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Abstract

Single-agent planning in partially observable settings is a
well understood problem and existing planners can repre-
sent and solve a wide variety of meaningful instances. In
the most common formulation, the problem is cast as a non-
deterministic search problem in belief space where beliefs are
sets of states that the agent regards as possible. In this work,
we build on the methods developed for representing beliefs
in single-agent planning to introduce a simple but expressive
formulation for handling beliefs in multi-agent settings. The
resulting formulation deals with multiple agents that can act
on the world (physical or ontic actions), and can sense ei-
ther the state of the world (truth of objective formulas) or the
mental state of other agents (truth of epistemic formulas). The
formulation captures and defines a fragment of dynamic epis-
temic logics that is simple and expressive but which does not
involve event models or product updates, and has the same
complexity of belief tracking in the single agent setting and
can benefit from the use of similar techniques. We show in-
deed that the problem of computing multiagent linear plans
can be actually compiled into a classical planning problem
using the techniques that have been developed for compiling
conformant and contingent problems in the single agent set-
ting and report experimental results.

Introduction

Single-agent planning in partially observable settings is a
well understood problem and existing planners can represent
and solve a wide variety of meaningful instances. In the most
common formulation, single-agent planning in partially ob-
servable environments is cast as a non-deterministic search
problem in belief space where the beliefs are sets of states
that the agent regards as possible (Bonet and Geftner 2000).
The work in partially observable or contingent planning has
been focused on ways for representing beliefs and selecting
actions (Bertoli et al. 2001; Brafman and Hoffmann 2004;
Albore, Palacios, and Geffner 2009; To, Pontelli, and Son
2011; Brafman and Shani 2012a).

Current approaches for representing beliefs in multiagent
dynamic settings, on the other hand, are based on Kripke
structures (Fagin et al. 1995). Multiagent Kripke structures
are triplets defined by a set of worlds, accessibility relations
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among the worlds for each of the agents, and truth valuations
that define the propositions that are true in each world. While
a truth valuation determines the objective formulas that are
true in a world, the accessibility relation among worlds pro-
vides the truth conditions for epistemic formulas.

Dynamic epistemic logics extend epistemic logics with
the ability to deal with change (van Ditmarsch, van der
Hoek, and Kooi 2007a; van Ditmarsch and Kooi 2008;
Van Benthem 2011). The standard approach relies on event
models and product updates by which both the agent be-
liefs and the events are represented by Kripke structures,
and the resulting beliefs are captured by a suitable cross
product of the two (Baltag, Moss, and Solecki 1998; Bal-
tag and Moss 2004). Syntactically, axiomatizations have
been developed to capture the valid inferences in such a
setting, and a number of approaches have been developed
to facilitate modeling and inference (Baral et al. 2012;
Herzig, Lang, and Marquis 2005). A simple form of plan-
ning, however, where an event sequence is sought to achieve
a given goal formula, has been shown to be undecidable in
dynamic epistemic logic (Aucher and Bolander 2013), while
decidable subsets have been identified as well (Lowe, Pacuit,
and Witzel 2011).

In this work, we build on the methods developed for rep-
resenting beliefs in single-agent planning to introduce a sim-
ple but expressive formulation for handling beliefs in multi-
agent settings. The resulting formulation deals with multi-
ple agents that can act on the world (physical or ontic ac-
tions), and can sense either the state of the world (truth of
objective formulas) or the mental state of other agents (truth
of epistemic formulas). The formulation captures and de-
fines a fragment of dynamic epistemic logics that is sim-
ple and expressive, but which does not involve event mod-
els or product updates, and has the same complexity of
belief tracking in the single agent setting and can benefit
from the use of similar techniques. We show indeed that
the problem of computing linear multiagent plans (Bolander
and Andersen 2011) can be actually compiled into a classi-
cal planning problem, using the techniques that have been
developed for compiling conformant and contingent prob-
lems in the single agent setting (Palacios and Geffner 2009;
Brafman and Shani 2012b).

The proposed formulation exploits certain conventions
and restrictions. First, while the agents can have private in-



formation as they have private sensors, they are all assumed
to start with a common initial belief on the set of worlds
that are possible. Second, the effects of physical actions on
the world are assumed to be deterministic. And third, the se-
quence of events (physical actions, sensing events, and pub-
lic announcements) that can change the state of the world or
the knowledge state of the agents, is public to all the agents.
In the formulation it is crucial to distinguish between the
event of sensing the truth value of an objective or epistemic
formula, and the agent coming to know that the formula is
true or false. While the sensing event is public, as when all
agents know the sensor capabilities of the other agents, the
actual information provided by these sensors is private. For
example, in the muddy children problem (Fagin et al. 1995),
every child ¢ is assumed to be capable of sensing the truth
value of the atoms m; encoding whether child j is muddy
for j # 4, and every child knows that. Yet this doesn’t mean
that children have access to the truth values revealed by the
sensors that are not their own. The formulation does imply
however that agents know what the other agents may po-
tentially know, as agents start with the same knowledge and
then learn about the world or about other agents using sens-
ing events that are public.!

The rest of the paper is organized as follows. We start
with a well known example and introduce the modeling lan-
guage, the belief representation, and the (linear) planning
problem. We then analyze other examples, formulate the
compilation of the linear multiagent planning problem into
classical planning, present experimental results, and discuss
the relation to dynamic epistemic logic.

Example

Before proceeding with the details of the formulation, it will
be useful to consider how a familiar example, the Muddy
Children Puzzle will be represented (Fagin et al. 1995). We
consider three agents A = {a, b, ¢} and atoms m,;, for z €
A, each representing that child x is muddy. The states of
the problem are the possible truth valuation over these three
atoms, and the common initial belief state b; is given by the
set of all such states (8 in total).

