
Trees of Shortest Paths vs. Steiner Trees:
Understanding and Improving Delete Relaxation Heuristics

Emil Keyder
Universitat Pompeu Fabra
08003 Barcelona, SPAIN
emil.keyder@upf.edu

Héctor Geffner
ICREA & Universitat Pompeu Fabra

08003 Barcelona, SPAIN
hector.geffner@upf.edu

Abstract
Heuristic search using heuristics extracted from the
delete relaxation is one of the most effective meth-
ods in planning. Since finding the optimal solu-
tion of the delete relaxation is intractable, various
heuristics introduce independence assumptions, the
implications of which are not yet fully understood.
Here we use concepts from graph theory to show
that in problems with unary action preconditions,
the delete relaxation is closely related to the Steiner
Tree problem, and that the independence assump-
tion for the set of goals results in a tree-of-shortest-
paths approximation. We analyze the limitations
of this approximation and develop an alternative
method for computing relaxed plans that addresses
them. The method is used to guide a greedy best-
first search, where it is shown to improve plan qual-
ity and coverage over several benchmark domains.

1 Introduction
Heuristic search using a non-admissible approximation of the
optimal solution to the delete relaxation has proven to be one
of the most effective methods in planning. Some of the most
informative heuristics for the delete relaxation are the additive
heuristic [Bonet and Geffner, 2001], the relaxed plan heuris-
tic [Hoffmann and Nebel, 2001], and a recent variant, the set-
additive heuristic, which is based on the recursive computa-
tion of relaxed plans [Keyder and Geffner, 2008]. Since solv-
ing the delete relaxation optimally is an intractable problem,
these heuristics introduce independence assumptions: either
that the cost of achieving two goals is the sum of the costs
of achieving each, or that the relaxed plan for achieving them
is the union of the plans for achieving each. While these as-
sumptions make the problem simple and tractable, their im-
plications are not well understood, though they have a critical
impact on the performance of planners.

In order to illustrate the impact of the independence as-
sumption, consider the problem shown in Figure 1, where an
agent at L0 must perform two tasks t1 and t2, each available
at the locations indicated. Clearly, the best plan is to per-
form t2 at L2 and t1 at L3; moreover, the same plan is best in
the delete relaxation. However, no current planning heuris-
tic computes such a relaxed plan. Due to the independence

L3(t1)L2(t2)L1(t1) L0

Figure 1: Agent at L0 must perform tasks t1 and t2; t1 can be done
at L1 or L3, while t2 must be done at L2.

assumption embedded in most estimators, what is computed
is the union of the plan for getting to L1 or L3 to perform
t1 and the plan for getting to L2 to perform t2. Since these
subgoals are achieved independently, the cheaper location L1

is preferred for t1 rather than the more expensive location L3.
The result is not just an inaccurate estimate: if the agent can
move one unit at a time, it will find that the actions of moving
to the left or to the right are both ‘helpful’, yet that neither
results in a state with a lower heuristic value.

The question that we address here is whether a better esti-
mator for the delete relaxation is possible, in particular, one
that is not bound by the independence assumption. Opti-
mally solving the delete relaxation h+ is intractable [Bylan-
der, 1994], yet as we will show, other options are available.
We will draw on concepts from graph theory to better under-
stand the properties of the approximations to h+ computed
by current heuristics, and discuss how these approximations
can be improved. We show for example that these heuristics
compute the tree-of-shortest-paths approximation to the in-
tractable Steiner Tree Problem (STP), closely related to the
Minimum Spanning Tree (MST) problem, while h+ captures
the optimal cost. However, a simple criterion for eliminat-
ing some non-optimal solutions to the STP can be adapted
to the planning setting to give a local iterative improvement
algorithm for relaxed plans.

The paper is organized as follows: We first review existing
heuristics and consider a planning encoding of the STP. We
then use the analysis of this problem to formulate a procedure
for improving relaxed plans and test it experimentally over
several benchmark domains.

