Compiling Uncertainty Away in Non-Deterministic
Conformant Planning

Alexandre Albore! and Hector Palacios? and Hector Geffner®

Abstract. It has been shown recently that deterministic conformant
planning problems can be translated into classical problems that can
be solved by off-the-shelf classical planners. In this work, we aim
to extend this formulation to non-deterministic conformant planning.
We start with the well known observation that non-deterministic ef-
fects can be eliminated by using hidden conditions that must be intro-
duced afresh each time a non-deterministic action is applied. This ob-
servation, however, leads to translations that have to be recomputed
as the search for plans proceeds. We then introduce other transla-
tions, that while incomplete, appear to be quite effective and result
in classical planning problems that need to be solved only once. A
number of experimental results over existing and new domains are
reported.

1 Introduction

Conformant planning is a form of planning where a goal is to be
achieved when the initial situation is not fully known and actions
may have non-deterministic effects [7, 14]. While few practical prob-
lems are purely conformant, the ability to find conformant plans is
needed in contingent planning where conformant situations are a spe-
cial case. It has also been shown that solutions to contingent prob-
lems can benefit from conformant planning methods [8, 1], and more
recently, that a large class of contingent problems can be translated
into conformant ones [4].

The problem of conformant planning can be formulated as a path-
finding problem in belief space, where a sequence of actions that map
an initial belief state into a target belief state is sought [3]. A belief
state represents the set of states that are deemed possible, and actions,
whether deterministic or not, map one belief state into another. This
formulation, that underlies most current conformant planners [9, 5,
6], must address the representation of beliefs, and the derivation and
use of effective belief heuristics.

An alternative approach has been pursued recently in the form of
a family of translations Kt s, where 17" and M are two parame-
ters, such that the plans for a deterministic conformant problem P
are obtained from the plans of the classical problem K1 as(P), that
are computed by off-the-shelf classical planners [12]. These Kr
translations are sound, and for suitable choices of the parameters —
the set of tags 7" and merges M — are also complete. For example,
the translation K; is exponential in the non-negative integer ¢ and
is complete for problems with conformant width bounded by <. The
conformant width gives an idea of the structural complexity of the

1 Universitat Pompeu Fabra, Spain, email: alexandre.albore @upf.edu.

2 Universidad Simén Bolivar, Venezuela, email: hlp@Idc.usb.ve.

3 ICREA & Universitat Pompeu Fabra, Barcelona, Spain, email: hec-
tor.geffner @upf.edu.

problem, and is related to the size of the tags required for a com-
plete translation. The translation K has turned out to be particularly
practical as it can be computed very fast and yields solutions to most
existing deterministic benchmarks.

In this work, we aim to extend the translation-based approach to
conformant problems featuring non-deterministic effects. We start
with the well known observation that non-deterministic effects can
be eliminated by using hidden conditions that must be introduced
afresh each time a non-deterministic action is applied. This observa-
tion, however, leads to translations that have to be recomputed as the
search for plans proceeds. We then introduce other translations, that
while incomplete, appear to be quite effective and involve calling a
classical planner only once.

The paper is organized as follows. We recall first the definition of
non-deterministic conformant problems and the translation of deter-
ministic conformant problems into classical ones. We then consider a
standard deterministic relaxation of non-deterministic problems and
its use for defining three types of translation-based planners able to
handle non-deterministic actions. We then test these planners and
summarize the results.

2 Non-Deterministic Conformant Planning

Conformant planning problems P are represented as tuples of the
form P = (F, 1,0, G) where F stands for the fluent symbols in the
problem, I is a set of clauses over F' defining the initial situation,
O stands for a set of (ground) operators or actions a, and G is a set
of literals over F' defining the goal. Every action a has a precondi-
tion Pre(a) given by a set of fluent literals, and a set of conditional
effects orrules a : C — C1|C2| -+ |Cp, n > 1, where C and
C; stand for sets (conjunctions) of literals, and C' can be empty. The
effect is deterministic if n = 1, and non-deterministic otherwise.
When convenient, we take a deterministic effect C' — C” as the set
of effects C' — L for each L € C’. We write the complement of a
literal L as = L.

