Fast and Informed Action Selection
for Planning with Sensing

Alexandre Albore!, Héctor Palacios!, and Hector Geffner?

! Universitat Pompeu Fabra
Passeig de Circumvalaci6 8
08003 Barcelona Spain
2 ICREA & Universitat Pompeu Fabra
Passeig de Circumvalaci6 8
08003 Barcelona Spain

Abstract. Consider a robot whose task is to pick up some colored balls
from a grid, taking the red balls to a red spot, the blue balls to a blue
spot and so on, one by one, without knowing either the location or color
of the balls but having a sensor that can find out both when a ball is
near. This problem is simple and can be solved by a domain-independent
contingent planner in principle, but in practice this is not possible: the
size of any valid plan constructed by a contingent planner is exponential
in the number of observations which in these problems is very large. This
doesn’t mean that planning techniques are of no use for these problems
but that building or verifying complete contingent plans is not feasible in
general. In this work, we develop a domain-independent action selection
mechanism that does not build full contingent plans but just chooses the
action to do next in a closed-loop fashion. For this to work, however,
the mechanism must be both fast and informed. We take advantage of
recent ideas that allow delete and precondition-free contingent problems
to be converted into conformant problems, and conformant problems
into classical ones, for mapping the action selection problem in contin-
gent planning into an action selection problem in classical planning that
takes sensing actions into account. The formulation is tested over stan-
dard contingent planning benchmarks and problems that require plans
of exponential size.

1 Introduction

Contingent planning is concerned with the problem of achieving goals in the
presence of incomplete information and sensing actions [1,2]. This is one of the
most general problems considered in the area of planning and one of the hardest
[3,4]. In the last few years, significant progress has been achieved resulting in
a variety of contingent planners that can solve large and non-trivial problems,
usually by casting the contingent planning problem as an AND/OR search over
belief space [5] guided by effective heuristics and belief representations [6,7,8].
In spite of this progress, however, a large obstacle remains: there are many
problems involving incomplete information and sensing actions whose solutions

have exponential size. Thus constructing or even verifying plans for such prob-
lems would take exponential time. This situation is different than in classical
or conformant planning where exponential length solutions are the exception.
Contingent plans of exponential size follow naturally from situations where the
number of observations that needs to be done is linear in the size of the problem.?

The goal of this work is to use domain-independent planning techniques
for dealing with such problems. However, rather than aiming at constructing
full contingent plans, we aim at an effective action selection mechanism that
chooses the action to do next in a closed-loop fashion. For this, we will move
to the ‘knowledge-level’ [9], represent sensing actions as normal deterministic
actions and map the action selection problem in planning with sensing into an
action selection problem in classical planning, a problem that has good and well
known solutions.

We take advantage of two recent ideas: the reduction of contingent plan-
ning into conformant planning that is obtained when deletes are relaxed and
preconditions are moved in as conditions [6], and the reduction of conformant
into classical planning obtained by the addition of conditionals and simple epis-
temic formulas represented as literals [10]. The two reductions in a row, however,
do not suffice as sensing actions are ignored. We will thus extend the resulting
classical encoding of a contingent problem P with a a suitable representation
of the sensing actions. On the one hand we define an ezecution model X (P)
where sensing actions are represented as actions with non-deterministic effects
Kz|K—z, where x is the boolean variable being observed and KL represents
that L is known; on the other, we define an heuristic model H(P) where these
effects are relaxed into deterministic effects of the form Max A M-z, where M L
represents that L may be known. In addition, while preconditions L of P must
be known with certainty in X (P) and are thus modeled as KL, in the heuristic
model H(P) they must be contingently known only and are modeled as M L.

The proposed Closed-Loop Greedy planner (CLG) then works as follows. In
current state of the execution model X (P), which is always fully known, an
action in X (P) is selected by using the heuristic model H(P) which is a classical
planning problem. The selected action is then applied in X (P), its effect is
observed, and the new state of the execution model is computed, from which
the loop resumes until reaching a state that is a goal in X (P). In CLG, the
execution models keeps track of the belief state in the form of a set of literals at
the knowledge level (details below), while the heuristic model selects the action
to do next. CLG can be used and we will use it also for computing full contingent
plans. For this, all the effects of the non-deterministic (sensing) actions applied
need to be considered, and their responses cached.