2 Delete-Relaxation Heuristics
We consider planning problems P = 〈F, I, O, G〉 expressed
in STRIPS, where F stands for the set of fluents, I,G ⊆ F
the initial and goal situations, and O the actions, with pre-
condition, add, and delete lists Pre(a), Add(a), and Del(a)
respectively, all of which are subsets of F . For each action

a ∈ O, we assume a non-negative cost c(a) so that the cost of
a plan π = 〈a1, . . . , an〉 is c(π) =

∑n
i=1 c(ai). The cost of a

problem, denoted by c∗(P), is the cost of the best (minimum
cost) plan for P .

The delete relaxation P+ of P is the same problem but
with the delete lists Del(a) assumed empty for all actions.
Since computing c∗(P+) = h+ is intractable, heuristics ap-
proximate this value by introducing independence assump-
tions. In the additive heuristic, h(p; s) denotes the estimated
cost of achieving a fluent p from s, and is given by:

h(p; s) =
{

0 if p ∈ s
h(a(p; s); s) otherwise (1)

where h(a; s) stands for an estimate of the cost of applying
action a in s, and a(p; s) is a best support of fluent p in s:

h(a; s) = cost(a) +
∑

q∈Pre(a)

h(q; s) (2)

a(p; s) = argmina∈O(p)h(a; s) (3)

where O(p) = {a ∈ O | p ∈ Add(a)}. The heuristic estimate
of the cost of achieving the goal G from s is

h(s) =
∑
p∈G

h(p; s) . (4)

Equations 2 and 4 make explicit the independence assump-
tion in the additive heuristic and give it its name: the cost of
achieving a set of goal or precondition fluents is estimated as
the sum of the costs of achieving each.

A close variant of the additive heuristic is the max heuris-
tic hmax, where the summation in equations (2) and (4) is
replaced by max. hmax is admissible but less informed than
the additive heuristic [Bonet and Geffner, 2001]. The close
connections between these heuristics and the relaxed plan
heuristic introduced in FF [Hoffmann and Nebel, 2001] have
been discussed recently, and it has been shown how relaxed
plans πadd(s) and πmax(s) can be obtained from the addi-
tive and max heuristics by collecting the best supports a(p; s)
captured by (3) recursively backwards from the goal [Key-
der and Geffner, 2008]. Such relaxed plans can be used
to yield a tighter approximation of h+ by using the sum∑

a∈π(s) cost(a) instead of (4), which avoids counting ac-
tions more than once. Moreover, the construction of such re-
laxed plans is cost-sensitive, and for uniform costs πmax(s) is
equivalent to πFF(s), the relaxed plan computed by FF using
the relaxed planning graph. In these formulations, and more
explicitly, in the set-additive heuristic where relaxed plans are
computed recursively [Keyder and Geffner, 2008], the inde-
pendence assumption takes a slightly different form: rather
than taking the cost of achieving a set of subgoals to be the
sum of the costs of achieving each one of them, they take the
relaxed plan for them to be the union of the relaxed plans for
each.

In problems where actions have a single precondition, all
these heuristics yield optimal estimates for all individual
atoms p in the delete relaxation (in the case of FF, under the
assumption of uniform action costs); yet these estimates are

2

5

5

4

2

n0 n3

n1

n2

Figure 2: The Steiner Tree for this graph with targets R =
{n0, n1, n2} has cost 8, which is also the h+ value of the corre-
sponding planning problem P with I = n0 and G = {n1, n2}.
Current heuristics for P yield a relaxed plan with cost 10.

not optimal for goals containing multiple atoms. The com-
mon feature of all of these heuristics is that they are ‘greedy’:
they never pay a higher cost to achieve a subgoal even when
this could decrease the cost of achieving the set of all sub-
goals. In the next section, we analyze this problem further by
considering a planning problem that encodes a well known
problem in graph theory whose optimal cost is captured by
h+.

