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Planning and Autonomous Behavior

Three approaches to the problem of selecting the action to do next:

1. Programming: specify control by hand
2. Learning: learn control from experience

3. Planning: derive control from model

Planning is the model-based approach to action selection: behavior obtained from
model of the actions, sensors, preferences, and goals

Model —> | Planner | = Controller
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Wumpus World PEAS description

Performance measure
gold +1000, death -1000

-1 per step, -10 for using the arrow

: Senens Threeze —
Environment 4 |
Squares adjacent to wumpus are smelly T ———
S di : b 3 Gl - |G
quares adjacent to pit are breezy iy
Glitter iff gold is in the same square < cecs e
g q Stench ~ Breeze —
. . . . . 2 enen = T
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow 1 @@? Zones . Zoes
- - - - — PIT —
Grabbing picks up gold if in same square START
Releasing drops the gold in same square 1 2 3 4

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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Outline of the Talk

e Planning Models

> Many dimensions: uncertainty, feedback, costs, . . .

e Planning Algorithms

> Key issue is scalability

e Plan Recognition as Planning

> Behavior generation algorithms can be used for recognition

e Variations: HTN Planning

> Between programming and planning
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Basic State Model: Classical Planning

e finite and discrete state space S

e a known initial state sp € S

e aset Sg C S of goal states

e actions A(s) C A applicable in each s € S

e a deterministic transition function s’ = f(a,s) for a € A(s)

e positive action costs c(a, s)

A solution is a sequence of applicable actions that maps sg into Sg, and it is
optimal if it minimizes sum of action costs (# of steps)

Different models obtained by relaxing assumptions in bold . . .
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Uncertainty and Full Feedback: Markov Decision Processes

MDPs are fully observable, probabilistic state models:

e a state space S

e initial state sp € S

e aset G C 5 of goal states

e actions A(s) C A applicable in each state s € S

e transition probabilities P,(s’|s) for s € S and a € A(s)

e action costs c(a,s) > 0

— Solutions are functions (policies) mapping states into actions

— Optimal solutions minimize expected cost to goal
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Uncertainty and Partial Feedback: Partially Observable MDPs
(POMDPs)

POMDPs are partially observable, probabilistic state models:

o states s € S
e actions A(s) C A
e transition probabilities P,(s’|s) for s € .S and a € A(s)

e observable goal states S¢ C S

e initial belief state b,

e sensor model given by probabilities P,(o|s), 0 € O, s € S

— Belief states are probability distributions over .S
— Solutions are policies that map belief states into actions

— Optimal policies minimize expected cost to go from by to bp
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Further Variations: Discounted Reward and Qualitative Models

e Rewards used often instead of costs, along with a discount factor v, 0 < v < 1
e Rewards can be positive, negative, or zero, and goals not needed then

e Best policies then not the ones that minimize expected cost to goal, but that
maximize discounted accumulated reward

e Still goal-based formulation strictly more general, even if rewards, unlike costs,
can be positive or negative (!)

e Qualitative version of MDPs and POMDPs whereuncertainty represented by
sets of states rather than probability distributions also used

e Planners for qualitative POMDPs, referred to as contingent planners or plan-
ners with sensing
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Example

Agent A must reach G, moving one cell at a time in known map

e |f actions deterministic and initial location known, planning problem is classical
e If actions stochastic and location observable, problem is an MDP

e If actions stochastic and location partially observable, problem is a POMDP

Different combinations of uncertainty and feedback: three problems, three models
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Compact Model Representations and Planning Languages

e Planning languages defined in terms of variables that can take some values

e The states are the possible value assignments to these variables

e The number of states is exponential in number of variables

o Initial (belief) state and goals expressed in terms of variables

o Action effects (state transitions) expressed locally often

> adding values that become true, and
> deleting values that become false

Model Description =—> | Planner
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Al Planning: Status

e The good news: classical planning works pretty well

> Large problems solved very fast (non-optimally)

e Model simple but useful

> Operators not primitive; can be policies themselves

> Fast closed-loop replanning able to cope with uncertainty sometimes
e Limitations:

