An Algorithm better than AO*?

Blai Bonet
Universidad Simén Bolivar
Caracas, Venezuela

Héctor Geffner
ICREA and Universitat Pompeu Fabra
Barcelona, Spain

7/2005

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05

Motivation

e Heuristic Search methods can be efficient but lack common foundation: IDA¥*,
AO*, Alpha-Beta, ...

e Dynamic Programming methods such as Value Iteration are general but not
as efficient

e Question: can we the get the best of both; i.e., generality and efficiency?

e Answer is yes, combining their key ideas:

Admissible Heuristics (Lower Bounds)
Learning (Value Updates as in LRTA*, RTDP, etc)

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 2

What does proposed integration give us?

An algorithm schema, called LDFS, that is simple, general, and efficient:

e simple because it can be expressed in a few lines of code; indeed
LDFS = Depth First Search + Learning

e general because it handles many models: OR Graphs (IDA*), AND/OR Graphs
(AO*), Game Trees (Alpha-Beta), MDPs, etc.

e efficient because it reduces to state-of-the-art algorithms in many of these
models, while in others, yields new competitive algorithms; e.g.

IDA* + TT for OR-Graphs

LDFS = { MTD(—) for Game Trees

We also show that LDFS better than AO* over Max AND/OR Graphs . . .

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 3

What does proposed integration give us? (cont’d)

e Like LRTA*, RTDP, and LAO*, LDFS combines lower bounds with learning,
but motivation and goals are slightly different

e By accounting for and generalizing existing algorithms, we aim to uncover the
three key computational ideas that underlie them all so that nothing else

is left out. These ideas are:

Depth First Search
Lower Bounds
Learning

e It is also useful to know that, say, new MDP algorithm, reduces to well-known
and tested algorithms when applied OR-Graphs or Game Trees

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05

Models

a discrete and finite states space S,

an initial state sqg € .5,

a non-empty set of terminal states S C §,

actions A(s) C A applicable in each non-terminal state,

a function that maps states and actions into sets of states F'(a,s) C 5,

action costs c(a, s) for non-terminal states s, and

N o oA W N e

. terminal costs cp(s) for terminal states.

e DETERMINISTIC: |F'(a,s)| =1,
e NON-DETERMINISTIC: |F'(a,s)| > 1,

e MDPs: probabilities P,(s’|s) for s’ € F'(s,a) that add upto 1. ..

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05

Solutions

(Optimal) Solutions can all be expressed in terms of value function V' satisfying
Bellman equation:

V(s) = cr(s) if s is terminal
°) = min, e 4(s) Qv (a,s) otherwise

where Qv (a, s) stands for the cost-to-go value defined as:

cla,s)+V(s), s’ € F(a,s) for OR GRAPHS
c(a,s) + maxyecp(q,s) V() for MAX AND/OR GRAPHS
c(a,8) + X ger(as V() for ADD AND/OR GRAPHS
c(a,8) + D ger(as Fals|s)V(s') for MDPs

MaXgy/ e p(q,s) V () for GAME TREES

A policy (solution) m maps states into actions, must be closed around sy, and is
optimal if 7(s) = argmin,¢ 45)Qv (a, s) for V satisfying Bellman

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 6

Value lteration (VI): A general solution method

1. Start with arbitrary cost function V
2. Repeat until residual over all s is 0 (i.e., LHS = RHS)

Update V(s) := min,c(5)Qv(a,s) for all s
3. Return my(s) = argmin,c 45 Qv(a, s)

e Vlis simple and general (models encoded in form of Q)y/), but also exhaustive
(considers all states) and affected by dead-ends (V*(s) = o)

e Both problems solvable using initial state s; and lower bound V' . ..