3 Relaxed Plans and Steiner Trees
In order to arrive at a deeper understanding of the weaknesses
of current heuristics, we consider a subclass of planning prob-
lems with single preconditions and no deletes: those that en-
code instances of the Steiner Tree Problem (STP). The STP
S = 〈W,R〉 is the problem of finding a minimum cost tree
in an undirected graph W = 〈V,E〉 that spans a set of target
nodes R ⊆ V , called a Steiner Tree. Here we refer to a tree
spanning the set of target nodes R while not necessarily being
minimal as a Candidate Steiner Tree (CST). When R = V ,
this is the MST problem, yet the STP is intractable [Proemel
and Steger, 2002], while the MST problem can be solved ef-
ficiently by greedy algorithms such as Prim’s [Cormen et al.,
1989]. Prim’s algorithm starts with a set N containing ini-
tially an arbitrary node in V , and constructs the MST by iter-
atively selecting a cheapest edge (n, n′) in the graph W such
that n is in N (spanned already) and n′ is not, until N = V .

As an illustration, the ST for the graph shown in Figure 2
and the targets R = {n0, n1, n2} is the tree composed of the
edges (n0, n3), (n3, n1), and (n3, n2) and has cost 8.

The STP can be encoded in a straighforward way as a
planning problem PS = 〈F, I, O, G〉 without deletes. For
this, we define the set of fluents as F = V , the initial state
as I = {n0} for some n0 ∈ R (which therefore must be
spanned), the goal as G = R, and introduce actions an,n′

and an′,n for each (undirected) edge (n, n′) in E with costs
c(an,n′) = c(n, n′), where c(n, n′) is the cost of the edge
(n, n′) and an,n′ is an action with precondition n and effect
n′. An optimal plan π∗ for PS can then be interpreted as an
ST Tπ∗ = {(n, n′) | an,n′ ∈ π∗}. Denoting the cost of an
STP S as c∗(S) we have that:
Theorem 1. The Steiner Trees for the problem S = 〈W,R〉
are equivalent to the optimal plans for PS and c∗(S) =
c∗(PS) = c∗(P+

S).

2

5

5

3

8

n1 n2

n3 n4

n0

(a)

5

5

2

3

8

π
0(y; s)

g1 g2

q
π(y; s′)

y

π
−(y; s)

π
+(y; s)

s

(b)

Figure 3: a) Spanning tree on the left, indicated with full lines,
can be improved by replacing edge (n0, n1) of cost 5 with edge
(n2, n1) of cost 2. b) Similar iterative improvements can be applied
to an arbitrary relaxed plan π(s).

While the optimal delete-relaxation heuristic h+ captures
the optimal cost of the resulting planning problem, all of the
heuristics considered above compute the shortest path to each
of the target nodes. The relaxed plans that they yield therefore
correspond to trees of shortest paths [Cormen et al., 1989].
For example, for the STP shown in Figure 2 with targets
R = {n0, n1, n2}, the heuristics produce a relaxed plan that
captures the shortest path from n0 to n1 and the shortest path
from n0 to n2, for a total cost of 10.

The cost of a tree of shortest paths is not a good approxi-
mation to the cost of an STP. Yet many polynomial-time algo-
rithms that compute better approximations exist [Charikar et
al., 1998; Robins and Zelikovsky, 2000]. We cannot build di-
rectly on these algorithms, however, as the graphs that under-
lie the delete relaxations of arbitrary planning problems are
directed hypergraphs, rather than undirected graphs. How-
ever, as we will show below, it is possible to obtain better
relaxed plans by borrowing some of the underlying ideas.

