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Abstract. Planning is concerned with the development of solvers for a
wide range of models where actions must be selected for achieving goals.
In these models, actions may be deterministic or not, and full or partial
sensing may be available. In the last few years, significant progress has
been made, resulting in algorithms that can produce plans effectively in a
variety of settings. These developments have to do with the formulation
and use of general inference techniques and transformations. In this in-
vited talk, I’ll review the inference techniques used for solving individual
planning instances from scratch, and discuss the use of learning methods
and transformations for obtaining more general solutions.

1 Introduction

The problem of creating agents that can decide what to do on their own has been
at the center of Al research since its beginnings. One of the first Al programs to
tackle this problem, back in the 50’s, was the General Problem Solver (GPS) that
selects actions for reducing a difference between the current state and a desired
target state [I]. Ever since then, this problem has been tackled in a number of
ways in many areas of Al, and in particular in the area of Planning.

The problem of selecting actions for achieving goals, however, even in its
most basic version — deterministic actions and complete information — is com-
putationally intractable [2]. Under these assumptions, the problem of finding
a plan becomes the well-known problem of finding a path in a directed graph
whose nodes, that represent the possible states of the system, are exponential in
the number of problem variables.

Until the middle 90’s in fact, no planner or program of any sort could syn-
thesize plans for large problems in an effective manner from a description of
the actions and goals. In recent years, however, the situation has changed: in
the presence of deterministic actions and full knowledge about the initial situa-
tion, classical planning algorithms can find plans quickly even in large problems
with hundred of variables and actions [3/4]. This is the result of new ideas, like
the automatic derivation of heuristic functions [5/6], and a established empirical
methodology featuring benchmarks, comparisons, and competitions. Moreover,
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many of these planners are action selection mechanisms that can commit to the
next action to do in real-time without having to construct a full plan first [7].

These developments, however, while crucial, do not suffice for producing au-
tonomous agents that can decide by themselves what to do in environments
where the two assumptions above (deterministic actions, complete information)
do not apply. The more general problem of selecting actions in uncertain, dy-
namic and/or partially known environments arises in a number of contexts (a
rover in Mars, a character in a video-game, a robot in a health-care facility, a
softbot in the web, etc.), and has been tackled through a number of different
methodologies:

1. programming-based: where the desired behavior is encoded explicitly by a
human programmer in a suitable high-level language,

2. learning-based: where the desired behavior is learned automatically from
trial-and-error experience or information provided by a teacher, or

3. model-based: where the desidered behavior is inferred automatically from a
suitable description of the actions, sensors, and goals.

None of these approaches, however, or a combination of them, has resulted yet
in a solid methodology for building agents that can display a robust and flexible
behavior in real time in partially known environments. Programming agents by
hand puts all the burden in the programmer that cannot anticipate all possi-
ble contingencies, leading to systems that are brittle. Learning methods such as
reinforcement learning [8], are restricted in scope and do not deal with the prob-
lem of incomplete state information. Finally, traditional model-based methods,
when applied to models that are more realistic than the ones underlying classical
planning, have difficulties scaling up.

Planning in Artificial Intelligence represents the model-based approach to au-
tonomous behavior: a planner is a solver that accepts a model of the actions, sen-
sors, and goals, and produces a controller that determines the actions to do given
the observations gathered (Fig. [Il). Planners come in a great variety, depending
on the types of models they target. Classical planners address deterministic state
models with full information about the initial situation [9]; conformant planners
address state models with non-deterministic actions and incomplete information
about the initial state [I0/T1], POMDP planners address stochastic state model
with partial observability [12], and so on.

In all cases, the models of the environment considered in planning are in-
tractable in the worst case, meaning that brute force methods do not scale up.
Domain-independent planning approaches aimed at solving these planning mod-
els effectively must thus recognize and exploit the structure of the individual

Actions Action
Sensors — || SOLVER —| Agent Controller World
Goals Observation

Fig. 1. Model-based approach to intelligent behavior: the next action to do is deter-
mined by a controller derived from a model of the actions, sensors, and goals
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problems that are given. The key to exploiting this structure is inference, as in
other Al models such as Constraint Satisfaction Problems and Bayesian Net-
works [I3JT14]. In the paper, we will go over the inference techniques that have
been found computationally useful in planning research and identify areas where
they could benefit from learning techniques as well. In this sense, planners solve
problems from scratch by combining search and inference, and do not get any
better as more instances from a given domain are solved. Learning should thus
help planners to automatically extract domain knowledge that could be used
to solve other domain instances more effectively, and in principle, without any
search at all.

