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Planning and Autonomous Behavior

Three approaches to the problem of selecting the action to do next:

1. Programming: specify control by hand

2. Learning: learn control from experience

3. Planning: derive control from model

Planning is the model-based approach to action selection: behavior obtained from
model of the actions, sensors, preferences, and goals

Model =⇒ Planner =⇒ Controller
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Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square
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Stench
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PIT

PIT
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Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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Outline of the Talk

• Planning Models

. Many dimensions: uncertainty, feedback, costs, . . .

• Planning Algorithms

. Key issue is scalability

• Plan Recognition as Planning

. Behavior generation algorithms can be used for recognition

• Variations: HTN Planning

. Between programming and planning
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Basic State Model: Classical Planning

• finite and discrete state space S

• a known initial state s0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a deterministic transition function s′ = f(a, s) for a ∈ A(s)

• positive action costs c(a, s)

A solution is a sequence of applicable actions that maps s0 into SG, and it is
optimal if it minimizes sum of action costs (# of steps)

Different models obtained by relaxing assumptions in bold . . .
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Uncertainty and Full Feedback: Markov Decision Processes

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost to goal
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Uncertainty and Partial Feedback: Partially Observable MDPs
(POMDPs)

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• observable goal states SG ⊆ S

• initial belief state b0

• sensor model given by probabilities Pa(o|s), o ∈ O, s ∈ S

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to bF
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Further Variations: Discounted Reward and Qualitative Models

• Rewards used often instead of costs, along with a discount factor γ, 0 < γ < 1

• Rewards can be positive, negative, or zero, and goals not needed then

• Best policies then not the ones that minimize expected cost to goal, but that
maximize discounted accumulated reward

• Still goal-based formulation strictly more general, even if rewards, unlike costs,
can be positive or negative (!)

• Qualitative version of MDPs and POMDPs whereuncertainty represented by
sets of states rather than probability distributions also used

• Planners for qualitative POMDPs, referred to as contingent planners or plan-
ners with sensing
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Example

Agent A must reach G, moving one cell at a time in known map

A

G

• If actions deterministic and initial location known, planning problem is classical

• If actions stochastic and location observable, problem is an MDP

• If actions stochastic and location partially observable, problem is a POMDP

Different combinations of uncertainty and feedback: three problems, three models
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Compact Model Representations and Planning Languages

• Planning languages defined in terms of variables that can take some values

• The states are the possible value assignments to these variables

• The number of states is exponential in number of variables

• Initial (belief) state and goals expressed in terms of variables

• Action effects (state transitions) expressed locally often

. adding values that become true, and

. deleting values that become false

Model Description =⇒ Planner =⇒ Controller
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AI Planning: Status

• The good news: classical planning works pretty well

. Large problems solved very fast (non-optimally)

• Model simple but useful

. Operators not primitive; can be policies themselves

. Fast closed-loop replanning able to cope with uncertainty sometimes

• Limitations:

. Uncertainty, Incomplete Information, Preferences, . . .

• Beyond classical planning:

. Top-down approaches: MDP and POMDP solvers, etc

. Bottom-up approaches: Transformations into classical planning . . .
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Example – Classical Planning
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• Given the actions that move a ’clear’ block to the table or onto another ’clear’
block, find a plan to achieve the goal

• Problem becomes one of finding a path in a graph
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How is the problem solved?
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• Provided with heuristic evaluation h, plan found greedily

• Heuristic h provides estimates of cost-to-go
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Where do heuristic evaluations come from?

• Approximate distances h(s) computed from a simplification of the problem
(relaxation)

• Most common simplification is to drop deletes from action effects

• Problem without deletes is tractable and can be solved efficiently (linear-time)

• Heuristic h(s) represents cost of simplified problem from s

• Many other ideas have been tried but experiments show that they do not work
as well; scalability is a tough filter!

• Approaches based on SAT have been shown to work well too.
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The evaluations h(s) from a cognitive point of view

• they are fast, effective, and domain-independent

they apply to all problems fitting the model

• they are opaque and thus cannot be conscious

meaning of symbols in the relaxation is not the normal meaning; e.g.,
objects can be at many places at the same time as old locations not deleted

• they provide agent with sense of direction; ’gut feelings’

a guide to action that avoids infinite regresses in the decision process
(Damasio, Gigerenzer, . . . )

Scalability important and likely to be relevant for understanding cognition too
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Heuristic and Value Functions in other Planning Models

• A greedy action a is one that minimizes expected cost-to-go given by value
or heuristic function V . If action costs uniform:

In Classical Planning: arg mina V (s′)

In MDPs: arg mina

∑
s′ Pa(s′|s)V (s′)

In POMDPs: arg mina

∑
o ba(o)V (boa)

• If value function V (·) good enough, greedy action is optimal

• Many methods for obtaining such functions

• Distinction between programmed/learned/derived behaviors echoed in value
functions:

. Evaluation functions hardwired in Chess

. Valuation functions learned from experience in Reinforcement Learning

. Heuristic functions derived from relaxed models in Planning
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Transformations are also powerful

• Problem P : find green block using visual-marker (circle) that can move around
one cell at a time (à la Chapman and Ballard)

• Observables: Whether cell marked contains a green block (G), non-green block
(B), or neither (C); and whether on table (T) or not (–)

q0

TB/Up
-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

• Finite state controller on the right solves the problem

• Controller obtained by running a classical planner over transformed problem

• Controller works for any number of blocks and any configuration!
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Planning and Plan Recognition

• Plan Recognition related to Plan Generation but had not built on it until recently

• Rather Plan Recognition addressed as Deduction, Evidential Reasoning
(HMMs,DBNs), Parsing (Grammars), etc; or through specialized methods

Next: How to do plan recognition

using a Classical/MDP/POMDP Planner?
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Example

S

A B C

D

F EH

J

• Agent can move one unit in the four directions

• Possible targets are A, B, C, . . .