Solving the STP S = 〈W,R〉 with W = 〈V,E〉 turns out
to be equivalent to the problem of finding a set of Steiner
Points Q ⊆ V \ R such that the cost of the MST over the
graph induced in W by Q ∪ R is minimized. It is easy to
see that this MST is then a solution to S. This suggests a
fast test to eliminate a tree T spanning a set of nodes N ,
R ⊆ N , from consideration: if T is not an MST over the
graph induced by N , T can be replaced in polynomial time
by the MST that spans the same nodes with less cost. Fur-
thermore, these improvements can be done incrementally as
follows. Pick an edge e = (n, n′) in T and remove it from T .
Then check whether there is an edge e′ = (n′′, n′′′) such that
c(e′) < c(e), n′′ ∈ v(T1), and n′′′ ∈ v(T2), where T1 and T2

are the two connected components in T \ e. If such an edge
can be found, then T1 ∪ T2 ∪ e′ is a spanning tree of lower
cost for the same set of nodes as T . When no further edges
can be replaced, it can be shown that the resulting tree is an
MST over the set of nodes that it spans. For the graph shown
in Figure 3a where R = {n3, n4}, this simple improvement
procedure leads us to replace the edge 〈n0, n1〉 with 〈n2, n1〉.

As our overall goal is not to find an MST over the set of

nodes spanned by a Candidate Steiner Tree (CST) but rather
to approximate the cost of the STP S as closely as possible,
we observe that this algorithm can be improved further. In
particular, rather than improving the cost of T by replacing a
single edge, we can try to replace a path P = 〈n1, . . . , nk〉,
where k ≥ 2, 〈ni, ni+1〉 ∈ T for 1 ≤ i ≤ k − 1, and ni /∈ R
for 1 < i < k. T \ P then also consists of two disjoint
connected components T1 and T2, with n1 ∈ v(T1) and nk ∈
v(T2). If a path P ′ = 〈n′1, . . . , n′l〉 such that n′1 ∈ T1, n′l ∈
T2, and c(P ′) < c(P) can be found, a new CST of lower
cost results from replacing P with P ′: T ′ = T1 ∪ T2 ∪ P ′.
This more powerful improvement procedure generalizes the
one above that works only on edges, and may change the set
of Steiner points Q of the CST.

The iterative procedure below for improving the cost of re-
laxed plans can be understood as a generalization of this pro-
cedure with relaxed plan fragments playing the role of paths.

4 The Local Steiner Tree (LST) Improvement
Procedure

The graphs induced by the delete relaxations of most planning
problems differ from the undirected graphs discussed until
now in two important respects. First, the delete-relaxation
graph is directed, its edges (actions) having source nodes
(preconditions) and target nodes (add effects). Second, it is
actually a hypergraph, as both precondition and add sets may
have cardinality greater than 1. Solving the delete relaxation
optimally is therefore the problem of optimal directed hyper-
path finding [Ausiello et al., 1992]. Here we develop a tech-
nique inspired by the idea of the delete relaxation as an STP,
yet applicable in this more general setting.

In what follows, we assume the presence of a dummy End
action with zero cost, whose preconditions G1, . . . , Gn are
the goals of the problem, and whose effect is a new dummy
atom G. This allows us to express the relaxed plan from the
state s, π(s), as the relaxed plan for G, π(G; s). We interpret
relaxed plans as sets of action-fluent pairs 〈a, p〉 where a is
the best supporter of p in s, i.e. a(p; s) = a. Relaxed plans
are computed by recursively collecting the atoms and their
best supporters backwards from the goal G, stopping the re-
cursion at atoms appearing in s. Below we abuse notation
slightly by allowing relaxed plans to represent both this set
of pairs and the set of actions appearing in them; the corre-
sponding set of fluents is denoted by F (π).

