, move R up. I do know W is over R.

sEPEPEE

After the first question of a, to which b replies negatively,
b volunteers that he also does not know that @) is under Y.
If Q had a spatial relationship with another object, b would
choose to volunteer that relationship, after which a would
know the hidden true state and with one planning phase
achieve the goal. Since there is no such relationship, vol-
unteering that () does not have a spatial relationship with an
object removes 5 states from the set of possible initial states.

The Lights problem

In this problem there are four lights ({1, l2, 3, l4) and three
agents (a,b,c). Initially it is known that at least one of
the lights is on. No agent can see the lights themselves,
but agent b can sense whether at least one of the lights
Iy and Iy are on ((I; V l3)). Similarly, agent ¢ can sense
(I3 V ly), while a cannot sense anything about the physical
world. Additional to these two passive sensors, there are
ten sensing actions: sense[b](K. (I3 V l4), sense[a] (K3 (1),
sense[a](K;(l2), sense[a](KpK L), sense[a|(K,—K.L),
sense[a] (K, K.—L), and sense[a|(K,—K.~L), with L €
{l3,14}. Simply, ¢ can communicate his knowledge about
what he senses only to b, and b can communicate to a his
knowledge about the lights he can sense and his knowledge
about the knowledge of ¢ concerning /3 and l4. Lastly, there
are four physical actions “toggle(L)”, for L € {l1,1l2,13,14},
that toggle light L: turn it on if it was off, and off if it was
on, whose owner is a. The goal is for a to know that all
lights are on: K,l1 A Kylo A Kgls A Kyly.

The true hidden initial state for the execution is the one
where only /5 and [4 are on. In the execution we show the
actual response of b since a is the planning agent.

Fixed agent protocol. Experiments: (0.8s,1.5s, 3.2).

: B, tell me, do you know that C' does not know that 4 is off?

: No, I do not know.*

: C, tell B whether you know I3 V l4.

: I told B.

: B, tell me, do you know that C knows that l4 is off?

: No, I do not know that.*

: I toggle the second light. B, tell me, do you know /; is on?

: No, I do not know it.*

: I toggle the first, the second and the third light. C, tell B
whether you know I3 V l4.

10. C:Itold B.

11. A: B, tell me, do you not know that C' knows that 4 is on?

O 0T U AW —
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12. B: Yes, I do.

13. A:Itoggle the fourth light. C, tell B whether you know I3 V I4.
14. C:1told B.

15. A: B, tell me, do you know that C' knows that [3 is on?

16. B: Yes, I do know that.

17. A:1toggle the fourth light.

Agent b’s first response allows a to derive that [; V lg is
true. Otherwise, b would know I3 V l4 is true (at least one of
l;; must be initially on) and since ¢ can sense I3V l4, b would
also know that ¢ could not know [, was off. After c tells b
what he sensed (4), b knows that ¢ knows either both I3 and
l4 to be off, or that at least one is on. Since b does not know
that ¢ knows 4 is off, a is able to derive that I3 V 4 is true.
Toggling [y at step 7, while I} V l5 is true, creates a situation
where either both are off or /; is definitely on. The response
of b allows a to derive both are off, and turning them on at
step 9. Similarly, for achieving I3 A l4.

Related Work

In recent years, there has been a growing interest in mul-
tiagent epistemic planning with a number of works placing
emphasis on different aspects of the problem. Some place
the focus on expressivity and modeling (Baral et al. 2012;
Cooper et al. 2016), others in distributed computation and
coordination (Engesser et al. 2015), while the most closely
related approaches focus on computational issues and the
use of classical planners (Brenner 2010; Brafman, Shani,
and Zilberstein 2013). The works most relevant to ours are
(Muise et al. 2015) and (Cooper et al. 2016). A key dif-
ference to our approach is they can only represent beliefs
about literals, not about arbitrary formulas. This is how they
manage to reason about nested beliefs without using explicit
or implicit Kripke structures. The complexity of planning
in dynamic epistemic logic and restricted versions of it are
studied in (Aucher and Bolander 2013; Charrier, Bastien,
and Schwarzentruber 2016; Lowe, Pacuit, and Witzel 2011;
Bolander, Jensen, and Schwarzentruber 2015).

Conclusion

We have extended the belief tracking formulation of Komi-
nis and Geffner to the on-line setting where plans are sup-
posed to work for the true hidden state as revealed by the
observations, and have developed an alternative translation
into classical planning for selecting actions within a replan-
ning architecture. Planning is done from the perspective of
the agents themselves that have beliefs about the world and
nested beliefs about each other. As in the single-agent set-
ting, the replanning approach ensures that goals are reached
in a bounded number of episodes provided that dead-ends
are not reached. We have shown that interesting agent di-
alogues can arise in the proposed setting where agents col-
laborate by requesting or volunteering information in a goal-
directed manner. The account, however, is restricted to pub-
lic actions only, and even with this restriction, the compu-
tational approach is not yet scalable, as only problems with
tens of possible initial states can be handled in this way. One
way for scaling up further is by adapting the techniques that
have been used to improve scalability in the single-agent set-
ting.
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