Consider then the sequence of events o given by:

update(m, V my V m.), [sense(a, [my, m.]), o
sense(b, [m,, m.]), sense(c, [mq, mp))] ,

that includes the public announcement made by the father,
followed by each agent sensing in parallel whether each of
the other children is muddy or not. The event sense(a, ¢) ex-
presses that agent a senses the truth value of formula ¢. Vari-
ations of these events, expressed as sense(a, [¢1,. .., dn]),
sense([a, b], [¢1,...,dn]), and sense([¢1,...,d,]) repre-
sent that agent a senses the truth value of each of the for-
mulas ¢;, ¢ = 1,...,n, in parallel, that both a and b sense
such truth values in parallel, and that all agents sense them

!The assumptions in the model have points in common with the
finitary S5 theories (Son et al. 2014) and with the notion of “only
knowing” (Levesque 1990; Halpern and Lakemeyer 2001).
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in parallel. In addition, groups of sensing events can be en-
closed in brackets as in (1), meaning that the events are in
parallel.

A possible query after the sequence of events o may be
whether any of the agents will know that he is muddy if the
world is such that there is just one muddy child. This query
would amount to testing the formula

Mg ® mp O me = Komg V Kymy V Keom, 2)

in (the Kripke structure associated with) the situation result-
ing from the common initial belief state b; and the event
sequence ¢. In this formula, ‘@’ stands for “exclusive or’;
p @ ¢ thus being an abbreviation of (p V ¢) A =(p A q). The
answer to this query will be positive. On the other hand, the
answer to the query:

—(mg ®@my Eme) = Kgmg V Kymp V Keme — (3)

will be negative, as when there is more than one muddy
child, no child will know that he is muddy from the an-
nouncement made by the father and the information gath-
ered from his physical sensors alone. It can be shown, how-
ever, that if the event sequence o is extended with the fol-
lowing parallel sensing event:

[sense(K,m,),sense(Kym;), sense( K m.)]

“4)

where all agents learn whether each of the agents knows that
he is muddy, a formula like

&)
will become true, as in the world where a and b are muddy
and c is not, the sensing captured by (4) would result in a
learning that b does not know that b is muddy (K ,—Kpmy),
while in the other world that is possible to a, where a is not
muddy, a would come to learn the opposite; namely that b
knows that b is actually muddy (K, Kpmy).

Mg ANy N me = K,m,

Language
We consider planning problems P = (A, F,I,0,N,U,G)
where A is a set of agent names, F' is a set of atoms, [ is the
initial situation, O is a set of physical actions, N is a set of
sensing actions, U is set of public (action) updates, and G is
the goal. A plan for P, as in classical planning, is a sequence
of actions for achieving the goal G from the initial situation
described by I. The main differences to classical planning
result from the uncertainty in the initial situation, and the be-
liefs of the multiple agents involved. In addition the actions
may come from any of the sets O, IV, or U. If we let S stand
for the set of all possible truth-valuations s over the atoms
in F' and call such valuations states, we assume that [ is an
objective formula over F' which denotes a non-empty set of
possible initial states br. A physical action a in O denotes a
deterministic state-transition function f, that maps any state
s into a state s’ = f,(s). A (parallel) sensing action in N
is a set of expressions of the form sense[A]|(¢y), where Ay,
is a non-empty set of agent names and ¢ is an objective
or epistemic formula over the atoms F' and the knowledge



modalities K; for i € A. The action updates in U are de-
noted by expressions of the form update(¢) where ¢ is a
formula. Finally, each action @ has a precondition Pre(a),
which like the goal G are formulas as well. The grammar of
these formulas can be expressed as:

p=pl-0|(@AS)|(¢= )| Ki¢
where p is an atom in F’, and ¢ an agent in A.

We regard plans as linear sequences of actions (Bolander
and Andersen 2011), and call P a linear multiagent planning
problem. While many problems require non-linear plans, as
it is the case in contingent planning, linear plans suffice for
a number of non-trivial contexts and provide the basis for
more complex forms of plans. These linear plans involve
sensing, however, but like conformant plans, no conditional
branching.

Belief Update and Dynamics

In order to define the belief representation and dynamics, let
us represent the event sequences or plans o over a problem
P by sequences of the form e(0),...,e(t), where e(k) is
the event from P that occurs at time k. When convenient,
we will assume that the agent names are positive numbers 4,
i =1,...,m for m = |A|, or that they can be enumerated
in this way.

The beliefs of all the agents at time step ¢, called also the
joint belief, will be denoted as B(t), and it is represented by
a vector of conditional beliefs B(s,t), where s is one of the
possible initial states, s € by; namely,

B(t) ={B(s,t) |s€bs }. (6)
The conditional beliefs B(s,t) represent the beliefs of all
the agents at time ¢, under the assumption that the true but
hidden initial state is s. The reason for tagging beliefs with
possible initial states is that for a fixed (hidden) initial state
s, the evolution of the beliefs B(s,t) after an arbitrary event
sequence is deterministic. These conditional beliefs B(s,t)
are in turn represented by tuples:

B(s,t) = (v(s,t),r1(s,t),m2(8,t), .., rm (s, 1)) @)

where v(s,t) is the state of the world that results from the
initial state s after the event sequence e(0),...,e(t — 1),
and r;(s,t) is the set of possible initial states s’ € by that
agent ¢ cannot distinguish at time ¢ from the actual initial
state s. Note that s may be the true initial state, and yet the
agents may not know about it. Indeed, initially, they only
know that if s is the true initial state, it must be part of the
initial common belief b;.

