The Causal Graph Heuristic is the Additive Heuristic plus Context

Héctor Geffner
ICREA & Universitat Pompeu Fabra
Passeig de CircumvaldcB
08003 Barcelona Spain
hector.geffner@upf.edu

Introduction Formally, amultivalued-planning taskMPTSs) is a tuple

The causal graph heuristic introduced by Helmert in 1L = (Vis0,5:,0,) whereV is a set of variables with
(Helmert 2004; 2006b) is one of the most interesting recent associated finite discrete domaifs, s, is a state ovel’
developments in the heuristic search approach to domain- characterizing the initial situation, is a partial state over
independent planning. Unlike the additive heuristic used characterizing the goal situation, attis a set of operators
early in the HSP planner (Bonet & Geffner 2001) and the thatmap one state into a possibly different state.
relaxed planning graph heuristic used in FF (Hoffmann & /A State is a functions that maps each variable ¢ V
Nebel 2001), the causal graph heuristic is not based on the iNt0 & values(v) in D,. A partial state is one such func-
delete-relaxatiorbut on a deeper analysis of the problem ton but restricted to a subset C V' of variables. As it is
structure as captured by its underlyingusal graph The common in the boolean setting, we often represent and treat
causal graph is a directed graph where the nodes stand forSUch functions as theet of atoms = d that they make true,
the variables in the problem and links express the dependen-hile keeping |n/m|nd that the set of atoms that represent
cies among them. The causal graph heuristic is defined for the states/v = d’ obtained froms by changing the value
problems withacycliccausal graphs as the sum of the costs Of variablev from d to d’, contains the atom = d’ but not
of plans for subproblems that include a variable and its par- ¥ = d. . , .
ents in the graph. The local costs are not optimal (else would AN operatora has a preconditiopre(a) that is a partial
be intractable) and are definptbcedurally state, and a set of effects or rulesﬁ v = d, written also

In this note we introduce an alternative, declarative for- @S¢ : 2 — v = d, where the conditior is a partial state,
mulation of the causal graph heuristic that we believe is v € V' is avariable, and is a value inD,.
simpler and more general. The new heuristic reduces to AN actiona is executable in a stateif pre(a) C s and
Helmert's heuristic when the causal graph is acyclic, but the resul'g is a stat€ that is likes except that variablesare
does not require either acyclicity nor the causal graph it- Mapped into valueg whena : » — v = d is an effect ofa
self. Like the additive heuristic, the new heuristic is defined @ndz € s. A planis a sequence of applicable actions that
mathematically by means of a functional equation, whicn Maps the initial state, into a final state; wheres, holds.
translates into a shortest path-problem over a poly-size graph 1 hese definitions follow the ones in (Helmert 2006b) with
that can be solved by standard algorithms. Indeed, the only & féw simplifications (e.g., axioms and derived atoms are not
difference between this account of the causal graph heuris- considered). In addition, for simplicity and without loss of
tic and the normal additive heuristic is that the nodes in this 9enerality, we make two assumptions. First, we will assume
graph, that stand for the atoms in the problem, are labeled thataction preconditiongre(a) are empty This is because,
with contextual information. The new formulation of the the value of the causal graph heuristic does not change when
causal graph heuristic suggests a number of extensions, allPreconditionsp € pre(a) are moved into the body of
of which have to do with the exploitation of implicit or ex- all effectsz — v = d. Second, we will assume that the
plicit precedences among the actions preconditions in order Variablev that appears in the head of a rue— v = d

to capture side-effects in the computation of the heuristic. ~ /S0 appears in the body Effectsz — v = d for which
this is not true are to be replaced by a collection of effects

: ; v =d,z — v = d, one for each valud’ € D, differ-
Multivalued Planning Tasks ent thand; a transformation that preserves the semantics and
The causal graph heuristic is defined over a planning lan- complies with the above condition. Effects— v = d can
guage with multivalued variables based on the SAS+ lan- thus all be written as

guage (Bckstdm & Nebel 1995), where the basic atoms

are of the formy = d wherev is a variable and € D, is a v=d,Z —v=d.

value inv's domainD, . While this language is not the standard in planning, an

Copyright(© 2007, Association for the Advancement of Artificial ~ automatic translator from PDDL into MPT's is described in
Intelligence (www.aaai.org). All rights reserved. (Helmert 20064a).

The Causal Graph Heuristic

The causal graph heuristich,,(s) provides an estimate of
the number of actions needed to reach the goal from astate
in terms of the estimated costs of changing the value of each
variablev that appears in the goal from its valugin s to

its valuev, in the goal:

heg(s) = Z cost, (vs, vy)

VES

1)

The costscost,(d,d") are defined with the help of two
structures: thelomain transition graphT'G(v), that re-
veal the structure of the domaih, associated with each
variablev, and thecausal graphC'G(II) that reveals the re-
lation among the variablasin the problenil.