To improve the cost of a relaxed plan π(s) = π(G; s), we
pick a fluent y ∈ F (π(s)) and split the set of actions π(s)
into three disjoint subsets. π−(y; s) is the set of actions that
are required only in order to achieve y, and corresponds to
the path P to be replaced in the algorithm discussed earlier.
π+(y; s) is the set of actions that depend on y being made
true in order to be applied, and corresponds to one of the con-
nected components that results from removing a path from a
tree. Finally, π0(y; s) is the set of actions that are neither used
exclusively in order to achieve y nor depend on its being made
true, and corresponds to the other connected component. We
then check whether it is possible to improve the part of the
plan that is exclusively for y, π−(y; s) in the context of the
rest of the plan. This is accomplished by computing a re-

laxed plan π(y; s′) for y in a new state s′ that extends s with
atoms that are supported by π0(y) while leaving unchanged
the best supports in π+(y; s) and π0(y; s). As before, if the
cost c(π(y; s′)) is lower than c(π−(y; s)), then a better re-
laxed plan for π(G; s) results from replacing π−(y; s) with
π(y; s′). The idea is shown in Fig. 3b along with the graph
where the same idea was used to improve a Candidate Steiner
Tree.

For a relaxed plan π(G; s) and a fluent y ∈ F (π(s)), the
three sets above can be defined as follows:

π−(y; s) = {a ∈ π(y; s) | a /∈ ∪z∈F (π(s))\F (π(y;s))π(z; s)}
π+(y; s) = {a ∈ π(G; s) | y ∈ ∪p∈Pre(a)F (π(p; s))}
π0(y; s) = π(G; s) \ (π+(y; s) ∪ π−(y; s))

To compute π−(y; s), we first extract a plan for G in s
that assumes the fluent y, denoted π(G; s|y). This is done
with a simple modification to the relaxed plan extraction pro-
cedure that returns the empty plan for y whenever it is en-
countered as a precondition. We then have that π−(y; s) =
π(G; s) \ π(G; s|y). π+(y; s) is obtained by calling a recur-
sive procedure on the goal fluent G that determines the por-
tion of the relaxed plan for a fluent that is dependent on y.
π0(y; s) is computed in the manner implied by its definition.

The new relaxed plan π(y; s′) for y is obtained from an ex-
tension s′ of the state s that contains all fluents {p | a(p; s) ∈
π0(y; s)}. The improved plan π′(G; s) is then given by the
union of π0(y; s) and π+(y; s) with the new fragment π(y; s′)
that replaces π−(y; s). This new relaxed plan is well formed
and has no cycles, as the preconditions of all actions that di-
rectly or indirectly use y (those in π+(y; s)) are excluded in
the computation of the new relaxed plan π(y; s′) for y.

The pseudocode for a single iteration of the resulting
method for improving the cost of relaxed plans is shown in
Algorithm 1. The improvement algorithm is repeatedly called
until it returns false, at which point the improved relaxed plan
πlst(s) is obtained in the usual way by recursion backwards
from the goal G collecting the best supports.

Algorithm 1 LST Procedure for improving relaxed plan π(s).
for y ∈ F (π(G; s)) do

Compute π−(y; s), π+(y; s), π0(y; s)
s′ = s ∪ {p | a(p; s) ∈ π0(y; s)}
D = {p | a(p; s) ∈ π+(y; s)}
Compute π(y; s′) with Add(a) := Add(a) \D for all a
if Cost(π(y; s′)) < Cost(π−(y; s)) then

for q ∈ F (π(y; s′)) do
a(q; s) = a(q; s′)

end for
return true

end if
end for
return false

5 Example
Here we illustrate the functioning of the relaxed plan im-
provement algorithm on a problem involving soft goals

[Smith, 2004; Sanchez and Kambhampati, 2005]. It has been
shown that soft goals p with utility u(p) that no action deletes
can be compiled away by the introduction of extra fluents p′

that become normal (hard) goals of the problem, and two ac-
tions forgo(p) and collect(p) that add p′: the first with no
preconditions and cost u(p), the second with precondition p
and cost 0 [Keyder and Geffner, 2007].1 We consider an ex-
ample with soft goals as previous greedy heuristics tend to do
poorly in this context.