> Uncertainty, Incomplete Information, Preferences, . . .

e Beyond classical planning:

> Top-down approaches: MDP and POMDP solvers, etc
> Bottom-up approaches: Transformations into classical planning . . .
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Example — Classical Planning
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e Given the actions that move a 'clear’ block to the table or onto another 'clear’

block, find a plan to achieve the goal

e Problem becomes one of finding a path in a graph
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How is the problem solved?
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e Provided with heuristic evaluation h, plan found greedily

e Heuristic h provides estimates of cost-to-go
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Where do heuristic evaluations come from?

e Approximate distances h(s) computed from a simplification of the problem
(relaxation)

e Most common simplification is to drop deletes from action effects
e Problem without deletes is tractable and can be solved efficiently (linear-time)
e Heuristic h(s) represents cost of simplified problem from s

e Many other ideas have been tried but experiments show that they do not work
as well; scalability is a tough filter!

e Approaches based on SAT have been shown to work well too.
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The evaluations h(s) from a cognitive point of view

e they are fast, effective, and domain-independent

they apply to all problems fitting the model

e they are opaque and thus cannot be conscious

meaning of symbols in the relaxation is not the normal meaning; e.g.,
objects can be at many places at the same time as old locations not deleted

e they provide agent with sense of direction; 'gut feelings’

a guide to action that avoids infinite regresses in the decision process
(Damasio, Gigerenzer, . .. )

Scalability important and likely to be relevant for understanding cognition too
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Heuristic and Value Functions in other Planning Models

e A greedy action a is one that minimizes expected cost-to-go given by value
or heuristic function V. If action costs uniform:

In Classical Planning: arg min, V(s’)
In MDPs: arg min, >, Py(s'|s)V(s)
In POMDPs: arg min, Y, ba(0)V(b?)

e If value function V() good enough, greedy action is optimal
e Many methods for obtaining such functions

e Distinction between programmed /learned/derived behaviors echoed in value
functions:

> Evaluation functions hardwired in Chess
> Valuation functions learned from experience in Reinforcement Learning
> Heuristic functions derived from relaxed models in Planning
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Transformations are also powerful

e Problem P: find green block using visual-marker (circle) that can move around
one cell at a time (3 la Chapman and Ballard)

o Observables: Whether cell marked contains a green block (G), non-green block
(B), or neither (C); and whether on table (T) or not (-)

TC/Right

-B/Down

-C/Down
TB/Right

®

e Finite state controller on the right solves the problem
e Controller obtained by running a classical planner over transformed problem

e Controller works for any number of blocks and any configuration!
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Planning and Plan Recognition

e Plan Recognition related to Plan Generation but had not built on it until recently

e Rather Plan Recognition addressed as Deduction, Evidential Reasoning
(HMMs,DBNs), Parsing (Grammars), etc; or through specialized methods

Next: How to do plan recognition
using a Classical/ MDP/POMDP Planner?
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Example

A B
J S
H F

e Agent can move one unit in the four directions
e Possible targets are A, B, C, . ..
e Starting in S, he is observed to move up twice

e Where is he going? Why?
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Example (cont’d)

A B C

e From Bayes, goal posterior is P(G|O) = a P(O|G) P(G), G € G
e If priors P(G) given for each goal in G, the question is what is P(O|G)
e P(O|G) measures how well goal GG predicts observed actions O

e In classical setting,

> G predicts O worst when needs to get off the way to comply with O
> G predicts O best when needs to get off the way not to comply with O
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Posterior Probabilities from Plan Costs

e From Bayes, goal posterior is P(G|0O) = a P(O|G) P(G),
e If priors P(G) given, set P(O|G) to

function(c¢(G + O) — ¢(G + O))

> ¢(G + O): cost of achieving G' while complying with O
> ¢(G + O): cost of achieving G while not complying with O