The semantics of a non-deterministic problem P = (F, 1,0, G)
is defined in terms of the state trajectories that are possible. A state
is a set of literals representing a truth assignment over the fluents in
F. An action a € O is applicable in s, if Pre(a) C s, and s’ is a
possible successor state of s given a if for each of the conditional
effects

c' o cil e C,

associated with the action a, s’ is the single successor state of s given
an action a’ that is like a but with the deterministic conditional effects
ct — C}(i>, where 1 < f(i) < n; is a function that selects one
outcome C}(i) from the set of possible outcomes. We assume that
this successor state is always well defined, and hence, that if two

outcomes C}(i) and C';(k) are complementary, the bodies of such

effects C* and C* can’t be reached jointly from any possible initial
state. The state trajectories So, ..., Sn+1 that are possible given an
action sequence ao, . . . , an, are the ones that start in a possible initial
state sp and s;+1 is a possible successor state of s; given a;.

An action sequence ag, . . ., Gy, 1S a conformant plan for P if each
action a;, ¢ = 1,...,n, is applicable in the state s; of all the state
trajectories so, ..., s; that are possible given the preceding action
sequence ao, - . ., ai—1, and S, 4+1 1s a goal state.

Alternatively, if b is the set of initial states that are possible, and
b;+1 is the set of states that are possible given an action a; applicable
in each state in b;, ao, . . ., a, is a conformant plan for P if it maps
the initial set bo into a final set b,,+1 of goal states. The sets of states
bi,i=0,...,n, are called belief states.

3 Translation of Deterministic Problems

The translation-based approach to conformant planning maps confor-
mant problems P into classical problems K (P) that can be solved
by off-the-shelf planners. In this section, we review the main ideas
[12]. The simplest translation, called Ko, replaces the literals L in P
by literals KL and K —L that are aimed at capturing whether L is
known to be true and known to be false respectively.

Definition 1 (Ko) For a deterministic conformant problem P =
(F,I,0,Q), the translation Ko(P) = (F',I',0', G") is the classi-
cal planning problem with

F'={KL,K-L|L€ F},

I' = {KL| L is a unit clause in I},

G' ={KL|L € G}, and

O’ = O with each precondition L for a € O replaced by KL,
and each conditional effect C — L replaced by KC — KL and

The expressions KC and - K—C for C = Lq, Lo ... are abbrevia-
tions for K L1, KLy ...and ~K—Ly,~K—Ls...respectively.

The intuition behind the translation is simple: first, the literal K L
is true in I’ if L is known to be true in I; otherwise it is false. This
removes all uncertainty from Ko (P), making it into a classical plan-
ning problem. In addition, for soundness, each rule a : C' — L in
P is mapped into two rules: a support rule o : KC — KL, that
ensures that L is known to be true when the condition is known to be
true, and a cancellation rule ¢ : ~K—~C — —K—L that guarantees
that K —L is deleted (prevented to persist) when action a is applied
and C'is not known to be false.

The translation Ko (P) is sound as every classical plan that solves
Ko(P) is a conformant plan for P, but incomplete, as not all confor-
mant plans for P are classical plans for Ko (P).

The more general translation schema K7 as builds on the Ko
translation using two parameters: a set 1" of tags t and a set M of
merges m. The tags and the merges are used to account for confor-
mant plans that reason by cases; indeed, the tags are used to intro-
duce assumptions about the initial situation that are eliminated via
the merges. The new literals K L/t in the translation aim to express
that L is known to be true if ¢ is true in the initial situation. A merge
m is a non-empty collection of tags ¢ in 7" that stands for the Disjunc-
tive Normal Form (DNF) formula \/ tem b A merge m is valid when
one of the tags ¢ € m must be true in /. The translation assumes all
merges to be valid. A merge m for a literal L in P translates then

into a ‘merge action’ with single effect

N\ KL/t — KL .

tem

The set of ‘merge actions’ associated with the set of merges M
is referred to as Ops. The translation K7 a7 (P) is the basic trans-
lation Ko(P) ‘conditioned” with the tags ¢ in 7" and extended with
the set Oy of actions. The literals K L are assumed to stand for the
literals K L/t where ¢ is the ‘empty tag’. The empty tag expresses
no assumption about the initial situation and is assumed implicitly in
every set 1.

Definition 2 (K7,a7) Let P = (F,I,0,G) be a conformant prob-
lem, then K (P) is the classical planning problem K a(P) =
(F',T',0',G") with

F'={KL/t,K~L/t|L € Fandt € T},

I'={KL/t| I,t = L},

G' ={KL|L € G}, and

O’ = O U O with each precondition L for a € O replaced by
KL, and each conditional effect C — L replaced by KC [t —
KL/t and -K-C/t — —-K-L/t.

The translation K7 a(P) reduces to the basic translation Ko(P)
when M is empty and 7" contains only the empty tag. For suitable
choices of T" and M, the translation K7 a(P) can be both sound
and complete: sound, meaning that the classical plans for K s (P)
are all conformant plans for P once merge actions are removed, and
complete, meaning that all conformant plans for P yield classical
plans for K7, (P) once merge actions are added.