The problem is shown in Figure 4. The agent begins at
location A, and there are two packages available to gather
from the map, each with an associated reward as shown. The
relaxed plan π(s) generated by the additive heuristic for the
initial state s = {(at A)} is:

{(A → B), (B → C), (pick p1), (coll p1), (forgo p2)}

where the End action is omitted. This relaxed plan achieves
the two goals, p′1 and p′2, with the cheapest plan for each when
considered independently. Yet since the agent will move to
locations B and C in order to pick up p1, it also makes sense
to pick up p2 as the additional cost incurred to reach location
D is 2, and there is a soft goal that is achievable there with
reward 3. The set F (π(s)) generated by the above plan is

{(at B), (at C), (have p1), (p′1), (p
′
2)} .

The only fluent in this set that can be improved with the
LST procedure is p′2. The subsets of π(s) then become

π+(p′2; s) = {End}
π−(p′2; s) = {forgo p′2}
π0(p′2; s) = {(A → B), (B → C), (pick p1), (coll p1)}

This gives s′ = {(at A), (at B), (at C), (have p1), (p′1)},
from which we compute π(p′2; s

′):

{(C → D), (pick p2), (coll p2)}
which has a cost of 2 compared to the cost of π−(p′2; s) which
was 3. The supporters for the relevant fluents are then re-
placed, resulting in the new relaxed plan with cost 6, com-
pared to the cost of the original relaxed plan, 7:

π′(s) = {(A → B), (B → C), (C → D),
(pick p1), (coll p1), (pick p2), (coll p2)}

No further improvements are possible at this point, so the pro-
cedure terminates, returning the new relaxed plan.

6 Experimental Results
We evaluated the performance of two heuristics on ten dif-
ferent domains. Nine of these domains were from the most
recent international planning competition (IPC6). The tenth
domain is a compiled soft goals domain [Keyder and Geffner,
2007], similar to the Rovers domain from IPC3.

1A slightly different compilation is required when soft goals can
be deleted, for details, see [Keyder and Geffner, 2007].

C2 2

2 2

D

A B
p1(5)

p2(3)

Figure 4: A softgoals problem.

The two heuristics used were the costs of the relaxed plan
extracted according to the best supporters as determined by
the additive heuristic, and the cost of the same plan as im-
proved by the LST procedure. In the following graphs, these
two heuristics are denoted by ha and hlst respectively. The
search algorithm used was greedy best-first search with de-
layed evaluation and two open lists, one containing only
states arrived at through helpful actions [Helmert, 2006]. The
helpful actions used were those adding at least one precon-
dition of some action in the relaxed plan. The planners were
evaluated using the same time and memory settings as IPC6,
with a timeout of 1800 seconds and a memory limit of 2GB.
The experiments were run on Xeon Woodcrest computers
with clock speeds of 2.33 GHz.

The use of the LST procedure significantly impacts results
in three domains: parcprinter, elevators, and softgoals. In all
of these domains, the number of nodes expanded decreases
by orders of magnitude (Figures 6a,6b,6c). In the elevators
and softgoals domains, plan cost also decreases significantly
(Figures 5a, 5b). In the parcprinter domain, solutions found
by both heuristics have equal cost, yet hlst increases cover-
age from 16 to 24 problems out of 30 due to the much lower
number of nodes evaluated to find a solution.

In domains in which no improvement is observed, the LST
procedure decreases coverage slightly due to the increased
overhead, and the number of nodes evaluated and solution
cost are roughly equal for all problems. Total coverage across
all domains studied, however, is higher with the LST proce-
dure than for the base heuristic ha (Table 1).

There is a wide variation in the correlation between im-
provement to relaxed plan cost and improvement to overall
plan cost. While the correlation is high in the domains in
which the greatest improvement to plan quality is observed,
the greatest improvement to relaxed plan cost occurs in the
pegsol domain, in which the LST procedure leads to no ap-
preciable change in overall plan quality (Table 1).

