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Motivation

e Heuristic Search methods can be efficient but lack common foundation: IDA¥*,
AO*, Alpha-Beta, ...

e Dynamic Programming methods such as Value Iteration are general but not
as efficient

e Question: can we the get the best of both; i.e., generality and efficiency?

e Answer is yes, combining their key ideas:

Admissible Heuristics (Lower Bounds)
Learning (Value Updates as in LRTA*, RTDP, etc)
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What does proposed integration give us?

An algorithm schema, called LDFS, that is simple, general, and efficient:

e simple because it can be expressed in a few lines of code; indeed
LDFS = Depth First Search + Learning

e general because it handles many models: OR Graphs (IDA*), AND/OR Graphs
(AO*), Game Trees (Alpha-Beta), MDPs, etc.

e efficient because it reduces to state-of-the-art algorithms in many of these
models, while in others, yields new competitive algorithms; e.g.

IDA* + TT for OR-Graphs

LDFS = { MTD(—) for Game Trees

We also show that LDFS better than AO* over Max AND/OR Graphs . . .
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What does proposed integration give us? (cont’d)

e Like LRTA*, RTDP, and LAO*, LDFS combines lower bounds with learning,
but motivation and goals are slightly different

e By accounting for and generalizing existing algorithms, we aim to uncover the
three key computational ideas that underlie them all so that nothing else

is left out. These ideas are:

Depth First Search
Lower Bounds
Learning

e It is also useful to know that, say, new MDP algorithm, reduces to well-known
and tested algorithms when applied OR-Graphs or Game Trees
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Models

a discrete and finite states space S,

an initial state sqg € .5,

a non-empty set of terminal states S C §,

actions A(s) C A applicable in each non-terminal state,

a function that maps states and actions into sets of states F'(a,s) C 5,

action costs c(a, s) for non-terminal states s, and

N o oA W N e

. terminal costs cp(s) for terminal states.

e DETERMINISTIC: |F'(a,s)| =1,
e NON-DETERMINISTIC: |F'(a,s)| > 1,

e MDPs: probabilities P,(s’|s) for s’ € F'(s,a) that add upto 1. ..
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Solutions

(Optimal) Solutions can all be expressed in terms of value function V' satisfying
Bellman equation:

V(s) = cr(s) if s is terminal
°) = min, e 4(s) Qv (a,s) otherwise

where Qv (a, s) stands for the cost-to-go value defined as:

cla,s)+V(s), s’ € F(a,s) for OR GRAPHS
c(a,s) + maxyecp(q,s) V() for MAX AND/OR GRAPHS
c(a,8) + X ger(as V() for ADD AND/OR GRAPHS
c(a,8) + D ger(as Fals|s)V(s')  for MDPs

MaXgy/ e p(q,s) V () for GAME TREES

A policy (solution) m maps states into actions, must be closed around sy, and is
optimal if 7(s) = argmin,¢ 45)Qv (a, s) for V satisfying Bellman
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Value lteration (VI): A general solution method

1. Start with arbitrary cost function V
2. Repeat until residual over all s is 0 (i.e., LHS = RHS)

Update V(s) := min,c(5)Qv(a,s) for all s
3. Return my(s) = argmin,c 45 Qv(a, s)

e Vlis simple and general (models encoded in form of Q)y/), but also exhaustive
(considers all states) and affected by dead-ends (V*(s) = o)

e Both problems solvable using initial state s; and lower bound V' . ..
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Find-and-Revise: Selective VI Schema

Assume V' admissible (V' < V™) and monotonic (V (s) < mingcas) Qv (a, s))
Define s inconsistent if V' (s) < mingcas) Qv (a, s))

1. Start with a lower bound V
2. Repeat until no more states found in a.

a. Find inconsistent s reachable from sy and 7y
b. Update V(s) to min,eca(s) Qv(a,s)
3. Return my(s) = argmin,c 45 Qv(a, s)

e Find-and-Revise yields optimal 7 in at most > | V*(s) —V(s) iterations (provided
integer costs and no probabilities)

e Proposed LDFS = Find-and-Revise with:

— Find = DFS that backtracks on inconsistent states that

— Updates states on backtracks, and
— Labels as Solved states s with no inconsistencies beneath
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Learning in Depth-First Search (LDFS)

LDFS-DRIVER(5s())

begin

repeat solved := LDFS(s() until solved
return (V, )

end
LDFS(s)
begin
if s is solved or terminal then
L if s is terminal then V (s) := cp(s)
Mark s as SOLVED
return true
flag := false
foreach a € A(s) do
if Qv (a,s) > V(s) then continue
flag := true
foreach s’ € F(a, s) do
L flag :=1ors(s’) & [Qy/(a, s) < V(s)]
if = flag then break
if flag then break
if flag then
w(s) :=a
Mark s as SOLVED
else
L Vis) := minaeA(s) Qy(a,s)
return flag
end
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Properties of LDFS and Bounded LDFS
LDFS computes 7* for all models if V' admissible (i.e. V < V*)

e For OR-Graphs and monotone V,

LDFS = IDA* + TRANSPOSITION TABLES
e For Game Trees and V = —o0,
BOUNDED LDFS = MTD(—00)
e For Additive models,
LDFS = BOUNDED LDFS

e For Max models,
LDFS # BOUNDED LDFS

LDFS (like VI, AO*, min-max LRTA*, etc) computes optimal solutions graphs where
each node is an optimal solution subgraph; over Max Models, this isn't needed.

Bounded LDFS fixed this, enforcing consistency only where needed
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Empirical Evaluation: Algorithms, Heuristics, Domains

e Algorithms: vi, AO™*/CFC,..,*, min-max LRTA®, LDFS, BOUNDED LDFS
e Heuristics: h = 0 and two domain-independent heuristics A1 and ho

e Domains
— Coins: Find counterfeit coin among N coins; N = 10, 20, ..., 60.
— Diagnosis: Find true state of system among M states with N binary tests: In one case,
N = 10 and M in {10, 20, ...,60}, in second, M = 60 and N in {10,12,...,28}.
— Rules: Derivation of atoms in acyclic rule systems with N atoms, and at most R rules per
atom and M atoms per rule body ... R = M = 50 and N in {5000, 10000, . .., 20000}.
— MTS: Predator must catch a prey that moves non-deterministically to a non-blocked adjacent
cell in a given random maze of size N X N; N = 15,20,...,40 ...
problem |S]| V* | Nyi | A || B
coins-10 43 3 2 172 3 9
coins-60 1,018 5 2 315K 3 12
mts-5 625 17 14 4 4 156
mts-35 1, 5M 573 322 4 4 220K
mts-40 2,5M | 684 - 4 4 | 304K
diag-60-10 29,738 6) 8 10 2 119
diag-60-28 > 15M 6 - 28 2 119
rules-5000 5,000 156 158 50 50 4917
rules-20000 20,000 592 594 50 50 19,889

An Algorithm Better than AO*? B. Bonet and H. Geffner; 7/05 11



Empirical
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Evaluation:
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Results (1
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Empirical Evaluation: Results (2)
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Runtimes are roughly BOUNDED LDFS< LDFS< LRTA*< AO™< VI, except in RULES
where LRTA™ is best.
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Conclusions
e Unified computational framework, that is simple, general, and efficient
LDFS = Depth First Search + Learning
e Reduces to state-of-the-art algorithms in some models (OR Graphs and GTs)

e Yields new competitive algorithms in others (e.g., AND/OR Graphs)

e Shows that ideas underlying a wide range of algorithms reduce to:

Depth First Search
Lower Bounds
Learning
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