One way to get a complete translation is by associating the tags
in T with the set of possible initial states of P. However, complete
translations that are compact are also possible [12]. The core of such
translations is given by the set C7(L) of clauses in I, including pos-
sibly tautologies of the form L’ V —L’, that are relevant to a literal
L. Assuming that [is in prime implicate form, a translation can be
shown to be complete when, for each precondition and goal literal
L, it includes a ‘covering merge’: this is a merge m = {t1,...,tn}
that corresponds to the valid DNF formula ¢; V - -+ V ¢ in [such
that each term ¢; satisfies Cr(L). Such tags and merges can be com-
puted in time that is exponential in a parameter associated with the
set Cy (L) that is called the width of L.

Kso(P) is the translation K, (P) obtained by setting 7" to the
set of possible initial states So and having one merge in M equal
to So for each precondition and goal literal. An alternative complete
translation is Komoders(P), where the merge for L is defined as the
set of models of the clauses C7(L) in I relevant to L. More interest-
ingly, the K;(P) translation for a fixed integer ¢ > 0, is polynomial
and complete for problems P with conformant width bounded by 3.
The merges for L in K;(P) are defined by converting subsets of ¢
clauses from C7(L) into DNF.

As an illustration, consider the conformant problem P with initial
situation I = {z1 V -+ V &, }, goal G = L, and actions a;, i =
1,...,m,each with effect z; — L. For this problem, there is a single
goal or precondition literal L, and the set of clauses in I relevant to
L, C;(L), contains the single clause x1 V- - - V . For this problem,
Ks0(P) contains the merge m = Sy for L, where Sy stands for the
set of possible initial states of P. Since, L is initially unknown, and
there are 2™ — 1 satisfying assignments over the x; variables, there
are 2 - (2™ — 1) possible initial states, and hence 2 - (2™ — 1) + 1
tags. The K, 04eis translation associates the merge m for L with the

models of C7(L) that involve only the x; variables, and hence results
in (2™ — 1) + 1 = 2™ tags. Last, the K;(P) translation features
merges for L obtained by translating sets of i-clauses from C;(L)
into DNF. In particular, K contains the merge m = {z1,...,Zm}
obtained from translating the single clause 1 V - - - V &y, in C7(L),
which is already in DNF. Since the width of P is trivially 1 — there
is a single goal or precondition literal with a singleton C7(L) set —
the translation K1, while polynomial, is guaranteed to be complete.
The fluents in this translation are of the form K L' /t, where L' is L,
x;, or their negations, and ¢ is x; or the empty tag, ¢ = 1,...,m.
The conformant plans for P are the classical plans for K1 (P) with
the merge actions removed.

4 Deterministic Relaxation

The translations K1 s above are for deterministic conformant prob-
lems. For translating non-deterministic problems, one possibility is
to take advantage of a well known transformation that maps each
one of the non-deterministic effects

C' = CLC5| - | Chia (1)

of an action a with n;(a) possible outcomes, i = 1,...,n(a), into
n;(a) deterministic effects

C*, hi(a) = Cj,)

k=1,...,n:(a), along with ‘oneof” expressions

oneof (hi(a), ..., hy,(a)) 3)

added to [. In this transformation, uncertainty in the state transitions
is converted into uncertain conditions h, () in the initial situation.

The deterministic conformant problem that follows from applying
this transformation, that we call P, is not equivalent to the original
non-deterministic conformant problem P in general, but is equivalent
to P over plans that do not involve non-deterministic actions more
than once:

Proposition 3 Let 7 be an action sequence that involves each non-
deterministic action from P at most once. Then w is a plan for the
non-deterministic conformant problem P iff 7 is a plan for the deter-
ministic conformant plan P,.

When non-deterministic actions are applied more than once, the
difference between P and Py is that the hidden A conditions in Py es-
tablish correlations among the possible outcomes of the same action
during the execution of a plan. In particular, the possible outcome of
an action a in P can be C,iC the first time, and C]i, the second time,
with k" # k, but this is not possible in the deterministic relaxation
Py.

For example, if move is a non-deterministic action in P with non-
deterministic effect

2(i),y(j) — =(i+1),-2() | y(G + 1), ~y() ,

a sequence of two move actions starting at (x(0),y(0)) will re-
sult in three possible locations: (z(2),y(0)), (z(0),y(2)), and
(x(1),y(1)). On the other hand, only the first two locations are pos-
sible in Py; the first follows from states where the first hidden con-
dition hi(move) is true; the second, from states where the second
hidden condition h3(move) is true.