The domain transition graph DT'G(v) for a variable
v € V, is a labelled directed graph with vertex sBt,
and edgegqd,d’) labelled with the conditiorz for rules
v=d,z—v=dinIl

The causal graphCG(II) for I = (V, sg, s4, O), is the
directed graph with vertex sét and arcgv,v’) for v # o'
such that appears in the label of some arciif’'G(v') or
some actioru affects bothw and+’ (i.e., II contains effects
a:z—v=danda: 2z — v = d foran actiorn).

The costsost, (d, d') that determine the heuristic.,(s)
in Equation 1 are defined in terms of the causal graph
CG(IT) and the domains transition grapbd'G (v).

The definition assumes th&tG(1) is acyclic When this
is not so, Helmert's planner relaxes’ the causal graph by
deleting some edges, defining the costs and the resulting
heuristic over the resulting acyclic graph.

The measureeost,(d, d") stand for the cost o& plan =
that solves the subproblelh, 4 4 with initial states /v = d,
goalv = d’, that involves only the variable and its par-
ent variables in the causal graph. The measuses, (d, d’)
however do not stand for thaptimal costof these subprob-
lems which are not tractable (Helmert 2006b), and are de-
fined procedurallyusing a slightly modified Dikjstra’s algo-
rithm (Cormen, Leiserson, & Rivest 1989; Bertsekas 1991),
in topological order, starting with the variables with no par-
ents (root variables) in the causal grdph.

I will not repeat the exact procedure for computing these
costs, that can be found in Figure 18, (Helmert 2006b), but
rather | will explain the procedure in a way that will make
the relationship between the causal graph and the additive
heuristics more direct.

Let us recall first that irDijkstra’s algorithm , a label
¢(i) is associated with all nodesn the graph, initialized to
c(i) = 0 if 4 is the source node andi) = oo otherwise.
In addition, an OPEN list is initialized with all nodes. The
algorithm then picks and removes the nadigom OPEN
with least cost:(i) iteratively, updating the valueg;) of all
the nodeg still in OPEN toc(j) = min(e(5), c(i)+¢(i, 7)),
wherec(i, j) is the cost of the edge connecting node ;
in the graph. This is called thexpansiorof node:.

'Actually Helmert's procedure does not compute the costs
cost,(d,d') for all v € V and alld,d’ in D, but this optimiza-
tion is not relevant here.

The algorithm finishes in a number of iterations bounded
by the number of nodes in the graph when OPEN is empty.
The labele(i) of a node is optimal when selected for expan-
sion and remains so until termination.

The coste(i, j) of the directed edge, j) is assumed to
be non-negative and is used in the computatioly right af-
ter nodei is expanded. Helmert's procedure takes advantage
of this fact forsetting the cost of such edges dynamically,
right after nodei is selected for expansion.

Actually, whenwv is a root variable ilCG(II), Helmert's
procedure for solving the subprobleril, 4 4, for a given
d € D, and alld’ € D,, resulting in the costeost,(d, d’),
is exactly Dikjstra’s: the graph i®T'G(v), the source node
is d, the cost of all edges is set 19 and upon completion,
cost,(d,d") is set toc(d’) for all & € D,. For such vari-
ables cost,(d,d") is indeed optimal foil, 4 4 .

For variablesy with a non-empty set of parent variables
v; in the causal graph with costsst,, (¢e;, €;) already com-
puted for alle;, e, € D,,, Helmert's procedure for solv-
ing the subproblenil, 4 4 for a givend and alld’ € D,,
modifies Dijkstra’s slightly by setting the cost of the edges

(d1,d2) € DTG(v) labelled with conditionz : v; =
ei,...,vp = e, to
1+ Z cost,, (e, e;))
1=1,...,n

right after noded; has been selected for expansion, where
e} is the value of variable; in the states,;, associated with
noded;. The state associated with a nodlés defined as
follows. The states,; associated with the source nodes

s, while if sy is the state associated with the nadlgust
selected for expansion, and the expansiod causes:(d’)

to decrease for som# € D, due to an edgéd, d') labelled
with z, thens, is set tosy/ z.

This procedure for solving the subprobleils ; 4 is not
optimal nor is it complete. Indeed, it is possible for the costs
cost,(d, d") to be infinite while the costs dl,, 4 4 are finite.

This is because the procedure achieves the intermediate val-
uesd” greedily carrying theside effectss,» but ignoring

their impact in the 'future’ costs to be paid in going fraii

tod'.

These limitations of the causal graph heuristic are known,
what we seek here is an understanding of the heuristic in
terms of the simpler and declarative additive heuristic.