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 7

Find-and-Revise: Selective VI Schema

Assume V' admissible (V' < V™) and monotonic (V (s) < mingcas) Qv (a, s))
Define s inconsistent if V' (s) < mingcas) Qv (a, s))

1. Start with a lower bound V
2. Repeat until no more states found in a.

a. Find inconsistent s reachable from sy and 7y
b. Update V(s) to min,eca(s) Qv(a,s)
3. Return my(s) = argmin,c 45 Qv(a, s)

e Find-and-Revise yields optimal 7 in at most > | V*(s) —V(s) iterations (provided
integer costs and no probabilities)

e Proposed LDFS = Find-and-Revise with:

— Find = DFS that backtracks on inconsistent states that

— Updates states on backtracks, and
— Labels as Solved states s with no inconsistencies beneath

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05

Learning in Depth-First Search (LDFS)

LDFS-DRIVER(5s())

begin

repeat solved := LDFS(s() until solved
return (V,)

end
LDFS(s)
begin
if s is solved or terminal then
L if s is terminal then V (s) := cp(s)
Mark s as SOLVED
return true
flag := false
foreach a € A(s) do
if Qv (a,s) > V(s) then continue
flag := true
foreach s’ € F(a, s) do
L flag :=1ors(s’) & [Qy/(a, s) < V(s)]
if = flag then break
if flag then break
if flag then
w(s) :=a
Mark s as SOLVED
else
L Vis) := minaeA(s) Qy(a,s)
return flag
end

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05

Properties of LDFS and Bounded LDFS
LDFS computes 7* for all models if V' admissible (i.e. V < V*)

e For OR-Graphs and monotone V,

LDFS = IDA* + TRANSPOSITION TABLES
e For Game Trees and V = —o0,
BOUNDED LDFS = MTD(—00)
e For Additive models,
LDFS = BOUNDED LDFS

e For Max models,
LDFS # BOUNDED LDFS

LDFS (like VI, AO*, min-max LRTA*, etc) computes optimal solutions graphs where
each node is an optimal solution subgraph; over Max Models, this isn't needed.

Bounded LDFS fixed this, enforcing consistency only where needed

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 10

Empirical Evaluation: Algorithms, Heuristics, Domains

e Algorithms: vi, AO™*/CFC,..,*, min-max LRTA®, LDFS, BOUNDED LDFS
e Heuristics: h = 0 and two domain-independent heuristics A1 and ho

e Domains
— Coins: Find counterfeit coin among N coins; N = 10, 20, ..., 60.
— Diagnosis: Find true state of system among M states with N binary tests: In one case,
N = 10 and M in {10, 20, ...,60}, in second, M = 60 and N in {10,12,...,28}.
— Rules: Derivation of atoms in acyclic rule systems with N atoms, and at most R rules per
atom and M atoms per rule body ... R = M = 50 and N in {5000, 10000, . .., 20000}.
— MTS: Predator must catch a prey that moves non-deterministically to a non-blocked adjacent
cell in a given random maze of size N X N; N = 15,20,...,40 ...
problem |S]| V* | Nyi | A || B
coins-10 43 3 2 172 3 9
coins-60 1,018 5 2 315K 3 12
mts-5 625 17 14 4 4 156
mts-35 1, 5M 573 322 4 4 220K
mts-40 2,5M | 684 - 4 4 | 304K
diag-60-10 29,738 6) 8 10 2 119
diag-60-28 > 15M 6 - 28 2 119
rules-5000 5,000 156 158 50 50 4917
rules-20000 20,000 592 594 50 50 19,889

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 11

Empirical

coins/h=0

1000

time in seconds

T T
LDFS/B-LDFS .
AO* /| LRTA*

VI

Value Iteration

0.001
0

10 20 30 40 50 60 70
number of coins

mts/h=0

1000

100 F

0.1F

time in seconds

0.001 F

0.0001
0

size of maze

rules systems / max rules = 50, max body = 50 / h = zero

time in seconds

10 |

VI/LDFS/B-LDFS

Value Iteration
LDFS -

Mln—Ma>§ LRTA* -

An Algorithm Better than AO*? B. Bonet and H. Geffner;

1
10000 15000 25000

number of atoms

20000

Evaluation:

coins / h = h1(#vil2)

Results (1

coins / h = h2(#vil2)