7 Summary
Current heuristic estimators in planning approximate the op-
timal cost h+ of the delete relaxation by introducing inde-
pendence assumptions over either estimated costs or relaxed
plans. This assumption results in a ‘greedy’ estimator that
attempts to minimize the cost of achieving individual fluents
rather than sets. We have analyzed this problem by consider-
ing the Steiner Tree problem, where current heuristics yield
the tree-of-shortest-paths approximation, and have developed
a method for improving relaxed plans inspired by its prop-
erties. The results obtained from the resulting heuristic over

Domain ha hlst (a) (b)
cybersec (30) 11 9 1.00 0.99
elevators (30) 11 19 0.72 0.79

openstacks (30) 30 30 1.00 1.00
parcprinter (30) 16 24 1.00 0.81

pegsol (30) 30 29 0.99 0.64
scanalyzer (30) 22 18 0.98 0.92
sokoban (30) 27 23 1.04 0.93
transport (30) 14 15 0.95 0.85

woodworking (30) 27 28 0.98 0.90
softgoals (30) 26 28 0.65 0.66

total/avg. 214 223 0.93 0.85

Table 1: The first two columns show coverage for tested domains.
(a) Average ratio of the cost of the plan found with hlst to the plan
found with ha, for problems solved with both heuristics. (b) Average
ratio of the cost of the relaxed plan improved with the LST procedure
to the cost of the original ha relaxed plan (for all evaluated nodes).

several domains are encouraging and suggest that less greedy
approximations to the optimal but intractable h+ heuristic
may be both desirable and cost-effective.

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. H. Geffner is partially supported by grant TIN2006-
15387-C03-03 from MEC/Spain.

References
[Ausiello et al., 1992] G. Ausiello, R. Giaccio, G. F. Italiano,

and U. Nanni. Optimal traversal of directed hypergraphs.
Technical Report TR-92-073, International Computer Sci-
ence Institute, 1992.

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Plan-
ning as heuristic search. Artificial Intelligence, 129(1–
2):5–33, 2001.

[Bylander, 1994] T. Bylander. The computational complex-
ity of STRIPS planning. Artificial Intelligence, 69:165–
204, 1994.

[Charikar et al., 1998] M. Charikar, C. Chekuri, T. Cheung,
Z. Dai, A. Goel, S. Guha, and M. Li. Approximation algo-
rithms for directed Steiner problems. In Journal of Algo-
rithms, pages 73–91, 1998.

[Cormen et al., 1989] T. H. Cormen, C. E. Leiserson, and
R. L. Rivest. Introduction to Algorithms. The MIT Press,
1989.

[Helmert, 2006] M. Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The
FF planning system: Fast plan generation through heuris-
tic search. Journal of Artificial Intelligence Research,
14:253–302, 2001.

[Keyder and Geffner, 2007] E. Keyder and H. Geffner. Set-
additive and TSP heuristics for planning with action costs

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ha

hlst

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ha

hlst

Figure 5: Plan costs in the elevators and softgoals domains.

and soft goals. In Proc. 2007 ICAPS Workshop on Heuris-
tics for Domain-Independent Planning, 2007.

[Keyder and Geffner, 2008] E. Keyder and H. Geffner.
Heuristics for planning with action costs revisited. In Proc.
18th European Conference on Artificial Intelligence, pages
588–592, 2008.

[Proemel and Steger, 2002] H. Proemel and A. Steger. The
Steiner Tree Problem: A Tour Through Graphs, Algo-
rithms, and Complexity. Vieweg+Teubner Verlag, 2002.

[Robins and Zelikovsky, 2000] G. Robins and A. Ze-
likovsky. Improved Steiner tree approximation in graphs.
In SODA, pages 770–779, 2000.

[Sanchez and Kambhampati, 2005] R. Sanchez and
S. Kambhampati. Planning graph heuristics for se-
lecting objectives in over-subscription planning problems.
In Proc. ICAPS-05, pages 192–201, 2005.

[Smith, 2004] D. E. Smith. Choosing objectives in over-
subscription planning. In Proc. ICAPS-04, pages 393–401,
2004.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ha

hlst

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ha

hlst

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

ha

hlst

Figure 6: Number of nodes evaluated in the parcprinter, elevators,
and softgoals domains.