3 It must be said though that problems such as the one above, where balls in a grid
are to be located and placed in their corresponding destination, admit compact
solutions in languages, closer to the ones used in programming, that accommodate
loops and subroutines. Current languages for contingent planning, however, do not
accommodate such constructs. Dealing with such constructs in domain-independent
planning is a hard open challenge, as hard indeed as automatic programming.

The rest of the paper is organized as follows: we start with the contingent
problem P, define the translation K(P) of the conformant fragment of P (no
sensing actions) into classical planning, consider the execution and heuristic
models X (P) and H(P) that result from adding to K(P) an encoding of the
sensing actions, make the working of the CLG planner precise, and test it over
a number of problems.

2 The Contingent Planning Problem P

We consider a planning language that extends Strips with conditional effects, a
possibly uncertain initial situation, and sensing actions. More precisely, a con-
tingent planning problem is a tuple P = (F,0,1,G) where F stands for the
fluent symbols in the problem, O stands for the set of actions or operators a, I
is a set of clauses over F defining the initial situation, and G is a set of literals
over I’ defining the goal.

A normal action a has a precondition given by a set of fluent literals, and
a set of conditional effects C' — L where C' is a set of fluent literals and L is
a literal. The sensing actions a, on the other hand, have a single unconditional
effect obs(x) where x is a fluent symbol, meaning that after doing action a the
truth value of z will be known. Sensing actions can have preconditions as any
other actions but for simplicity we assume that they have no other effects.

We refer to the conditional effects C' — L of an action a as the rules associ-
ated with a, and sometimes write them as a : C' — L. Also, we use the expression
C N X — L to refer to rules with literal X in their bodies. In both cases, C' may
be empty. Last, when L is a literal, we take =L to denote the complement of L.
The ‘conformant fragment’ of P will mean the contingent problem P with the
sensing actions removed.

3 The Conformant Translation K (P)

We have recently shown elsewhere that it is possible to convert conformant prob-
lems P into classical problems K (P) so that solutions from P can be extracted
from the solutions computed by a classical planner over K (P) [10]. This transla-
tion is not complete but has been shown to be quite effective [11]. More recently,
this translation has been simplified and generalized into a translation scheme
Ky p(P) where T is a set of tags and M is a set of merges [12]. A tag t is set of
literals in P whose status in the initial situation I of P is not known. A merge m
is a collection of tags ¢ such that one of them must be true in I. The translation
that maps the conformant problem P into a classical problem Kr as(P) replaces
the literals L in P by literals KL/t for each ¢t € T, whose intuitive meaning is
that ’if t is true in the initial situation, L is true’. In addition, extra actions,
called merge actions, allow the derivation of the literal KL, i.e. KL/t with the
empty tag t, when K L/t' has been obtained for each tag ¢’ in a merge.

If P = (F,0,I,G) is the conformant problem, then the classical problem
Kppy(P)=(F',I',0',G’) is given as:

F' ={KL/t,K-L/t | L€ F andt €T}

I'={KL/t |if [=t>L}

G'={KL|LeG}

O ={a: KC/t - KL/t, a:~K-C/t - -K-L/t|a:C — Lin P}U

{/\ KL/t = KL| L€ F and m € M}

tem

with KL a precondition of action a in K p(P) if L is a precondition of a in P.

The intuition behind the translation is simple: first, KL/t is true in I’ iff
t O L follows from I. This removes all uncertainty from I'. Then KL is a goal
in G iff L is a goal in G. Also, to ensure soundness, each conditional effect
a: C — L in P maps, not only into the supporting rule a : KC/t — KL/t
but also into the cancellation rule a : ~K—-C/t — —~K—L/t that guarantees
that K—L/t is deleted (prevented to persist) when action « is applied and C/t is
not known to be false. The expressions KC and ~K—C for C = Ly A\...A\L,, are
used as abbreviation of the formulas K L1 A...AKL,,,and “K—L{A...A=K—-L,.
Last, the merge actions yield KL when KL/t is true for each ¢ in a merge
m € M.