1000 T 1000 T T
LDFS/B-LDFS
Vi)
100 + 4 g .
100 | k!
10 | El
10 ¢ E
1k g AO* <
® LRTA*
0.1 El 1r k!
001F S w T e E
LDFS / B-LDFS 01t 3
0.001 ¢ Value Iteration 1 Value Iteration
LDFS 0.01 F LDF: Bl
0.0001 | Bounded LDFS E Bounded LDFS
AO* AO*
Min-Max LRTA* -~ Min-Max LRTA* -~
1le-05 5 2 0.001 5 2
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
number of coins number of coins
mts / h = h1(#vil2) mts / h = h2(#vil2)
1000 T 1000 T
100 ¢
10
1Lk
0.1 F
0.01
0.001 ¢) Value Iteration Value lteration
X LDFS X LDFS
0.0001 ¢ * Bounded LDFS El 0.0001 ¢ ¥ Bounded LDFS El
AO*/CFC AO*/CFC
Min-Max LRTA* - Min-Max LRTA* -
1le-05 L L 1e-05 I N
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
size of maze size of maze
rules systems / max rules = 50, max body = 50 / h = h1(#vi/2) rules systems / max rules = 50, max body = 50 / h = h2(#vi/2)
T T T T T T T T
\ \
100 | -8 AO* k| 100 | & k|
e
LDFS/B-LDFS
_..——* LDFS/B-LDFS
..m LRTA*
*
10 £ J 0L e LRTAS
Value Iteration Value Iteration
LDFS LDFS
= Bounded LDFS - Bounded LDFS
AO* AO*
)) Mln—Ma‘x LRTA* -)) Mln—Ma; LRTA* -
5000 10000 15000 20000 25000 5000 10000 15000 20000 25000

number of atoms

7/05

number of atoms

12

Empirical Evaluation: Results (2)

diagnosis / #tests =10/ h =0 diagnosis / #tests = 10 / h = h1(#vi/2) diagnosis / #tests = 10 / h = h2(#vi/2)
100 1 T T 10 T T
10} e — o1k W E 1h E
8
c 1t Bl 0.01 | bl 0.1 bl
8 -8
@ -
& &
£ N = - i%LDFS
g 01t 1 0.001 b AO* . 1 0.01 i 1
= PR E ---*B-LDFS
AT e e LRTATe Value lterati Value leraton
L alue Iteration i L alue Iteration i L alue Iteration i
0.01 L DFS - 0.0001 ¥ LDFS 0.001 LDFS
Bounded LDFS - = LDFS / B-LDFS Bounded LDFS ¥ Bounded LDFS
¥ - AO* S AO*
B-LDFS Min-Max LRTA* - Min-Max LRTA* - I Min-Max LRTA* -
0.001 ! . 1e-05 . . . ! . 0.0001 ! . . . ! .
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
number of states number of states number of states
diagnosis / #states =60 /h =0 diagnosis / #states = 60 / h = h1(#vi/2) diagnosis / #states = 60 / h = h2(#vil2)
1000 T 1000 T T 1000 T T
100 F E]
100 b
10 | El
3 4
c 10 |
8 1rw bi
[
3 B 4
£ - 01
o LF 3
E ']
= AO* 4
001 F g ® j
01k Value Iteration ..a LRTA* Value Iteration ——— Value lteration ——
. LDFS - LDFS LDFS 4
¥ Bounded LDFS ----- 0.001 ————x LDFS/B-LDFS Bounded LDFS 1 Bounded LDFS
AO* . ‘ ; AO*
Min-Max LRTA* - Min-Max LRTA* - : i : Min-Max LRTA* -~
0.01 L . . L 0.0001 L L L L 0.001 L - L . .
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
number of tests number of tests number of tests

Runtimes are roughly BOUNDED LDFS< LDFS< LRTA*< AO™< VI, except in RULES
where LRTA™ is best.

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 13

Conclusions
e Unified computational framework, that is simple, general, and efficient
LDFS = Depth First Search + Learning
e Reduces to state-of-the-art algorithms in some models (OR Graphs and GTs)

e Yields new competitive algorithms in others (e.g., AND/OR Graphs)

e Shows that ideas underlying a wide range of algorithms reduce to:

Depth First Search
Lower Bounds
Learning

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05

14