More precisely, the initial beliefs B(s, t) at time ¢t = 0 are
given by:

v(s,t) = s and r;(s,t) =br 8)
for all agents ¢, meaning that under the assumption that the
hidden initial state is s and that no events have yet occurred,
the actual state is s and the set of possible initial states is b;.

The belief B(¢t+ 1) at time ¢ + 1 is a function of the belief
B(t) and event e(t) at time ¢:
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Bt +1) =F(B(t),e(t)) 9

We express this function by defining how the type of event
e(t) at time ¢ affects the state v(s,t + 1) and the relations
r;(s,t + 1) that define the belief B(¢ + 1) at time ¢ + 1.

Physical Actions: If e(t) = do(a) for action a denoting
a state-transition function f,, then the current state v(s,t)
associated with the hidden initial state s changes according
to f,, but the sets of initial states 7;(s, t) that agent ¢ regards
as possible remain unchanged

v(s,t+1)
ri(s,t+ 1)

fa(v(s, 1))
ri(s,t)

(10)
Y

where the index i ranges over all the agents in A.

All the other event types affect instead the sets r;(s, ¢+ 1)
but not the state v(s, ¢ + 1) that is regarded as current given
the assumption that s is the true initial hidden state. That is,
for the following event types v(s,t + 1) = v(s, t).

Sensing: If e(t) [sense[A1](¢1), . .., sense[A;](¢;)]] is
a sensing action denoting the set of sensing expressions
sense[Ay](¢r) done in parallel at time ¢, the current state
given s does not change, but the set of possible initial states
compatible with the hidden initial state s for agent ¢ given
by 7;(s,t + 1) becomes:

{s' | ' €rils,1) and B(t), s’ | ¢ iff B(t).s | ¢} (12)

where k ranges over all the indices in [1,!] such that Ay
includes agent ¢. If there are no such indices, r;(s,t + 1) =
r;(s,t). The expression B(t),s = ¢ denotes that ¢ is true
in the belief at time ¢ conditional on s being the true hidden
state. The truth conditions for these expressions are spelled
out below.

Updates: If e(t) = update(o), r;(s,t + 1) is

{s"| s €ri(s,t) and B(t),s" = ¢} . (13)
The intuition for all these updates is the following. Phys-
ical actions change the current state of the world accord-
ing to their state transition function. Sensing actions do not
change the world but yield information. More specifically,
when agent ¢ senses the truth value of formula ¢ at time ¢,
the set of initial states r;(s, ¢+ 1) that he thinks possible un-
der the assumption that the true initial state is s, preserves
the states s’ in 7;(s,t) that agree with s on the truth value
predicted for ¢ at time ¢. Finally, a public update ¢ pre-
serves the possible initial states s” in 7;(s, t) that predict the
formula ¢ to be true, and rules out the rest. The conditions
under which a possible initial state s predicts that a formula
¢ will be true at time ¢, and the conditions under which a
formula ¢ is true at time ¢, are made explicit below. Physi-
cal, sensing, and update actions are applicable at time ¢ only
when their preconditions are true at ¢.



Beliefs and Kripke Structures

A Kripke structure is a tuple K = (W, R, V'), where W is
the set of worlds, R is a set of binary accessibility relations
R; on W, one for each agent ¢, and V' is a mapping from the
worlds w in W into truth valuations V (w). The conditions
under which an arbitrary formula ¢ is true in a world w of
a Kripke structure K = (W, R, V'), written K, w |= ¢, are
defined inductively:

K, w = p for an atom p, if p is true in V (w),
KwEovy it K,iwkE ¢ or K,wE Y,

K,wkE (=) if C,wE ¢ implies K, w = 1,
K,wkE K¢ if C,w' = ¢ forall w’ s.t. R;(w,w’), and
K,awkE-¢ if C,wl ¢

A formula ¢ is valid in the structure /C, written KC |= ¢, iff
K, w [ ¢ for all worlds w in K. The conditions under which
a possible initial state s predicts the truth of a formula ¢ at
time ¢, written B(t), s = ¢, follow from replacing the belief
B(t) by the Kripke structure K(t) = (W?*, R, V') defined
by B(t) where

o Wt={s]|se Poss(t)},
o Rl={(s,8)| ifs' €ri(s,t) },
o Vi(s) =wv(s,t)

In these expressions, Poss(t) stands for the initial states
that remain possible at t; Poss(t) = Usep, Ui=1,... m7i(S, T).
The worlds w in the structure IC(¢) are the possible initial
states s € by that have not been ruled out by the updates.
The worlds that are accessible from a world s to the agent ¢
are the possible initial states s’ that are in 7;(s, t). Last, the
valuation associated to a world s in this structure is the state
v(s, t) that deterministically follows from the possible initial
state s and the event sequence up to t—1. B(t), s = ¢ is thus
true when C(t), s = ¢ is true, and B(t) = ¢ iff K(t) = ¢.
It is simple to show that the accessibility relations R;(t) are
reflexive, symmetric, and transitive, meaning that the valid
formulas satisfy the axioms of the epistemic logic S5.

Examples

We will show later that a linear multiagent problem P can
be translated into a classical planning problem and solved by
off-the-shelf planners. Before presenting such a translation,
we consider two other examples.