• Starting in S, he is observed to move up twice

• Where is he going? Why?
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Example (cont’d)

S

A B C

D

F EH

J

• From Bayes, goal posterior is P (G|O) = αP (O|G)P (G), G ∈ G

• If priors P (G) given for each goal in G, the question is what is P (O|G)

• P (O|G) measures how well goal G predicts observed actions O

• In classical setting,

. G predicts O worst when needs to get off the way to comply with O

. G predicts O best when needs to get off the way not to comply with O
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Posterior Probabilities from Plan Costs

• From Bayes, goal posterior is P (G|O) = αP (O|G)P (G),

• If priors P (G) given, set P (O|G) to

function(c(G+O) − c(G+O))

. c(G+O): cost of achieving G while complying with O

. c(G+O): cost of achieving G while not complying with O

– Costs c(G+O) and c(G+O) computed by classical planner

– Goals of complying and not complying with O translated into normal goals
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Example Revisited: Noisy Walk
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• ‘Noisy walk’ and possible targets; posterior P (G|O) of each target G as a
function of time (Ramirez & G. 2010)

• P (O|G) set to sigmoid(β∆(G,O)), where ∆(G,O) = c(G+O)− c(G+O)

• This follows from Boltzmann dist. exp{−β c(G+X)} for P (X|G), X ∈ {O,O}.
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Plan Recognition over MDPs and POMDPs

• In MDPs, given VG(s), define P (a|s;G)

• Then P (O|s0;G) for O = a0, s1, a1, s2, . . . follows from basic probability laws

• In POMDPs, given VG(b), define P (a|b;G)

• Then P (O|b0;G) for O = a0, o1, a1, o2, . . . follows from basic probability laws

• In both cases, posteriors P (G|O) follow from Bayes Rule
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Example: Plan Recognition over POMDPs

• Agent is looking for item A or B which can be in one of three drawers 1, 2, or 3

• Agent doesn’t know where A and B are, but has priors P (A@i), P (B@i)

• He can open and close drawers, to look for item in open drawer, and grab an
item from drawer if known to be there

• The sensing action, however, is not perfect, and may fail to see item even if in
drawer

• Agent observed to do O = {open(1), open(2), open(1)}

• If possible goals G are to have A, B, or both, and priors given, what’s posterior
P (G|O)?
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What about Hierarchical Task Network (HTN) Planning?

• HTN Planning is a different type of planning where model features control
knowledge

• This extra knowledge takes the form of high-level tasks and methods for
decomposing them into subtasks

• The primitive tasks can’t be decomposed and represent the domain actions

• HTN Planning quite popular in both planning applications and plan recogni-
tion, where libraries commonly expressed as HTN methods

• In many cases, and often in plan recognition, HTN libraries define acyclic
AND/OR Graphs
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Review of CAN Declarative Goals in CAN CANPlan Conclusions Motivation HTN Planning Plan Construct

HTN Planning: An Example

State: set of atoms: At(loc).

Tasks: primitive or compound.

Task Network: set of tasks T + order/state constraints φ.

Method: a way to solve a compound task e using a network d .

Plan: a sequence of primitive tasks.

Sebastian Sardina (RMIT University) BDI Programming November 29, 2007 32 / 52

Review of CAN Declarative Goals in CAN CANPlan Conclusions Motivation HTN Planning Plan Construct

HTN Planning: An Example (cont.)

Sebastian Sardina (RMIT University) BDI Programming November 29, 2007 33 / 52
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How to Do Recognition of HTN tasks?

Three possible answers:

• Transform recognition into parsing over suitable grammar, and use corresponding
parsing algorithm

• Use specialized algorithms

• Compile into classical planning, and do plan recognition with a classical
planner (for the compilation, Lekavý & Návrat 2007; Alford, Kuter, Nau 2009)
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What about Variables?

• Current planners ground all actions compiling variables away

• In some applications (Koller and Hoffmann 2010), this can be a bottleneck

• Prior grounding, however, is not strictly required, it’s done for efficiency

• In other applications, reasoning about variable bindings seems required; e.g.,

Jack went to the store. He found some milk on the shelf. He paid for it and left.

What does ‘it’ refer to?

• Yet, this doesn’t seem to require variables in the planner either; one can try the
possible substitutions of it, and then see which ground plan makes most sense
for each goal (e.g., G = ‘buy milk’).

• More precisely, if the observations O contain ‘variables’ (pronouns), one could
set c(G+O) to minOi

c(G+Oi), where Oi are the possible groundings of O
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Summary

• Planning is the model-based approach to autonomous behavior

• Models describe actions, sensors, preferences, and goals

• Derivation of controller from model intractable in all cases

• Automatically derived heuristics computationally useful in classical planning

• Similar value functions used to solve MDPs and POMDPs

• Plan recognition over a given planning model, solvable with planner over model

• Key idea is definiton of likelihoods P (O|G) from costs

• Plan libraries addressed in this way by compiling them into classical problems
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