The transformation of P into Py can be used however to obtain an
incomplete non-deterministic conformant planner in a simple man-
ner. A classical planner is called over the translation K (P;) for some
K = Kr,u, and if no non-deterministic action from P appears
twice in the plan returned, from the soundness of the translation and
Proposition 3, the plan with the merge actions removed must be a
plan for P.

Below we will use the relaxation P, the translations K7 s,
and off-the-shelf classical planners to define various types of non-
deterministic conformant planners. None is complete, but some, as
we will see, are pretty effective.

Before proceeding with the description of such planners, it will be
useful to consider first a generalization of the deterministic relaxation
P, that works on a variant of P that we call P, which is exactly
like P but with each non-deterministic action a copied m times, with
different names a', . .., a™. These copies make no difference to P,
as the problems P and P™ are equivalent, but make a difference in
the relaxations Py and P;* of P and P™ respectively that are not
equivalent. Indeed, while the relaxation P; can capture plans for P
that include each non-deterministic action of P at most once, the
relaxation P} can capture plans for P where each non-deterministic
action is done at most m times. Indeed, for a sufficiently large m,
P3" will necessarily account for a plan that solves P, and even for a
plan that solves P optimally.

We can actually modify the relaxation P;* slightly so that the
translation K (P;") generates sound plans only; namely plans where
each non-deterministic action is applied up to m times and no more.
The change is very simple: we create new fluents blocked(a”), for
each copy a” of a non-deterministic action a in PJ*, k = 1,...,m,
and 1) set all these atoms true initially, except for blocked(a'), that
is false initially, 2) add the literal —blocked(a®) to the precondi-
tion of the action a”, and 3) add the literals —blocked(a***) and
blocked(a”) to its effects. Notice that that the relaxation Py is P}
withm = 1.

5 Three Non-Deterministic Conformant Planners

We focus now on the definition of three types of non-deterministic
conformant planners, all of which rely on the use of classical plan-
ners. They are all based on the relaxations above for eliminating non-
deterministic effects, and on the various translations K for mapping
deterministic conformant problems into classical ones.

5.1 A K-Replanner

The K-Replanner is a lazy but incomplete implementation of a plan-
ner based on the translation K of the deterministic relaxation Pj"
of P, for an arbitrary m, where the last copy a® of each non-
deterministic action a does not get blocked and can be used more
than once. It exploits the property that if such actions a* are not used
more than once in the classical plan 7 returned for K (P;"), then 7
is a conformant plan for P (once the merge actions are dropped). On
the other hand, the situation where a plan ™ = ao, a1, ..., ay is re-
turned for K (P;*) such that w;41 = ao,...,a;+1 is the first prefix
of 7 that violates this condition, constitutes a flaw, that is ‘repaired’
by preserving the ‘flawless’ prefix m;, while merging it with a plan
tail 7’ obtained recursively from the resulting state s; 1 over an en-
coding, that is like K (PJ") except that the “faulty’ action copy a”
is split into two: the action a” itself, that is blocked in s;41, and a
new copy a1 with its own fresh hidden k variables, that is not. The
resulting planning algorithm is dynamic in the sense that each time a

classical plan with a ‘flaw’ is returned, a plan tail is computed (recur-
sively) over a classical problem that is slightly different, and includes
more fluents (the A and blocked fluents), more initial conditions (in-
volving the new blocked fluents and one-of h expressions), and more
actions (the merges resulting from the new one-of expressions). Ba-
sically, if P; is the deterministic relaxation of P before the flaw, and
P4 is the deterministic relaxation after the flaw, the classical prob-
lems before and after the flaw are K (P;) and K (P;11) respectively.
Notice that for all translation schemas K = K s, the translation
K (P;+1) can be computed incrementally with minor modifications
from the translation K (F;) of the previous deterministic relaxation
P;.

We call this planning schema able to handle non-deterministic ac-
tions starting with P, = Py, the K-replanner. The K-replanner is
incomplete even if the translation K is complete for deterministic
problems. The incompleteness is a result of the commitment to the
‘flawless’ plan prefixes that are extended after each iteration, and
which may render a solvable problem P, unsolvable. The schema,
however, is sound:

Proposition 4 If the K-replanner returns an action sequence T,
then m with the merge actions removed is a plan for the non-
deterministic conformant problem P.

5.2 K-Reset Planner

The second and third planning schemas are simpler and require call-
ing a classical planner only once. The classical plan returned is a
solution to the original non-deterministic conformant problem. Both
schemas are thus sound, and while neither one is complete, they turn
out to be more effective than the K -replanner.