The translation scheme K j(P) is always sound, meaning that the classical
plans that solve K s (P) yield valid conformant plans for P (by just dropping
the merge actions). On the other hand, the complexity and the completeness of
the translation depend on the choice of tags and merges T' and M. The K;(P)
translation, where ¢ is a non-negative integer, is an special case of the K¢ s
translation where the tags t are restricted to contain at most ¢ literals. By a
suitable choice of the merges M, we show in [12] that the K;(P) translation for
1 = 1is complete for almost all of the conformant benchmarks. In this translation,
t € T iff ¢ is the empty tag or a singleton {L} for an uncertain literal L in I,
and M is the set of non-unit clauses in M. We assume this translation below
and we refer to it as K7 (P) or simply as K(P). This is the translation that
underlies the conformant planner Ty, winner of the Conformant Track of the
recent International Planning Competition [11].

For the sake of simplicity, from now on and when ¢ is the empty tag t = {}
and the singleton tag t' = {L'}, we write KL/t and KL/t as KL and KL/L'
respectively. K L represents that ‘L is known to be true with certainty’, while
KL/L’, that ‘it is known with certainty that if L’ is true initially, L is true’.

4 The Execution Model X (P)

The execution model X (P) for the CLG planner is the union of a translation of
the ‘conformant fragment’ of P into a classical problem, and a suitable encoding
of the sensing actions. Both parts are expressed in the language of the epistemic
conditionals K/t of the translation above.

4.1 The Classical Part K°¢(P)

The classical part K°(P) in X (P) is the translation above applied to the ‘confor-
mant fragment’ of P extended with a set of deductive rules, encoded as actions
with no preconditions and unique conditional effects of the form:

1. KL/t N\K-L — K-t
2. Niem(KL/tV K~t) — KL

This extension is needed because, while in conformant planning one reasons
only ‘forward’ in time, in a contingent setting one must reason both ‘forward’
and ‘backward’. In particular, if a tag ¢ cannot be shown to be false in I, no
conformant plan will ever make it false. On the other hand, a tag t may be
inferred to be false or true in contingent planning by simply doing actions and
gathering observations. Many ‘identification’ tasks have this form: one needs to
act and observe in order to identify a static but hidden state.

In the head K-t of the first deductive rule, ¢ refers to the value of the tag ¢
in the initial situation only. That is, if the rule is applied in a plan after several
actions and ¢t = L, then the inference that L is false refers to the initial situation
and not to the situation that follows the action sequence. This distinction is ir-
relevant if L is a static literal whose value in the initial situation cannot change,
but is relevant otherwise. With this in mind, we combine the use of these deduc-
tive rules implemented as actions, with a simple transformation that makes all
literals in tags static. If L is not a static literal, then we create a static copy Lg
of L by adding the equivalence Ly = L in I, so that Ly has the same value as L
in the initial situation but does not change as it is not affected by action action.
The tags are then limited to such static literals.

4.2 The Sensing Part K°(P)

The sensing actions a : obs(x) in the contingent problem P are translated into a
set K°(P) of non-deterministic actions

a:-KxN-K-2x — Kz|K-x

that capture their effects directly at the ’knowledge level’ [9] making one of the
fluents Kx or K—x true. We make such effects conditional on not knowing the
value of x, as we do not want these rules to set a true KL literal into a false
one. In addition, for each precondition L of a in P, we set the literal KL as °a
precondition of a in K°(P).

Like P, the execution model X (P) = K¢(P)+K°(P) is a contingent planning
problem, and due to the soundness of the translation, solutions to X (P) encode
solutions to P (although not the other way around, as the translation is not
complete). Yet, while P involves incomplete information and sensing actions,
X (P) being at the ‘knowledge-level’ features full information (all literals are
known) and no sensing actions. The model X (P), on the other hand, features
actions that are non-deterministic. In order to solve X(P), and hence P, we
consider a relaxation of X (P) that removes this non-determinism and results in
a classical problem that is used for selecting the actions in the planner.

5 Heuristic Model H(P)

The basic change in the transition from the execution model X (P) to the heuris-
tic model H(P) is the transformation of the non-deterministic actions

a: Kz N-K-zx — Kz|K-x
that arise from sensing actions into deterministic actions:
a:-"KeAN-K-x — MxAM-x

where ML is an ‘epistemic’ literal aimed at expressing contingent knowledge:
knowledge that may be obtained along some but not necessarily all execution
branches, and hence which is weaker that K L.