The paper is organized as follows. We consider the model, language, and
inference techniques developed for classical planning, conformant planning, and
planning with sensing, in that order. We focus on inference techniques of two
types: heuristic functions and transformations. We then consider the use and role
of inductive learning methods in planning, in particular, when plan strategies
for a whole domain, and not for a single domain instance, are required.

2 Classical Planning

Classical planning is concerned with the selection of actions in environments that
are deterministic and whose initial state is fully known. The model underlying
classical planning can be described as a state space containing

— a finite and discrete set of states S,

— a known initial state so € S,

— aset Sg C S of goal states,

— actions A(s) C A applicable in each s € S,

— a deterministic transition function s’ = f(a,s) for a € A(s), and
— uniform action costs c(a, s) equal to 1.

A solution or plan in this model is a sequence of actions ag, . . ., a,, that generates
a state sequence sg, s1,...,Sp+1 such that a; is applicable in the state s; and
results in the state s;+1 = f(a;, s;), the last of which is a goal state.

The cost of a plan is the sum of the action costs, which in this setting, cor-
responds to plan length. A plan is optimal it is has minimum cost, and the cost
of a problem is the cost of an optimal plan.

Domain-independent classical planners accept a compact description of the
above models, and automatically produce a plan (an optimal plan if the planner
is optimal). This problem is intractable in the worst case, yet currently large clas-
sical problems can be solved using heuristic functions derived from the problem
encodings.

A simple but still common language for encoding classical planning problems
is Strips [9]. A problem in Strips is a tuple P = (F, O, I, G) where

— F stands for set of all atoms (boolean vars),
— O stands for set of all operators (actions),
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— I C F stands for the initial situation, and
— G C F stands for the goal situation.

The actions o € O are represented by three sets of atoms from F' called the
Add, Delete, and Precondition lists, denoted as Add(o), Del(o), Pre(o). The
first, describes the atoms that the action o makes true, the second, the atoms
that o makes false, and the third, the atoms that must be true for the action o
to be applicable.

A Strips problem P = (F, O, I,G) encodes the state model S(P) where

the states s € S are collections of atoms from F|

— the initial state sqg is I,

— the goal states s are those for which G C s,

— the actions a in A(s) are the ones in O such that Prec(a) C s, and
— the next state is s’ = f(a,s) = (s \ Del(a)) U Add(a).

All areas in Planning, and in particular Classical Planning, have become quite
empirical in recent years, with competitions held every two years [I5], and hun-
dreds of benchmark problems available in PDDL, a standard syntax for planning
that extends Strips [16].

The classical planners that scale up best can solve large problems with hun-
dreds of fluents and actions [I7JI§]. These planners do not compute optimal
solutions and cast the planning problem P as an heuristic search problem over
the state space S(P) that defines a directed graph whose nodes are the states,
whose initial node is the initial state, and whose target nodes are the states
where the goals are true [I9]. This graph is never made explicit as it contains a
number of states that is exponential in the number of fluents of P, but can be
searched quite efficiently with current heuristics.

Heuristic functions h(s) provide an estimate of the cost to reach the goal from
any state s, and are derived automatically from a relaxation (simplification) of
the problem P [20]. The relaxation most commonly used in planning, called
the delete-relaxation and denoted as PT, is obtained by removing the delete
lists from the actions in P. While finding the optimal solution to the relaxation
PT is still NP-hard, finding just one solution is easy and can be done in low
polynomial time.