Selective Communication

Let a, b, and c be three agents in a corridor of four rooms
(p1, p2, ps and p4 from left to right). The agents can move
from a room to a contiguous room, and when agent ¢ com-
municates (tells) some information, all the agents that are
in the same room or in a contiguous room, will hear what
was communicated. For example, if agent ¢ expresses in
room ps his knowledge about g, all agents in rooms po,
ps and py will come to know it. We consider the problem
where agent q is initially in room py, b in ps, ¢ in p3, and
a has to find out the truth value of a proposition ¢ and let
¢ know without agent b learning it. The planning problem
is encoded as the tuple P = (A, F,1,0,N,U,G) where
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A = {a,b,c}, F = {q} U{p(z,i)}, z € A, i € [1,4],
I = {p(a,1),p(b,2),p(c,3)} U D, where D contains the
formulas expressing that each agent is in a single room, U is
empty, and the goal is

G = (K.qV Kcq) N (~Kpg A =Kpq)

The set of physical actions is O = {right,left} affecting
the location of agent a in the obvious way (the actions have
no effects when they’d move the agent away from the four
rooms).

The sensing actions in N are two: the first about a learn-
ing the value of ¢ when in ps, the other, about a expressing
his knowledge regarding g, which translates into agents b
and c learning this when they are close enough to a. The
first sensing action is thus sense(a, ¢) with the precondition
p(a,2), and the second is

tell(a, q) : [sense(b, pp = Kaq),sense(b, o, = K,—q),

sense(c, . = Kqq),sense(c, p. = K.—q)],

where tell(a, ¢) is the abbreviation of the action that we
will use, and ¢y is the formula expressing that agent b is at
distance less than 1 from agent a; namely ¢, = V; ;[p(a,i)A
p(b, j)] foriand j in [1, 4] such that |i — j| < 1. The formula
¢. is similar but with c instead of b.

Initially, b; contains the two states s; and ss satisfying I,
the first where ¢ is true, and the second where it is false. The
initial belief at time ¢t = 0 is B(t) = {B(s1,t), B(s2,t)},
where B(s;,t) = (v(si, 1), 7a(8i, ), 70(84, 1), 7e(8i, 1)), i =
1,2, and r,(s,t) = b; forx € A and s € b;. The shortest
plan is

do(right), sense(a, q), do(right), do(right), tell(a, q) .

The first sensing action can be done because its precondi-
tion p(a, 2) holds in B(1), and as an effect it removes agent
a’s uncertainty regarding ¢ making 7,(s1,2) = {s1} and
ra(s2,2) = {s2}. Agent a then knows whether ¢ is true
or false, and in principle, he could communicate this from
his current location p, by performing the action tell(a, )
right away. But since the condition ¢y is true, b would come
to know whether ¢ is true, making the problem goal G un-
achievable. The effect of the two right actions is to make
p(a,4) true, and all other p(a, ) atoms false, thus making
the formula ¢, false and the formula ¢,. true (i.e., agent a is
now near c but not near b). The final event in the plan makes
the truth value of ¢ known to agent ¢ but not to agent b,
thus achieving the goal G. The first part follows because the
state v(s1, 5) where agent a is at py and ¢ is true, makes the
formula ¢. = K,q sensed by agent c true, while the state
v(s2,5) makes this formula false, and similarly, the state
v(s2,5) makes the formula ¢. = K,—q sensed by agent
c true, while the state v(s1, 5) makes it false. As a result, the
state so is not in r.(s1,5), the state s; is not in r.(s2,5),
both sets become singletons, and hence, the truth value of
q becomes known to agent c. The same reasoning does not
apply to agent b because the condition ¢, is false in the two
states v(s1,5) and v(s2,5), and hence, both states trivially
satisfy the formulas ¢, = K,q and ¢, = K,—q that are
sensed by agent b, so that (s, 5) and 74(s2, 5) remain un-
changed, and equal to b;.



Collaboration through Communication

As a third example, we consider a scenario where two agents
volunteer information to each other in order to accomplish
a task faster that would otherwise be possible without infor-
mation exchange. It is inspired in the BW4T environment,
a proposed testbed for joint activity (Johnson et al. 2009).
There is a corridor of four rooms, p1, p2, p3 and p4 as in the
previous example, four blocks by, ..., by that are in some
of the rooms, and two agents a and b that can move back
and forth along this corridor. Initially, the two agents are
in p2 and do not know where the blocks are (they are not
in p). When an agent gets into a room, he can see which
blocks are in the room if any. The goal of the planning prob-
lem is for agent a to know the position of block b1, and for
agent b to know the position of block b,. A shortest plan
for the problem involves six steps: one agent, say a, has to
move to pp, the other agent has to move to ps, they both
must sense which blocks are in these rooms, and then they
must exchange the relevant information. At that point, the
goal would be achieved whether or not the information ex-
changed explicitly conveys the location of the target blocks.
Indeed, if agent a does not see block by in p; and agent b
doesn’t see this block either at ps, agent a will then know
that block b; must be in p4 once b conveys to a the relevant
piece of information; in this case ~Kpin(by, p3).

The planning problem is P = (A, F,1,0,N,U,G),
where A = {a,b}, F = {at(z,pr),in(bi,px)}, ¢ € A
i,k € [1,4], I = {at(a,p2),at(b,p2)} U D, where D con-
tains the formulas expressing that each block has a unique
location. The set of updates U is empty, the goal is G =
(\/k:174Kaat(bl,pk)) N (\/k:174Kbat(b2,pk)), the actions
in O are right, and left,, for each agent x € A with the
same semantics as in the example above, while the sensing
actions are sense(z, [in(b1,pg),...,in(bs, px)] with pre-
condition at(x,py) by which agent x € A finds out in
parallel which blocks b;, if any, are and are not in py, and
sense(z, [K,in(b;, px]), by which agent y communicates to
agent x # y, whether he knows in(b;, pr), i,k € [1,4].
There are thus four physical actions, eight actions that sense
the world, and thirty-two communication actions. A shortest
plan is:

do(left,), do(righty), sense(a, [in(b1, p1), ... ,in(bs, p1)]),
sense(b, [in(b1,p3), . . .,in(bs, p3)]),
sense(a, Kyin (b1, ps)), sense(b, Kin(be, p1)).