The K-reset planner uses the translation K (Py) of the determin-
istic relaxation Py extended with the blocked fluents that prevent a
non-deterministic action from being applied more than once. Yet, the
classical encoding K (Py) is extended with reset actions, reset(a),
one for each non-deterministic action a, that can be used to unblock
these actions and use them multiple times in a sound manner.

The definition of the reset(a) action takes advantage of the struc-
ture of the translations K = K, and it allows multiple occur-
rences of non-deterministic actions without having to introduce mul-
tiple action copies. It is based on an idea that we express first in the
language of conformant planners that search in belief space. Assume
a belief space planner that represents beliefs as sets (conjunctions) of
formulas. Actions in such a setting, deterministic or not, map one set
of formulas F; into another set F;4 ;. Likewise, an action sequence
ao, ..., 0y is a plan if it maps the initial set of formulas Fp into a
final set F’, 41 that implies the goal. Now consider a version of such
a planner that drops some of the formulas in F;11 and thus maps
a set of formulas F; into a weaker set Fy ;. Such a planner is still
sound but possibly incomplete. The relevant observation here is that
one such incomplete planner over the deterministic relaxation Py can
accommodate plans with multiple occurrences of non-deterministic
actions a provided that, before new occurrences of the same action a
are applied in Py, all beliefs (formulas) involving hidden conditions
hi(a) are dropped.

This is precisely what the reset(a) action does: it unblocks
the action a while deleting all beliefs involving the hidden con-
ditions h%(a) associated with a. This is achieved by having the
literal blocked(a) as a precondition of reset(a), and the literals
—blocked(a) and =K L/t as its effects, for all L and tags ¢ that in-

clude a hidden condition h% (a).*

If P, is the deterministic relaxation of P extended with the
blocked(a) fluents, and K (Pg) is the translation extended with the
reset(a) actions, it can be proved that the classical plans for K (Py)
are all plans for P:

Proposition 5 Any plan 7 returned by a classical planner from the
translation K (Py) extended with the reset actions, is a plan for the
non-deterministic conformant problem P, once the merge and reset
actions are removed.

53 (K, K,) Planner

The third non-deterministic planner is a special case of the K -reset
planner that uses a particular type of K translation for getting rid
of the reset(a) actions and the blocked(a) fluents. Indeed, it fol-
lows from the arguments above that the reset actions and blocking
fluents are not needed in the K -reset planner when the translation K
is such that it does not generate tags involving the hidden conditions
hi (a). For example, the K -reset planner for K = Kj does not re-
quire blocking fluents and reset actions as it does not generate any
tags at all, except for the empty tag. The Ko-reset planner, however,
is just too weak.

A much larger family of translations that do not generate tags in-
volving the hidden conditions k% (a) can be defined in analogy to the
family of deterministic translations K oders, and K; for ¢ > 0. Re-
call that these translations are instances of the general K7 as trans-
lation defined by the manner in which they map subsets of clauses of
C1(L) into merges for L. For a translation K, let us denote its set
of merges for each literal L, as m,(C(L)). A class of translations
(K4, Ko) can then be defined for the deterministic relaxation Py of
P by simply splitting the set of clauses in C7(L) into two sets: the
clauses C%(L) that involve hidden conditions h (a) for some ac-
tion a, and the clauses C'7(L) that do not. The translation (K, Ko)
for K = K, can then be defined by discarding the clauses C'7(L)
involving the hidden conditions, and hence applying the K transla-
tion to the remaining set of clauses C7 (L) only. Namely, the merges
in the translations (K, Ko) are simply the merges m,(C7(L)) for
the goal and precondition literals L, and the resulting set of tags is
the set of tags in all such merges (along with the empty tag). It is
clear that the translation (K, Ko) does not generate tags involving
the hidden conditions A (a), and hence nor beliefs that are condi-
tional over such conditions. It does not require therefore to block or
to reset (non-deterministic) actions a whose effects depend on them,
as it does not generate any such action. It can then be shown that:

Proposition 6 Any plan m returned by a classical planner from the
translation (K, Ko)(Pq) is a plan for the non-deterministic confor-
mant problem P once the merge actions are dropped.

Since the (K, Ko) translation does not capture disjunctive reason-
ing over the hidden h-conditions, we extend it with two types of gen-
eral inference rules from [11], implemented as additional actions in
the classical encoding that capture some of those patterns.