By relazing the actions with non-deterministic effects Kxz| K-z in X (P) into
actions with deterministic effects Max A M-z in H(P), a classical problem is
obtained. The rest of heuristic model H(P) includes deductive rules for the ML
literals similar to the rules above for the K L literals, and the use of such literals
in the action preconditions in place of the K L literals.

Deductive rules, similar to the ones for K, allow us also to expand the literals
L that are assumed to be ‘contingently known’:

1. KL - ML

9. KL/t AN M~L — M~t
3. KL/t A Mt — ML

4. /\t’Em/t M-t — Mt

In addition, rules a : MC' — ML are added to H(P) for rules a: C'— L in P.

Likewise, every precondition L of an action a in P is copied as a condition
in the body of C of every rule a : C — L’ before the translation (a change that
does not affect the semantics), and while the precondition L is replaced by KL
in the execution model X (P), it is replaced by the weaker condition ML in the
heuristic model H(P).

The introduction of the literals M L ensures that the ‘wishful thinking’ done
over the action preconditions does not translate into ‘wishful thinking’ about
their effects. A different situation would arise if the non-deterministic effects
Kz|K—x would be relaxed into the deterministic effects Kz A K-z, instead of
the weaker Mz A M—x. In the first, a plan for observing x will be a plan for
making z true (or false), something that does not result from the latter encoding
as the M-literals are used only in action preconditions but not in conditions or
goals.

Two reasons explain why the resulting heuristic model H (P), which is a clas-
sical planning problem, provides a useful heuristic criterion for selecting actions
in the contingent planning problem P. If action preconditions in P are ignored
(after copying them as conditions), the resulting delete-relaxation is a confor-
mant problem [6] whose classical translation is the precondition and delete-free
version of H(P). The problem with this choice is that sensing actions are ignored.
The model H(P), on the other hand, does not ignore the action preconditions
in P but relaxes them in terms of the M-literals and uses the sensing actions
along with the rules that propagate the M-literals for achieving them.

6 Action Selection and the CLG Planner

The action selection cycle in the Closed-Loop Greedy planner is based on the
execution model X (P) and the heuristic model H(P), relies on the classical FF
planner [13], and proceeds as follows:

1. given the current state s, in X(P) (initially I'), X (P) deductively closes it
by applying all its deductive rules, passing the resulting state s’ to H(P),

2. a modified version of the classical FF planner is called upon H(P) with s/,
as the starting state, returning an improving action sequence T,

3. the actions in 7 are then applied in the execution model X (P), starting in the
state s, and finishing right after the first non-deterministic action in a state
sy with a true condition applied, letting the environment, a simulator, or a
‘coin’ choose the effect. If a full contingent plan is desired, all possibilities
must be tried, recording the action sequences leading to the goal along each
possible observation sequence,

4. if the resulting state s, is a goal state in X (P), then the execution (along
this branch in the full contingent plan setting) is successfully terminated,
else the cycle repeats at 1 with s, := s,.

The ‘improving action sequence’ in Step 3 refers to the action sequence found
by FF after performing a single enforced hill climbing step, which —if successful—
maps the current state s into another state s’ that improves the value of the FF
heuristic in H(P). If this enforced hill climbing fails, the execution (along this
branch) is terminated with failure.

It is possible to prove that if FF returns an action sequence that is a classical
plan for H(P) with no actions corresponding to sensing actions, such a plan is
a conformant plan that solves X (P) and hence P. This is due to the soundness
of the conformant translation and to the equivalence of the executions of the
models X (P) and H(P) when no sensing actions are applied, which implies the
invariant ML = KL.

7 Preliminary Experimental Results

We tested the Closed-Loop Greedy Planner (CLG) over two sets of problems: a
set of existing benchmarks, and a new set of problems of our own. We compare
CLG with Contingent-FF, run both with and without the helpful actions pruning
mechanism [6]. The experiments are obtained on a Linux machine running at 2.33
Ghz with 8Gb of RAM, with a cutoff of 30mn of time or 1.8Gb of memory. For the
implementation, we modified the FF planner [13] so that it accepts one PDDL
file where the two models X (P) and H(P) are combined, using flags for fixing
the right set of actions and fluents, for doing the progression and calculating the
heuristic respectively. The actual numbers reported are preliminary as there are
a number of aspects in the current implementation that need to be improved.
See the discussion below.