This sequential plan achieves the goal in spite of the un-
certainty of the agents about the world and about the beliefs
of the other agents.

Translation into Classical Planning

We show next how a linear multiagent planning problem P
can be compiled into a classical planning problem K (P)
such that the plans for P are the plans for K (P). The lan-
guage for K(P) is STRIPS extended with negation, condi-
tional effects, and axioms. This is a PDDL fragment sup-
ported by several classical planners. We will use —L for a
literal L to stand for the complement of L, so that =—L is
L. A conditional effect is an expression of the form C' — FE
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associated with an action a that states that the head E' be-
comes true when a is applied and C' is true. We write such
effects as a : C' — E when convenient. In addition planners
normally assume that C' and E are sets (conjunctions) of lit-
erals. If C, C’ — E is one such effect, we take C, -C’ — E
as a shorthand for the effects C, —~L — E for each literal L
in C'. Axioms allow the definition of new, derived atoms in
terms of primitive ones, called then the primitive fluents. The
derived fluents can be used in action preconditions, goals,
and in the body of conditional effects. While it’s possible
to compile axioms away, there are benefits for dealing with
them directly in the computation of heuristics and in state
progression (Thiébaux, Hoffmann, and Nebel 2005).

For mapping the multiagent problem P =
(A,F,1,0,N,U,G) into the classical problem K(P),
we will make some simplifying assumptions about the
types of formulas that may appear in P. We will assume
as in planning, and without loss of generality, that such
formulas correspond to conjunctions of literals, where a
literal L is an (objective) atom p from F' or its negation,
or an epistemic literal K;L or —K;L where L is a literal
and 7 is an agent in A. Other formulas, however, can easily
be accommodated by adding extra axioms to K(P). We
will denote the set of objective literals in P by Lp(P);
ie., Lp(P) = {p,—plp € F}, and the set of positive
epistemic literals appearing in P by Ly (P); i.e., Lx(P)
is the set of KL literals that appear as subformula of an
action precondition, condition, goal, or sensing or update
expression. Indeed, while the set of K; L literals is infinite,
as they can be arbitrarily nested, the set of such literals
appearing in P is polynomial in the size of P. As an
example, if “KoK;—-Ksp is a goal, then Ly (P) will
include the (positive epistemic) literals Ksp, K1 Ksp and
KQK 1 -K 3P-

The translation K (P) comprises the fluents L/s for the
objective literals L in Lz(P), and possible initial states
s € by, and fluents D;(s, s") for agents i € A. The former
express that the objective literal L is true given that s is the
true initial state, while the latter that agent ¢ can distinguish
s from s’ and vice versa. The epistemic literals K; L appear-
ing in P, such as Ksp, K1—K3p and K5 K1—-Kj3p above,
are mapped into derived atoms in K (P) through the use of
axioms. The expression C/s where C is a conjunction of
literals L stands for the conjunction of the literals L/s.

Definition 1. Let P = (A, F,1,0,N,U,G) be a linear
multiagent planning problem. Then the translation K (P) of
P is the classical planning problem with axioms K (P) =
(F', I',0',G', X"y where

o F/ = {L/s : L € Lp(P),s € by} U{D;(s,s') : i €
A s s €br},
o I'={L/s: LeLp(P),s€br,sk=L}

e & =G,
e O = OUNUU,; ie., same set of actions a with same
preconditions Pre(a), but with
— effectsa : C/s — E/s for each s € by, in place of the
effect a : C — E for physical actions do(a), a € O,
- effects a : C/s,~C/s'" — D;(s,s'), D;(s, s) for each



pair of states s, s' in by and (parallel) sensing actions
a in N that involve a sense(i, C) expression, and
— effects a : =C/s'" — D;(s, s') for each pair of states
s,s' in by and 1 € A, for actions a of the form
update(C),
o X' is a set of axioms:

— one for each positive derived fluent K;L/s where
K;L € Lg(P) and s € by with (acyclic) definition
L/s AN Agev,[L)s'V Di(s, 8],

— one for each literal L in Lp(P) U Lk (P) with defini-
tion Nsep, [L/s V D;(s, s)]

In words, the primitive fluents in K (P) represent the truth
of the literals L in P conditioned on each possible hid-
den initial state s as L/s, and the (in)accessibility relation
D, (s, s") among worlds. Initially, the worlds are all accessi-
ble from each other and D;(s, s’) is false for all such pairs.
On the other hand, L/s is true initially if L is true in s. The
goal G’ of K (P) is the same as the (conjunctive) goal G of
P, and the actions O’ in K (P) are the actions in the sets O,
N, and U of P with the same preconditions. However, in the
translation, the effect of physical actions is on the L/s liter-
als, while the effect of sensing actions and updates is on the
D;(s, s') literals, with the literals D;(s, s) for any ¢ being
used to denote that the world s is no longer possible. Last,
the truth conditions for epistemic literals in the translation
is expressed by means of axioms in terms of the primitive
literals L/s and D; (s, s").

The complexity of the translation is quadratic in the num-
ber |b;| of possible initial states. Its soundness and complete-
ness properties can be expressed as follows:

Theorem 1. An action sequence 7 is a plan that solves the
linear multiagent planning problem P iff 7 is a plan that
solves the classical planning problem with axioms K (P).