The first is the static-or rule, that is based on the disjunctions
1V -V z, in the problem P that are invariant, meaning that are

4Tt is actually not necessary to delete all literals K L/t involving tags featur-
ing the hidden conditions h}'c (a) before applying the action a a new time;
it suffices to delete all such literals when K L does not hold. Otherwise, all
literals XL/t can be maintained. This refinement is often convenient and
is part of the K -reset planner tested below.

true in all reachable belief states. The associated action has n condi-
tional effects C; — Kx;,7 =1,...,n, where C; is the conjunction
of all literals K—xy, k # . For example, in a grid n X m, the dis-
junctions 1 V - -+ V x, and y1 V --- V y,, encoding the possible
x and y locations are invariant and therefore result in two actions of
this type.

The second rule, called action compilation [11], makes explicit ef-
fects that are otherwise implicit. For example, the action move-right
with conditional effects z; — x;41 in P, fort = 1,...,n — 1,
generates effects like Kx; — Kx;41 in all Kp.p(P) transla-
tions. Inspection of the action, however, reveals other effects like
K—-z; — K-x;41. Action compilation obtains such implicit ef-
fects in polynomial time by considering each action in isolation, as a
preprocessing step.

6 Experimental Results

We evaluate the performance of the (K, Ko) and K-reset planners
using LAMA [13] and FF [10] as the base classical planners. We
do not include results for the K-Replanner, as the experiments us-
ing a preliminary implementation suggest that it does not scale up.
We compare with MBP and KACMBP [6, 2], which to the best of
our knowledge are the only other (qualitative) conformant planners
that deal with non-deterministic actions. The results are shown in
Table 1. The table shows times in seconds, including preprocessing,
translation, and search, and plan costs, as measured in the number
of actions in the plan. The data has been generated on PCs running
Linux at 2.33GHz with 8GB of RAM, with a cutoff time of 2 hours,
and a memory bound of 2.1GB.

Many of the domains are from the MBP/KACMBP and Ty dis-
tributions [6, 2, 12]. These include bmtuc, btuc, nondet-ring and
nondet-ring-1key, from the former, and sgripper from the latter. The
first two are non-det variations of the bomb-in-the-toilet problem, the
second two are variations of the deterministic ring domain, and the
last one is a variation of the classical gripper domain.

The other domains are new. Mouse-and-cat-n is about a mouse
that must collect one of m cheeses in known locations over a n X
n grid. The initial position of the cat is known, but every time the
mouse moves, the cat moves non-deterministically in one of the four
possible directions. The mouse can move or grab a cheese only if the
cat is not in that position. An instance has a solution if the mouse can
get to a cheese, reaching each position before the cat does.

The domains nd-coins and nd-uts are non-deterministic variations
of the coins and uts domains used in the conformant track of a pre-
vious IPC. In nd-coins, the lift non-deterministically closes its doors
when the agent steps in or out. The lift can’t move if a door is open,
and an action is available to shut the doors. In nd-uts, the traveller can
forget his passport in the plane after each leg of the trip, and there is
an action to recover the passport that is necessary to travel.

Trail-follow-n is a about an agent moving in a grid from z = 0,
y =n/2tox = n,y = n/2. There are actions for moving 1 unit
along the z-axis with noise over the y coordinate that can be +1,
—1, or 0. In addition, there is an action ‘back-to-trail’ that moves the
agent 1 unit up or down, or none, according to whether the agent is
below, above, or at the y = n/2 row (the trail).

Last, move-pkgs-n-m is about moving m objects from their ini-
tial locations to their final locations over a n x n grid. The possible
actions involve picking-up or putting-down an object, and moving
from a location to an adjacent one. The action ‘move’ has the non-
deterministic effect that the object being held may drop at the target
location.

The best results in the table are for the KACMBP and (K, Ko)
planners. The (K, Ko) planners produce much shorter plans then
KACMBP or MBP. The (K, Ko) planner is used by trying first the
(Ko, Ko) translation, then (K1, Ko), and finally, { Kmodets, Ko)- A
translation is assumed to fail when the classical planner reports an
infinite heuristic for the initial state. The (K, Ko) translation with
K = Kjp produces solutions for mouse-and-cat, sgripper, trail-
follow, and move-pkgs, and with K = K, solutions for all the
other domains except for nondet-ring-1key. For the K -reset planner,
K = K; was used in all cases, and this explains why it reports the
nondet-ring-1key instances as unsolvable. KACMBP is best on the
two nondet-ring domains. In the version with the key, because, even
leaving the non-deterministic actions aside, the problem has width
higher than 1 and the K translation does not render it solvable.
Hence, the K ,odeis translation ends up being used in the (K, Ko)
planner, whose size grows exponentially with the number of rooms.
On the other hand, in the version without the key, the difficulties arise
in the classical planners: LAMA times out while ordering the land-
marks, and FF gets lost in the search. Last, in mouse-and-cat, the
problem is in our translators, that time out. This problem, however,
should be fixable with a better implementation.