— Costs ¢(G + 0) and ¢(G + O) computed by classical planner

— Goals of complying and not complying with O translated into normal goals
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Example Revisited: Noisy Walk
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e ‘Noisy walk' and possible targets; posterior P(G|O) of each target G as a
function of time (Ramirez & G. 2010)

o P(O|G) set to sigmoid(B8 A(G, 0)), where A(G,0) = ¢(G + O) — ¢(G + O)
e This follows from Boltzmann dist. exp{—8c(G+ X)} for P(X|G), X € {0, O}.
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Plan Recognition over MDPs and POMDPs

e In MDPs, given V(s), define P(als; G)

e Then P(Olsg; G) for O = ayg, s1, a1, S2, - . . follows from basic probability laws

e In POMDPs, given V(b), define P(alb; G)

e Then P(O|bg; G) for O = ag, 01, a1, 02, ... follows from basic probability laws

e In both cases, posteriors P(G|O) follow from Bayes Rule
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Example: Plan Recognition over POMDPs

e Agent is looking for item A or B which can be in one of three drawers 1, 2, or 3
e Agent doesn't know where A and B are, but has priors P(AQi), P(BQj)

e He can open and close drawers, to look for item in open drawer, and grab an
item from drawer if known to be there

e The sensing action, however, is not perfect, and may fail to see item even if in
drawer

e Agent observed to do O = {open(1), open(2), open(1)}

e If possible goals G are to have A, B, or both, and priors given, what's posterior
P(G|O)?
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What about Hierarchical Task Network (HTN) Planning?

e HTN Planning is a different type of planning where model features control
knowledge

e This extra knowledge takes the form of high-level tasks and methods for
decomposing them into subtasks

e The primitive tasks can't be decomposed and represent the domain actions

e HTN Planning quite popular in both planning applications and plan recogni-
tion, where libraries commonly expressed as HTN methods

e In many cases, and often in plan recognition, HTN libraries define acyclic
AND/OR Graphs
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Motivation HTN Planning Plan Construct
HTN Planning: An Example

EI‘RHVEL{;,}*}

— alternatives

short distance "--_.____H___]nng distance
TRAVEL-BY-TAXI TRAVEL-BY-AIR
Lo Prie
- T "’f ) ,7 o "‘x N ""”“3-1:
get—taxi pay—driver P "'-H T
fdetaitey) TRAVEL(x,airport(x)) k‘ TRAVEL(amrport(y).y)
buy=ticket(airport(x),airport(y}) FLY (airport(y))

State: set of atoms: At(/loc).
Tasks: primitive or compound.
Task Network: set of tasks T + order/state constraints ¢.
Method: a way to solve a compound task e using a network d.

Plan: a sequence of primitive tasks.
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How to Do Recognition of HTN tasks?

Three possible answers:

e Transform recognition into parsing over suitable grammar, and use corresponding
parsing algorithm

e Use specialized algorithms

e Compile into classical planning, and do plan recognition with a classical
planner (for the compilation, Lekavy & Navrat 2007; Alford, Kuter, Nau 2009)
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What about Variables?

e Current planners ground all actions compiling variables away
e In some applications (Koller and Hoffmann 2010), this can be a bottleneck
e Prior grounding, however, is not strictly required, it's done for efficiency

e In other applications, reasoning about variable bindings seems required; e.g.,

Jack went to the store. He found some milk on the shelf. He paid for it and left.
What does ‘it’ refer to?

e Yet, this doesn’'t seem to require variables in the planner either; one can try the
possible substitutions of it, and then see which ground plan makes most sense
for each goal (e.g., G = ‘buy milk’).

e More precisely, if the observations O contain ‘variables’ (pronouns), one could
set ¢(G + O) to minp, ¢(G + O;), where O; are the possible groundings of O
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Summary

e Planning is the model-based approach to autonomous behavior

e Models describe actions, sensors, preferences, and goals

e Derivation of controller from model intractable in all cases

e Automatically derived heuristics computationally useful in classical planning

e Similar value functions used to solve MDPs and POMDPs

e Plan recognition over a given planning model, solvable with planner over model
e Key idea is definiton of likelihoods P(O|G) from costs

e Plan libraries addressed in this way by compiling them into classical problems
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