Contingent FF CLG

problem |time (s)| nacts |t0 time (s)|pddl size (Mb)|time (s) nacts
ebtcs-30 0,95 59 0,56 3,19 3,26 89
ebtcs-50 11,9 99 2,04 11,27 22,83 149
ebtcs-70 68,01 139 5,17 26,94 91,06 209
elog-5 0,04 156 0,05 0,29 0,26 130
elog-7 0,07 223 0,05 0,32 0,36 193
elog-huge > 1.8Gb 0,95 2,39 523,1 |43835
medpks-30] 11,72 | 60 1,06 5,35 10,09 | 61
medpks-50| 164,14 100 3,94 19,17 79,17 101
medpks-70| 1114,21 | 140 20,92 109,31 > 1.8Gb
unix-3 4,02 | 111 2,41 26,00 52,59 [111
unix-4 221,23 238 24,08 226,59 > 1.8Gb

Table 1. Solution times for Contingent-FF and CLG over the first set of domains.
‘nacts’ stands for the total number of actions on the solution, ’t0 time’ is translation
time to get X (P) and H(P) from the original problem, 'pddl size’ is their size, and .
‘time’ is total time minus translation time.

Table 1 shows data concerning the first set of problems: ebtcs-x stands for
enforced Bomb-in-the-toiled with x bombs and a single toilet, elog-x for enforced
Logistics, medpks-z is a diagnose-and-treat domain, and uniz-z is the problem
of moving one file to the root node of tree directory with the ls action showing
the contents of a directory. All these examples are taken from the Contingent-FF
distribution.

Table 2 shows the solution times for some new problems. colorballs-n-x is the
problem of collecting x colored balls from an n x n grid whose location and color
are not known but can be observed when agent and ball are in the same cell.
doors-n is the problem of traversing a square room n X n, with walls covering
every odd column of the square, except for an open door at an unknown position
in every column. The open door can be detected by a sensing action from an
adjacent cell.

On the first set of problems, Contingent-FF and CLG are comparable in
terms of coverage with the former taking less time. The ’helpful actions’ option
was not used in order to solve medpks. The number of actions in the table do
not measure actually the quality of the contingent plans but the total number
of actions along all the branches. For CLG, the size of the domain-pddl file
produced by the translation constitutes the bottleneck for solving the instances
medpks-70 and unix-4.

On the second set of problems, Contingent-FF solves only the smallest color-
balls instances, and it fails in the doors instances due to a bug in Contingent-FF,
confirmed by the authors. In these domains, CLG exhibits a more robust behav-
ior.

In all the cases above, CLG is used for and successfully generates full con-
tingent plans by considering all possible ‘contingencies’. An inefficiency in our
current implementation for this task consists in that contingent plans are repre-
sented as trees rather than graphs, meaning that (belief) states that are reached

Contingent FF CLG

problem [|time (s)| nacts [t0 time (s)|pddl size (Mb)|time (s)|nacts
colorballs-4-1| 0,27 277 0,14 0,70 0,58 281
colorballs-4-2| 36,33 | 18739 0,27 1,35 39,72 18232
colorballs-4-3 > 30mn 0,41 2,0 > 30mn
colorballs-5-1| 1,83 611 0,44 1,98 2,43 584
colorballs-5-2| 867,28 | 71157 0,82 3,89 307,4 67945
colorballs-5-3 > 30mn 1,28 5,79 > 30mn
colorballs-6-1| 7,43 | 1091 1,17 5,01 9,48 [1021
colorballs-6-2 > 30mn 2,19 9,91 > 30mn
colorballs-7-1| 42,03 [1826 2,83 11,38 30,88 [1614
colorballs-7-2 > 30mn 5,21 22,60 > 30mn
colorballs-8-1 > 30mn 6,02 23,62 95,73 | 2397
colorballs-9-1 > 30mn 12,78 45,53 256,59 | 3384
colorballs-9-2 > 30mn 23,58 90,79 > 1.8Gb
doors-7 fail 1,53 4,58 61,89 [2357
doors-9 fail 7,22 15,00 > 30mn

Table 2. Solution times for Contingent-FF and CLG over second set of problems.
‘nacts’ stands for the total number of actions in solution. ’t0 time’ is translation time
to get X (P) and H(P) from the original problem, 'pddl size’ is their size, and ’time’
is total time minus the translation time. ’fail’ means that Contingent-FF (incorrectly)
reported a problem as unsolvable.

through different execution paths are explored multiple times. This should be
easy to fix and should lead to faster run times and more compact plans (with
an smaller total number of actions).