The additive heuristic, for example, estimates the cost h(p; s) of achieving the
atoms p from s through the equations [19]:

oy _Jo ifpes
h(ps ) = {h(ap; s) otherwise
where a,, is a best support for p in s defined as
ap = argmin,eo,h(a;s)

O(p) is the set of actions that add p in P, and h(a;s) is

h(a;s) = cost(a) + Z h(g;s) .

g€Pre(a)
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The cost of achieving the goal G from s is then defined as

hadd(s) = Z h(p;s) .

peEG

The heuristic hqqq is not admissible (it’s not a lower bound) but is informative
and its computation involves the solution of a shortest-path problem in atom
space as opposed to state space. A plan 7+ (s) for the relaxation P+ can be
obtained from the heuristic hqq44(s) by simply collecting the best supports recur-
sively backwards from the goal [21]. This is actually the technique used in the
state-of-the-art planner LAMA [I8], winner of the 2008 International Planning
Competition [I5], that defines the heuristic h(s) as the cost of this ‘relaxed plan’,
and uses it in problems where action costs are not uniform. The search algorithm
in LAMA is (greedy) best first search with the evaluation function f(s) = h(s)
and two open lists rather one, for giving precedence to the actions applicable in
the state s that are most relevant to the goal according to 7 (s); the so-called
helpful actions [7].

3 Incomplete Information

The good news about classical planning is that it works: large problems can
be solved quite fast, and the sheer size of a problem is not an obstacle to its
solution. The bad news is that the assumptions underlying classical planning
are too restrictive. We address now the problems that arise from the presence of
uncertainty in the initial situation. The resulting problems are called conformant
as they have the same form as classical plans, namely plain action sequences,
but they must work for each of the initial states that are possible.

An example that illustrates the difficulties that arise from the presence of
incomplete information in the initial situation is shown in Fig. 2l It displays a
robot that must move from an uncertain initial location I, shown in gray, to
the target cell G that must be reached with certainty. The robot can move one
cell at a time, without leaving the grid: moves that would leave the agent out
of the grid have no effects. The problem is very much like a classical planning

_IN

Fig. 2. A problem involving incomplete information: a robot must move from an un-
certain initial location I shown in gray, to the target cell G with certainy. For this, it
must locate itself into a corner and then head to G.
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problem except for the uncertain initial situation I. The solutions to the problem,
however, are quite different. Indeed, the best conformant plan for the problem
must move the robot to a corner first, and then head with certainty to the target
G. For example, for being certain that the robot is at the left lower corner of the
grid, the robot can move left three times, and down three times. Notice that this
is the opposite of reasoning by cases; indeed, the best action to do from each
of the possible initial locations is not to move left or right, but up or right. Yet
such moves would not help the robot reach the goal with certainty.

The model for the conformant planning problem is the model for classical
planning but with the initial state so replaced by a non-empty set Sy of possible
initial states. The Strips syntax for the problem P = (F, O, I, G) is also extended
to let I stand for a set of clauses and not just a set of atoms, and O to include
actions with effects L, positive or negative, that are conditional on a set of
literals L4, ..., L,, written as Lq,..., L, — L, where each L; and L are positive
or negative literals.

Conformant planning problems are no longer path-finding problems over a
directed graph whose nodes are the states of the problem, but rather path-finding
problems over a directed graph whose nodes are sets of states, also called belief
states [22]. Belief states express the states of the world that are deemed possible
to the agent. Thus, while in classical planning, the size of the (state) space to
search is exponential in the number of variables in the problem; in conformant
planning, the size of the (belief) space to search is exponential in the number
of states. Indeed, conformant planning is harder than classical planning, as even
the verification of conformant plans is NP-hard [23].

Conformant planners such as Contingent-FF, MBP, and POND [242526],
address the search in belief space using suitable belief representations such as
OBDDs, that do not necessarily blow up with the number of states deemed pos-
sible, and heuristics that can guide the search for the target beliefs. Another
approach that has been pursued recently, that turned out to be the most com-
petitive in the 2006 Int. Planning Competition, is to automatically transform
the conformant problems P into classical problems K (P) that are solved by
off-the-shelf classical planners.