The translation above follows the pattern of other trans-
lations developed for conformant and contingent planning
problems in the single agent setting (Palacios and Geffner
2009; Albore, Palacios, and Geffner 2009; Brafman and
Shani 2012a) and is closest to the one formulated by Braf-
man and Shani (2012b). Actually, Brafman, Shani and Zil-
berstein have recently developed a translation of a class of
multiagent contingent planning problems that they refer to
as Qualitative Dec-POMDPs (Brafman, Shani, and Zilber-
stein 2013), as it’s a “qualitative” (logical) version of Decen-
tralized POMDPs (Bernstein, Zilberstein, and Immerman
2000). A key difference with our linear multiagent planning
problems is that in Q-Dec-POMDPs the agents have beliefs
about the world, but not about each other. Hence there are
no epistemic modalities or epistemic formulas.

Experimental Results

We have tested the translation above by taking a number of
problems P and feeding the translations K (P) into classi-
cal planners. The results are shown in Table 1.2 As clas-
sical planners we used the version of FF known as FF-X

2Software and data at http://www.dtic.upf.edu/~fkominis/
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(Thiébaux, Hoffmann, and Nebel 2005) that supports ax-
ioms and is available from J. Hoffmann, and three config-
urations of Fast Downward (Helmert 2006) in a version that
we obtained from M. Helmert that does less preprocessing.
The three configurations differ just on the heuristic that is
used to guide an A* search which is optimal for the admis-
sible h,,q. heuristic. The results have been obtained on a
Linux machine running at 2.93 GHz with 4 GB of RAM and
a cutoff of 30 minutes.

A couple of optimizations have been implemented in the
translation K (P). In particular, we take advantage of the
symmetry of the D;(s, s’) predicates to reduce these atoms
in half. In addition, for sensing actions sense(i, C') where C'
is a static objective atom, we define the effects uncondition-
ally for all pairs s, s’ € by such that s and s’ disagree on the
truth value of C.

About the list of domains in the table, the first three have
been discussed already: MuddyChildren(n) with n children,
Collab-through-Comm(n) with n blocks, (only two blocks
are relevant though), and Selective-Communication. The
new domains are discussed below.

Active Muddy Child

MuddyChild(n, m) is a reformulation of MuddyChildren
where a particular child must find out whether he is muddy
or not. For this he can ask individually each other child
whether ¢ knows that he is muddy, with all other children
listening the response. Thus, while in MuddyChildren(n)
there is just one epistemic sensing action that lets every
child know whether each child knows that he is muddy, in
MuddyChild(n, m), there are n — 1 epistemic actions de-
pending on the child being asked. In addition, to make things
more interesting, the goal in MuddyChild(n, m) is for the se-
lected child & to find out whether he is muddy, given that m
of the children are not muddy in the actual world. For exam-
ple, in MuddyChild(5, 2), this goal can be encoded by the
formula (—my A —ms) D (K3ms V K3—mg). The result of
this conditional goal is that in the resulting (shortest) plans,
child 3 will not ask questions to children 1 and 2, as there
is nothing to achieve in the worlds where either one of them
is muddy. While this is not initially known, the child has
physical sensors to discover that. Actually, in this domain,
in order to represent the initial situation where the children
have received the father’s announcement and the informa-
tion from their physical sensors, we force on all plans an
initial sequence of actions that contain these n + 1 actions.
This is easy to do by adding extra fluents. The shortest plans
for MuddyChild(n, m) thus will involve these n + 1 actions
followed by n — m — 1 epistemic actions.

Sum

Sum(n) is a domain based on "What is the Sum?” (van Dit-
marsch, van der Hoek, and Kooi 2007b), which in turn bor-
rows from the ”Sum and Product Riddle” (van Ditmarsch,
Ruan, and Verbrugge 2008) and the Muddy Children. There
are three agents a, b, and ¢, each one with a number on his
forehead between 1 and n. It is known that one of the num-
bers must be the sum of the other two. In addition, each agent
can see the numbers on the other agent’s foreheads, and can



Problems #Atoms | #Actions | #Axioms | #States A*(max) A*(cea) BFS(add) FF-X
MuddyChildren(3) 212 5 72 8 (0.02-0.01)/6 (0.02-0.02)/6 | (0.02-0.02)/6 | 0.01/6
MuddyChildren(4) 816 192 16 (0.16-0.06) /8 (0.1-0.01)/8 (0.15-0.02)/8 0.1/8
MuddyChildren(5) 3312 7 480 32 (1.64-1.1)/10 0.7-0.1)/10 (0.8-0.22)/10 | 3.6/10
MuddyChildren(6) 14080 8 1152 64 (245-20.1)/12 G4-1.1)/12 8-3.3)/12 87/12
MuddyChildren(7) 61504 9 2688 128 (360-311)/ 14 (55.1-9)/14 (109.8 - 64)/ 14 -