A main motivation for this work has been to have a fast but informed Closed-
Loop planner that can scale up to problems in which the contingent solutions
have exponential size and thus cannot be constructed. For testing this, we gen-
erated 25 random executions in instances of colorballs and doors, finding all
executions leading to the goal, even in cases like colorballs-9-2 and 7-4, and
doors-9 for which no full contingent plans could be computed due to time or
memory limitations.

8 Discussion

We have developed a domain-independent action selection mechanism for plan-
ning with sensing that can be used as a greedy but informed closed-loop planner
or as a contingent planner able to generate full plans. The approach builds on
two recent ideas that explain also why the approach works: the first by Hoffmann
and Brafman, that states that the delete-relaxation of a precondition-free con-
tingent problem is a conformant problem; the second by Palacios and Geffner,
that shows how conformant problems can be translated into classical problem
at the ‘knowledge level’. Rather than applying the two transformations in a row
resulting in a formulation that ignores sensing actions, we have shown however

how preconditions and sensing actions can be brought in the formulation by in-
troducing new literals for modeling ‘contingent knowledge’. We have also tested
the action selection mechanism empirically over a number of problems, showing
that it compares well with state-of-the-art planners for computing full contingent
plans, while being able to scale up better when used in closed-loop fashion.

As future work, we plan to improve the implementation, clean up the for-
mulation by incorporating axioms or ramifications in the target language of the
translation, and redefine the ‘enforced hill climbing’ (EHC) step that selects the
action sequence to apply next so that the deterministic heuristic model H(P)
is used for computing the heuristic only, while the non-deterministic execution
model X (P) is used in the progression within the EHC. This is needed for ruling
out the possibility of loops during the execution.

Acknowledgments

We thank the anonymous reviewers for useful comments and J. Hoffmann for
help with Contingent-FF. H. Geffner is partially supported by Grant TIN2006-
15387-C03-03, and H. Palacios by an FPI fellowship, both from MEC/Spain.

References

1. Peot, M., Smith, D.E.: Conditional nonlinear planning. In Hendler, J., ed.: Proc.
1st Int. Conf. on AI Planning Systems. (1992) 189-197
2. Pryor, L., Collins, G.: Planning for contingencies: A decision-based approach.
Journal of AT Research 4 (1996) 287-339
3. Haslum, P., Jonsson, P.: Some results on the complexity of planning with incom-
plete information. In: Proc. ECP-99, Lect. Notes in AI Vol 1809, Springer (1999)
4. Rintanen, J.: Complexity of planning with partial observability. In: Proc. ICAPS-
2004. (2004) 345-354
5. Bonet, B., Geffner, H.: Planning with incomplete information as heuristic search
in belief space. In: Proc. of AIPS-2000, AAAT Press (2000) 52—61
6. Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with
implicit belief states. In: Proc. ICAPS 2005. (2005)
7. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Strong planning under partial
observability. Artif. Intell. 170(4-5) (2006) 337384
8. Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief
space search. Journal of AI Research 26 (2006) 35-99
9. Petrick, R., Bacchus, F.: A knowledge-based approach to planning with incomplete
information and sensing. In: Proc. AIPS’02. (2002) 212-221
10. Palacios, H., Geffner, H.: Compiling uncertainty away: Solving conformant plan-
ning problems using a classical planner (sometimes). In: Proc. AAAI-06. (2006)
11. Bonet, B., Givan, B.: Results of the conformant track of the 5th int. planning
competition. At http://www.ldc.usb.ve/ bonet/ipc5/docs/results-conformant.pdf
(2006)
12. Palacios, H., Geffner, H.: From conformant into classical planning: Efficient trans-
lations that may be complete too. In: Proc. ICAPS-07. (2007)
13. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14 (2001) 253-302