The translation K(P) = Krp p(P) of a conformant problem P involves two
parameters: a set of tags T and a set of merges M [27]. A tag t is a set (conjunc-
tion) of literals in P whose status in the initial situation I is not known, and a
merge m € M is a collection of tags ti,...,t, that stands for the DNF formula
t1 V---Vit,. Tags are assumed to represent consistent assumptions about I, i.e.
I £ —t, and merges represent disjunctions of assumptions that follow from I;
ie. TEH V- Vi,

The fluents in K ar(P), for the conformant problem P = (F,0,1,G) are of
the form KL/t for each L € F and ¢ € T, meaning that “it is known that if ¢
is true in the initial situation, L is true”. In addition, K7 as(P) includes extra
actions, called merge actions, that allow the derivation of a literal KL (i.e. KL/t
with the “empty tag”, expressing that L is known unconditionally) when KL /¢
has been obtained for each tag ¢’ in a merge m € M for L.
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Formally, for a conformant problem P = (F,0,I,G), the translation defines
the classical problem Krp p(P) = (F',0',I' G') where

F' ={KL/t, K-LJt| L € F}

I' ={KLJt|ifI=t>L}

G' ={KL|LeG)}

O ={a:KC/t - KL/t, a: -K-C/t — —-K-L/t
la:C—Lin P} U{/\ KL/t - KL|me M}

tem

with ¢ ranging over T' and with the preconditions of the actions a in Kp ar(P)
including the literal KL if the preconditions of a in P include the literal L.

When C = Ly, ..., L,, the expressions KC/t and ~K—C/t are abbreviations
for KLq/t,...,KL,/t and ~K—L1/t,...,~K—L,/t respectively. Arulea : C' —
L in P gets mapped into “support rules” a : KC/t — KL/t and “cancellation
rules” a : “K-C/t — —~K-L/t; the former “adds” KL/t when the condition
C' is known in ¢, the latter undercut the persistence of K—L/t except when (a
literal in) C is known to be false in ¢.

The translation K s (P) is sound, meaning that the classical plans that solve
K v (P) yield valid conformant plans for P that can be obtained by just drop-
ping the merge actions. On the other hand, the complerity and completeness
of the translation depend on the choice of tags T and merges M. The K;(P)
translation, where 4 is a non-negative integer, is a special case of the K ps(P)
translation where the tags t are restricted to contain at most ¢ literals. K;(P)
is exponential in i and complete for problems with conformant width less than
or equal to i. The planner Ty feeds the K;(P) translation into the classical FF
planner [7] and was the winning entry in the Conformant Track of the 2006 IPC
[23].

4 Sensing and Finite-State Controllers

Most often problems that involve uncertainty in the initial state of the environ-
ment or in the action effects, also involve some type of feedback or sensors that
provide partial state information. As an illustration of a problem of this type,
consider the simple grid shown on the left of Fig. Bl where an agent starting in
some cell between A and B, mut move to B, and then to A. In this problem,
while the exact initial location of the agent is not known, it is assumed that the
marks A and B are observable.

The solutions to problems involving observations can be expressed in many
forms: as contingent plans [24], as policies mapping beliefs into actions [12], and
as finite-state controllers. A finite-state controller that solves the problem above
is shown on the right of Fig. Bl An arrow ¢; — ¢; between one controller state g;
and another (or the same) controller state ¢; labeled with a pair O/a means to
do action a and switch to state g;, when o is observed in the state ¢;. Starting in
the controller state qg, the controller shown tells the agent to move right until
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-/Right
A/Right -/Left
A B B/Left
q0

Fig. 3. Left: A problem where an agent, initially between A and B, must move to B
and then back to A. Right: A finite-state controller that solves the problem.

observing B, and then to move left until observing A or B (the observation -’
means no observation).

Finite-state controllers such as the one displayed above have two features that
make them more appealing than contingent plans and POMDP policies: they are
often very compact, and they often quite general too. Indeed, the problem above
can be changed in a number of ways and the controller shown would still work.
For example, the size of the grid can be changed from 1 x 5 to 1 x n, the agent
can be placed initially anywhere in the grid (except at B), and the actions can
be made non-deterministic by the addition of ’noise’. This generality is well
beyond the power of contingent plans or exact POMDP policies that are tied
to a particular state space. For these reasons, finite-state controllers are widely
used in practice, from controlling non-playing characters in video-games [29] to
mobile robots [30/31]. Memoryless controllers or policies [32] are widely used
as well, and they are nothing but finite-state controllers with a single state.
The additional states provide finite-state controllers with memory that allows
different actions to be taken given the same observation.

The benefits of finite-state controllers, however, come at a price: unlike con-
tingent trees and POMDP policies, they are usually not derived automatically
from a model but are written by hand; a task that is not trivial even in the
simplest cases. There have been attempts for deriving finite-state controllers for
POMDPs with a given number of states [33I34I35], but the problem can be solved
approximately only, with no correctness guarantees.