Collab-and-Comm(2) 348 22 132 9 0.1-0.04)/6 (0.06-0.02)/6 | (0.06-0.02)/6 | 0.05/8
Collab-and-Comm(3) 1761 28 546 27 (1.6-1.1)/6 (0.8-0.25)/6 (0.85-0.25)/6 93/8
Collab-and-Comm(4) 10374 34 2112 81 (48.1-33)/6 (20.3-5.3)/6 (22-6.5)/6 765/8
Selective-Comm 59 7 20 2 (0.01-0.01)/9 (0.01-0.01)/9 | (0.01-0.01)/9 | 0.01/9
MuddyChild(3,1) 180 6 40 8 (0.01-0.01)/5 (0.01-0.01)/5 | (0.01-0.01)/5 | 0.01/5
MuddyChild(4,1) 720 8 96 16 0.1-0.02)/7 0.1-0.01)/7 0.1-0.02)/7 0.05/7
MuddyChild(5,2) 3056 10 224 32 (1.3-0.06) /8 (1.14-0.02) / 8 (1.2-0.06) /8 1.75/8
MuddyChild(5,1) 3056 10 224 32 (1.3-0.08) /9 (1.14-0.02) /9 (1.2-0.08)/9 1.82/9
MuddyChild(6,2) 13440 12 512 64 (23-0.6)/10 (22.1-0.2)/10 | (22.6-0.7)/10 50/10
MuddyChild(6,1) 13440 12 512 64 (23-0.6)/11 (22.1-025)/11 | (22.7-0.7)/11 | 51.5/11
MuddyChild(7,2) 59968 14 1152 128 (554.5-4.5)/12 (551-1.5)/12 (555-5.7)/12 -
Sum(3) 306 10 90 9 (0.02-0.01)/3 (0.02-0.01)/3 | (0.04-0.02)/3 | 0.02/3
Sum(4) 963 13 234 18 032-0.2)/5 0.2-0.02)/5 0.2-0.06)/5 06/5
Sum(5) 2325 16 480 30 (26.5-26)/7 0.7-0.1)/7 (0.8-0.25)/7 9.1/7
Sum(6) 4770 19 855 45 - (24-0.7)/10 32-15)/10 53/10
Sum(7) 8757 22 1386 63 - (75-29)/11 9.5-53)/11 241713
WordRooms(25,8) 935 56 535 8 94-93)/9 0.25-0.1)/11 (0.25-0.1)/11 6.2/11
WordRooms(25,10) 1183 56 663 10 (18-17.8)/9 0.5-02)/11 0.5-02)/11 11.9/11
WordRooms(25,12) 1439 56 791 12 (60 - 59.6) / 10 (0.6-0.26)/ 14 0.6-03)/14 | 20.3/10
WordRooms(30,14) 1913 56 1059 14 (134.3-133.7)/ 10 (1.1-0.5)/15 (1.1-0.5)/15 | 49.2/14
WordRooms(30,16) 2215 56 1207 16 (207 - 206) / 10 (1.5-0.7)/15 (1.5-0.6)/15 73/16

Table 1: Experimental results. Problems P shown on the left. The columns indicate number of atoms, actions, and axioms in K (P), the
number of possible initial states for P, and the resulting times and plan lengths. FF-X refers to the version of FF that supports axioms. The
other columns refer to three different configurations of Fast Downward using the same search algorithm A* and the heuristics Amaz, Pcea
and hqqq. The first configuration yields provably shortest plans. In the FF-X column, X/Y stands for X seconds and plan length Y. For Fast

Downward, X-Y/Z stands for X seconds of total time, Y seconds spent on the search, and plan length Z. Unsolved problems indicated as

be asked to publicly announce whether he knows that he has
a specific number. The goal is for one selected agent or two
to learn their numbers. Atoms z;, for x € A = {a, b, c} and
1 <7 < n are used for indicating that agent = has the num-
ber ¢ on his forehead. We use one action that lets all agents
know the numbers on the forehead of the other agents in par-
allel. In addition, there are 3n actions that let all agents sense
whether agent x knows that he has the number ¢, x € A and
1<1<n.

The problem is subtle. Consider for example the smallest
problem with n = 3 where agent @ must learn his number,
ie., G = Kya1 V Kyaz V K,as. Since the largest number
must be the sum of the other two, and hence must be larger
than the other two, these two other numbers can be 1 and
1, or 1 and 2. There are thus two different tuples of num-
bers that are possible, 1,1,2 and 1,2, 3, to be distributed
among the 3 agents, resulting into 9 possible (initial) states
and |b;| = 9.

If agent a sees that a second agent has the number 3, he
will know his number from looking at the third agent: if he
has number 2, then a must have number 1, and if the third
agent has number 1, ¢ must have number 2. On the other
hand, if a sees only numbers 1 and 2, he will not know
whether he has number 1 or 3. Yet he can ask the agent with
the number 1 whether he knows that he has the number 1: if
he knows, then a knows that he has number 3, else, he has
number 1. These various scenarios can be obtained by set-
ting the goal to an implication like —a3 D K,a1 V K,as.
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The goals for the instances in the table do not involve con-
ditions on the actual world and thus must work for all the
worlds that are possible.

In Sum(3), the goal is for one agent, say a, to learn his
number and the plan involves all agents sensing the num-
bers of the others in parallel, and then b and ¢ reporting in
sequence whether they each know that his own number is 1.
The total number of actions in the plan is thus 3. There are
three cases to consider to show that the plan works. If the
report from b is Kby, a and ¢ must have the numbers 2 and
3, or 3 and 2, but since a can see c, he can figure out his
number. Let us thus assume that the report from b is = Kby
followed by c reporting K .c;. In such a case, from the first
observation, agents a and c cannot have 2 and 3, or 3 and 2,
and from the second, a; and b; cannot be both true either.
Thus a and b must have the numbers 2 and 1, 2 and 3, or
3 and 2. Once again, since a can see b, a can figure out his
number. Last, if the sensing results in —K}b; followed by
- K.c1, a and b must have the numbers 1 and 1, 1 and 2, or
1 and 3. Therefore a will be able to know that his number is
1.

Interestingly, there is no plan for the goal when all agents
must learn their numbers. Let us assume that b reports first,
and let us focus on two of the possible initial states where
the numbers for a, b and c are 2,1,1 and 2,3,1 respectively. In
state 2,1,1, a will know his number, and b will express igno-
rance, from which ¢ will learn that his number is 1. Agent b
can predict this, and hence will not learn anything else from



either a or c. Thus, the first agent that speaks up in the linear
plan, won’t be able to figure out his number in all states.