In the table, the classical planner used is LAMA, except for move-
pkgs ((K, Ko)), btuc, trail-follow, sgripper, where results with FF
have been reported. The classical planners FF and LAMA provide
roughly a similar coverage over these domains, with most failures
arising not during the search but during preprocessing, as neither
planner has been designed to handle the huge grounded PDDL files
that result from the translations. For instance, in the K -reset trans-
lation, where tags are added for each of the hidden A conditions,
LAMA times out in the translation into SAS in domains like trail-
follow and move-pkgs, while in the same two domains, FF’s parser
breaks down. Likewise, in nondet-ring, FF runs out of memory in the
search, while LAMA times out while processing the landmarks.

7 Summary

We have considered extensions of the translation-based approach to
conformant planning for settings where some of the actions have
non-deterministic effects, making use of a deterministic relaxation
that is correct as long as the non-deterministic actions are executed
at most once. We then considered several incomplete translation
schemas and planners that use this relaxation, some of which appear
to be quite effective and map non-deterministic conformant problems
into classical ones. Two of these planners, based on the K -reset and
(K, Ko) translations, are compatible with any translation K, and in
particular, the (K, K) translation applied successively for K = Ko
and K = K appears to be quite effective. The empirical results of
these translations are encouraging, even if the resulting planners do
not always perform better than existing ones.

One theoretical issue for the future, involves studying the condi-
tions under which some of these incomplete translations are either
strongly or weakly complete. A translation K (P) is strongly com-
plete if it captures all plans for P, and is weakly complete if it cap-
tures some plans. In the latter case, the translation is useful too, as
it can be used to obtain a plan for P. The K translation for deter-
ministic conformant planning is strongly complete for problems with
width bounded by 1, and yet it is often effective (weakly complete)
for problems with higher widths. These characterizations are still to
be worked out for the incomplete translations proposed.

The problems that cannot be solved by the (K, Ko) and K -reset
planners are problems that involve non-trivial disjunctive reasoning

(K, Ko) K -reset MBP KACMBP
time #acts time #acts time #acts time #acts
bmtuc-10-10 0.0 20 0.0 20 65.9 29 0.2 20
bmtuc-50-50 1.3 100 1.5 100 > 2h 2722.4 100
bmtuc-100-10 12.0 200 12.7 200 >2h 25.1 200
bmtuc-100-50 5.6 200 6.1 200 >2h > 2h
bmtuc-100-100 10.6 200 11.9 200 > 2h > 2h
btuc-100 2.7 200 2.8 200 >2h 2.0 200
btuc-200 20.3 400 214 400 > 2h 16.9 400
btuc-300 70.6 600 72.8 600 > 2h 62.1 600
nondet-ring-20 103.4 78 105.5 78 > 2h 7.3 422
nondet-ring-30 430.1 206 440.9 206 > 2h 21.1 349
nondet-ring-40 16984 276 17294 276 >2h 67.6 469
nondet-ring-50 SMEF, PTL SMEF, PTL > 2h 603.1 2552
nondet-ring-1key-10 12.6 77 unsolvable 11.2 122 4.0 197
nondet-ring-1key-15 101.9 272 unsolvable >2h 337 375
nondet-ring- 1key-20 SM unsolvable >2.1GB 246.5 1104
sgripper-20 0.6 97 7.6 116 >2h 54 148
sgripper-30 2.5 147 34.7 176 > 2h 233 228
sgripper-50 16.0 247 255.1 296 > 2h 155.6 388
mouse-and-cat-20 5.2 37 1031.7 37 1.8 37 0.2 37
mouse-and-cat-30 23.3 57 KT 38.8 57 0.9 57
mouse-and-cat-40 KT KT 49.2 77 2.2 77
nd-coins-08 0.0 26 0.0 26 882.1 24 2.4 52
nd-coins-10 0.0 21 0.0 21 >2h 3.8 106
nd-coins-20 0.1 88 0.1 88 > 2h > 2h
nd-uts-04 0.0 23 0.1 27 12.2 40 18.8 42
nd-uts-06 0.1 35 04 40 >2h > 2h
nd-uts-07 0.2 41 0.6 44 > 2h > 2h
trail-follow-100 0.8 198 PMF, PTL 0.2 198 0.1 198
trail-follow-150 1.3 298 PMF, PTL 0.4 298 0.1 298
trail-follow-200 1.9 398 PMF, PTL 0.7 398 0.2 398
move-pkgs-nd-4-1 0.0 8 34.4 8 0.0 8 0.0 8
move-pkgs-nd-4-3 0.2 28 PMF, PTL 483 27 1797.0 37
move-pkgs-nd-5-1 0.2 19 PMF, PTL 0.0 25 0.1 19
move-pkgs-nd-5-3 0.4 22 PMF, PTL > 2h 398.6 26