Recently, we have extended the translation-based approach to conformant
planning presented above [27], to derive finite-state controllers [36]. For this,
the control problem P is defined in terms of a conformant problem with no
preconditions, extended with a set O of observable fluents. The solution to the
problem P is defined in terms of finite state controllers Cn with a given number
N of controller states. This rules out sequential plans as possible solutions, as
they would involve a number of controller states equal to the number of time
steps in the plan.

The controller Cy is a set of tuples ¢t = (i,0,a, k) that tell the agent to do a
and switch to state ¢ when the observation is o0 and the controller state is g;. The
key result is that a finite-state controller C that solves P can be obtained from
the classical plans of a classical problem Py obtained by a suitable translation
from P, O, and N. The key idea in the translation is to replace each action a in
P by an action a(t), for each t = (i,0,a, k), so that the effects C — C’ of a in



Inference and Learning in Planning 9
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Fig. 4. Left: Problem where visual-marker (circle on the lower left) must be moved on
top of a green block. The observations are whether the cell currently marked contains
a green block (G), a non-green block (B), or neither (C); and whether this cell is at the
level of the table (T) or not (—). Right: Finite-state controller that solves the problem
for any number and arrangement of blocks.

P become effects ¢;,0,C — —q;, qr, C’ of a(t) in Px. That is, the effects of the
action a are made conditional on the observation o and state g¢; in the actions
a(t) where t = (i,0,a, k).

Fig. [l shows a more challenging problem solved in this way, resulting in a
very compact and general controller. In the problem, shown on the left, a visual-
marker (a circle on the lower left) must be moved on top of a green block . The
observations are whether the cell currently marked contains a green block (G),
a non-green block (B), or neither (C); and whether this cell is at the level of the
table (T) or not (’-’). The visual marker can be moved one cell at a time in the
four directions. This is a problem & la Chapman or Ballard, that have advocated
the use of deictic representations of this sort [37U38]. The finite-state controller
that results for this problem is shown on the right. Interestingly, it is a very
compact and general controller: it involves two states only and can be used to
solve the same problem for any number and arrangement of blocks. See [36] for
details.

5 Learning and Generalized Policies

We illustrated above that it is possible to obtain from a concrete problem P, a
finite-state controller that not only solves P but many variations too, including
changes in the initial situation and action effects, and changes in the number of
objects and size of the state space. This generalization does not follow from an
inductive approach over many problem instances, but from a deductive approach
over a single instance upon which the solution is guaranteed to be correct. The
generalization is achieved from a change in the representation of the solution:
while solutions to P that take the form of contingent plans or POMDP policies
would not generalize to problems that involve a different state space, solutions
that are expressed as compact finite-state controllers, often do. In principle, these
techniques can be used to derive finite-state controllers for solving any instance
of a given domain such as Blocks. Such general strategies exist; indeed, one such
strategy for Blocks is to put all blocks on the table, and then build the desired
towers in order, from the bottom up. Of course, this strategy is not optimal, and
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indeed no compact optimal strategy for Blocks exists. Yet, the approach pre-
sented above does not handle problems of this type. For this, first, observations
must be defined on fluents that are not primitive in the problem, and which thus,
must be conveniently discovered, like the fluent above, the transitive closure of
the on predicate, that comes very handy in Blocks. Second, the resulting pool of
observable fluents becomes then too large, so that the resulting translation Py
into a classical planning problem cannot even be constructed; the translation
is indeed exponential in the number of observables. Interestingly, inductive ap-
proaches have been shown to be able to generate general strategies for domains
like Blocks [39], and moreover, some of these inductive approaches do not require
any background knowledge and work just with the definition of the planning do-
main and a small set of solved instances [40M41]. A interesting challenge for the
future is the combination of inductive and deductive approaches for the deriva-
tion of general policies able to solve any instance of a given planning domain
without search. From the discussion above, it seems that inductive methods are
good for selecting informative features, while deductive methods are good for
assembling these features into correct general policies. In this sense, planning
appears to be an ideally rich application domain where learning adequate rep-
resentations appears to be possible and critical for achieving both efficiency and
generality.
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