Word Room

WordRoom(m, n) is a variation of the collaboration through
communication example. It involves two agents a and b that
must find out a hidden word from a list of n possible words.
The words can have at most 7 letters with the i-th letter of
the word being in room r;, ¢ = 1,...,7. The two agents
can move from a corridor to each of the rooms, and from
any room back to the corridor. There is no direct connection
among rooms, the two agents cannot be in the same room,
and they both start in the corridor. The agents have sensors
to find out the letter in a room provided that they are in
the room, and they can communicate the truth of the literals
K, l; where x is one of the two agents and [; expresses that [
is the i-th letter of the hidden word. The former amounts to
14 sensing actions of the form sense(z, [I;,1},17,...]) with
the precondition that agent x is in room ¢, and where [,
', ... are the different letters that may appear at position
1 of some of the n words. The parameter m in problem
WordRoom(m, n) stands for the total number of /; atoms.
There are also 7 actions sense(a, [Kyl;, Kpll, Kpll/,...])
where b communicates what he knows about room 7 to a,
and similarly, 7 actions where a communicates to b. If we
add the 14 actions for each agent moving from a room to the
corridor and back, the total pool of actions is 56. The short-
est plan for these problems is interesting when there is a lot
of overlap among the n possible words, and in particular,
when it may be more efficient for an agent to communicate
not the letters that he has observed, but the letters that he can
derive from what he knows.

Relation to Single Agent Beliefs and DEL

The proposed formulation for handling beliefs in a multi-
agent setting sits halfway between the standard formula-
tion of beliefs in single agent settings as found in confor-
mant and contingent planning (Geffner and Bonet 2013),
and the standard formulation of beliefs in the multiagent set-
tings as found in dynamic epistemic logics (van Ditmarsch,
van der Hoek, and Kooi 2007a; van Ditmarsch and Kooi
2008). In the single agent settings, beliefs are represented
as the sets of states b that are possible, and physical actions
a, whether deterministic or not, affect such beliefs deter-
ministically, mapping a belief b into a belief b, = {s|s €
F(a,s’) and s' € b} where F represents the system dynam-
ics so that F'(a, s) stands for the set of states that may follow
action « in state s. If the action a is deterministic, F(a, s)
contains a single state. The belief resulting from doing ac-
tion a in the belief b and getting an observation token o is
b = {s|s € b, suchthato € O(a,s)} where O repre-
sents the sensor model so that O(a, s) stands for the set of
tokens that can be observed after doing action a, resulting in
the (possibly hidden) state s. Sensing is noiseless or deter-
ministic, when O(a, s) contains a single token. Interestingly,
when both the actions and the sensing are deterministic, the
set of beliefs B’ (t) that may follow from an initial belief by
and a given action sequence is B'(t) = {b(s,t) | s € b}
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where b(s, t) is the unique belief state that results from the
action sequence and the initial belief state b; when s is the
hidden state. This expression has indeed close similarities
with the beliefs B(t) defined by (6) and (7) above.

While the proposed formulation is an extension of the be-
lief representation used in single-agent planning, it repre-
sents also a fragment of dynamic epistemic logics where the
Kripke structure /(¢ + 1) that represents the belief at time
t+1 is obtained from the Kripke structure /C(¢) representing
the beliefs at time ¢ and the Kripke structure representing the
event at time ¢ called the event model. The update operation
is known as the product update as the set of worlds of the
new structure is obtained by taking the cross product of the
sets of worlds of the two time ¢ structures. In particular, us-
ing the framework laid out in (van Ditmarsch and Kooi 2008;
Bolander and Andersen 2011) for integrating epistemic and
physical actions, the basic actions in our language can be
all mapped into simple event models. The event model for
do(a) is given by a single event whose postcondition in a
state s is f,(s). The event model for update(¢) has also a
single event with precondition ¢ and null postcondition. Fi-
nally, the event model for sense(A, ¢) has two events that
can be distinguished by the agents in A but not by the other
agents, one with precondition ¢, the other with precondition
—¢, and both with null postconditions. While the proposed
formulation captures only a fragment of dynamic epistemic
logics, for this fragment, it provides a convenient modeling
language, a simple semantics, and a computational model.

Discussion

We have introduced a framework for handling beliefs in the
multiagent setting that builds on the methods developed for
representing beliefs in single-agent planning. The frame-
work also captures and defines a fragment of dynamic epis-
temic logics that does not require event models or prod-
uct updates, and has the same complexity as belief track-
ing in the single agent setting (exponential in the number
of atoms). We have also built on these connections to show
how the problem of computing linear multiagent plans can
be mapped into a classical planning problem, and have pre-
sented a number of examples and experimental results.

A basic assumption is that all uncertainty originates in the
set of states that are possible initially and hence that actions
are deterministic. Still, non-deterministic physical and sens-
ing actions can be introduced by reducing them to determin-
istic actions whose effects are made conditional on extra hid-
den variables. Similarly, while all agents are assumed to start
with the same belief state, different initial beliefs that result
from a common belief and different public sensing events
can be handled easily as well.

In the future, we want to explore more compact transla-
tions able to exploit width considerations as in conformant
and contingent planning, and, like recent work in single-
agent partially observable planning, move to the on-line set-
ting where action selection may depend on the actual obser-
vations, and further scalability is achievable.

Acknowledgements: We thank Malte Helmert for the ver-
sion of the Fast-Downward planner used in the experiments.
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