Table 1. Performance of the non-deterministic conformant planners based on the (K, Ko) and K -reset translations, using LAMA and FF in comparison
with MBP and KACMBP. The best times for each domain shown in bold. In legends, KT means translation time out, PMF means FF preprocessor memory-out,
PTL means preprocessor times out in LAMA, SMF means that search memory-out in FF. "Unsolvable’ means that the translation results in classical planning
problem with an unreachable goal (h(sg) = oo). Times in seconds and rounded to the closest decimal. Plan quality expressed as number of actions in plan.

patterns over the hidden conditions h. For example, a problem where
a goal x = n + 1 is to be achieved starting fromx = O0andy = 0
with an action that increases x one by one up to x = n, and increase
y non-deterministically by either 1 or 0. If there are then n actions

[5] D.Bryce, S. Kambhampati, and D. E. Smith, ‘Planning graph heuristics
for belief space search’, Journal of Artificial Intelligence Research —
JAIR, 26, 35-99, (2006).

[6] A. Cimatti, M. Roveri, and P. Bertoli, ‘Conformant planning via sym-
bolic model checking and heuristic search’, Artificial Intelligence, 159,

enter(i) to move fromx = ntox = n+ 1,7 = 1,...,n, each 127-206, (2004).
with condition y = 4, the plan that increases = n times, followed by [7] R. P. Goldman and M. S. Boddy, ‘Expressive planning and explicit
the actions enter(1), ..., enter(n) solves the problem, but can’t be knowledge’, in Proc. AIPS-1996, pp. 110-117, (1996).

captured by the (K, Ko) and K -reset planners for any K if n > 2.

Last, while the results show that the translation-based approach
is feasible and competitive in the non-deterministic setting, they also
suggest that scalability could be improved by integrating the classical
planner and the translators more tightly. Moreover, tags in the trans-
lation play two roles: keeping track of the ‘conditional beliefs’, and
producing the heuristic for guiding the search over beliefs. It seems
also that scalability could be improved by separating these two roles,
and implementing them in different ways.

REFERENCES

[1] A. Albore, H. Palacios, and H. Geffner, ‘A translation-based approach
to contingent planning’, in Proc. IJCAI-2009, pp. 1623—1628, (2009).

[2] P Bertoli and A. Cimatti, ‘Improving heuristics for planning as search
in belief space’, in Proc. AIPS-2002, eds., M. Ghallab, J. Hertzberg,
and P. Traverso, pp. 143—-152. AAAI Press, (2002).

[3] B. Bonet and H. Geffner, ‘Planning with incomplete information as
heuristic search in belief space’, in Proc. of AIPS-2000, (2000).

[4] B. Bonet, H. Palacios, and H. Geffner, ‘Automatic derivation of mem-
oryless policies and finite-state controllers using classical planners’, in
Proceedings of ICAPS-2009, pp. 34—41, (2009).

[8] J. Hoffmann and R. Brafman, ‘Contingent planning via heuristic for-
ward search with implicit belief states’, in Proceedings of ICAPS 2005,
pp- 71-80. AAAL (2005).

[9] J. Hoffmann and R. Brafman, ‘Conformant planning via heuristic for-
ward search: A new approach’, Artificial Intelligence, 170(6-7), 507—
541, (2006).

[10] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan gen-
eration through heuristic search’, Journal of Artificial Intelligence Re-
search — JAIR, 14, 253-302, (2001).

[11] H. Palacios and H. Geffner, ‘Compiling uncertainty away: Solving con-
formant planning problems using a classical planner (sometimes)’, in
Proc. AAAI-06, pp. 900-905, (2006).

[12] H. Palacios and H. Geffner, ‘Compiling uncertainty away in confor-
mant planning problems with bounded width’, Journal of Artificial In-
telligence Research — JAIR, 35, 623-675, (2009).

[13] S. Richter, M. Helmert, and M. Westphal, ‘Landmarks revisited’, in
Proceedings of AAAI-08, pp. 975-982, (2008).

[14] D. Smith and D. Weld, ‘Conformant graphplan’, in Proceedings AAAI-
98, pp. 889-896. AAAI Press, (1998).