Additive Heuristic

For the language of the MPTH = (V, s, s, O), the ad-
ditive heuristic (Bonet, Loerincs, & Geffner 1997; Bonet &
Geffner 2001) can be expressed as:

ha(s) = > h(als)
TES,

wherezx stands for the atoms = d forv € V andd € D,,
andh(z|s) is an estimate of the cost of achievimgrom s
given as:

ntels) = {

®)

0 if x € s, else

Min gioa [14 2, o, hl(@i]s)] 4

This functional equation approximates the true cost func-
tion by assuming that the cost of joint conditions (in goals
and effects) is additive. Such sums go away, however, if the
goal is a single atom and no conditierfeatures more than
one atom. In such a case, the additive heurikfi¢s) co-
incides with the max heuristit,,...(s) (Bonet & Geffner
2001), and both are optimal provided that all these condi-
tions are mutex.

It follows from this that ifz4, . .., x,, represent the atoms
v = dyi,...,v = d, for a root variablev in the causal
graph ofII, the valuesh(z;|s) that follow from (4), for
i = 1,...,n, are all optimal, and thus in correspondence
with the costscost, (dg, d;) computed by Helmert's proce-
dure whendy, is the value ofv in s. For other valuesi;
of v, the costscost, (d;, d;) are equivalent to the estimates
h(z;|s;) with s; = s/[v = dj].

This correspondence between the cestg, (d’, d) and
the heuristicdi(x|s") whenv is a root variable in the causal
graph,z isv = d, ands’ is s/v = d’, raises the question

of whether such costs can be chacterized in the style of the

additive heuristic also whemis nota root variable.

Notice first that Equation 2 used in Helmert's procedure,
is additive. At the same time, the procedure keeps track of
side effectsn a way that is not captured by (4) where the
costsh(z;|s) of all conditionsz; in the body of the rules :

z — x are evaluated with respect to the same stat€his
however suggests to look at variations of (4) where these
conditionsx; are evaluated in different states rendering
the general pattern

0 if z € s, else

def
hlels) = { min g5z (1 + inez h(zilsq)]

where the states; over which some of the conditions;

(5)

in a rule are evaluated may be different than the seed state s(x|z’)/z, 2", y1, . -

is like s except over the variables mentionedirwhere it is
equal tos’.

The answer to the first question that follows from
Helmert's formulation is that in the rules: 2/, z — x the
conditionz’ that refers to the same variable asis achieved
first, and the rest of the conditions in z are evaluated in
the states’ that result(Assumption 1).

The answer to the second question is that in the compu-
tation of the heuristic for a state the costsi(x;|s’) for a
contexts’ are mapped into costs(z;|s/x;) wherez!, is the
value of z; in ', meaning that information in the staté
about other variables is discardesséumption 2). We will
write h(z;|s/x}) then ash(z;|x}).

Provided with these two assumptions, the idea underlying
(5) can be formalized as follows:

h(//| /) def 0 |f .’L’// == :UI, else

P mingeg »ar [1+ h(ola) + 5, . hlw|2))]
_ _ (6)
wherez} is the value ofz; in the state that results from
achievingz from 2/, written ass(z|z’) and obtained from

s(x”|2) d—ef{

wherea : z,z — 2" is the rule that yields the minimum
in (6), anda : =,z — y;, ¢ = 1,...,n, are other rules in
the problem with the same action and body (thus when the
former is applied, the latter are applied as well).

In words, whena : z,z — 2 is the best (min) sup-
port for atomz” from 2z’ according to (6), and(x|z’)
is the state that is deemed to result for achievingom
2’ (i.e., the 'side-effect’ of achieving: from z’), then
., Yn IS the state that is deemed to result

s/’ if 2" =4/, else
S(l’ll‘/)/z, x”>y17 <o Yn

()

s where the value of the heuristic needs to be assessed. Wefor achievingz” from z’.

will refer to such states; that may be different than the seed
state agontexts

Additive h with Contexts

The use of (5) in place of (4) for defining the additive heuris-
tic raises two questions:

1. how to choose theontextss; needed for the evaluating
the conditionse; in a given rules : z — z, and

2. how to restrict the number of total contextsneeded for
computing the heuristic value of

We answer these two questions in line with Helmert’s for-

mulation. Later on we will consider some generalizations.
Let us recall first that, without loss of generality, we are

assuming that all the rules have the farmz, = — 2z’ where

z andz’ are atoms referring to the same (multi)variabia

the problem (Section 2). An atomis av-atom when it has

the formv = d for somed € D,, and refers to the same

variable as an atomy when the two are-atoms for some.

We also say that’ : v = d’ is thevalueof z in the states’

as an abbreviation for saying thatandz refer to the same

variablev, andd’ is the value ofv in s’. As before,s/s’

whens is a state and’ is partial state, refers to the state that

Equations 6 and 7 define an heuristic that is very much
like the additive heuristic except that a) the heuristic values
h(z"|s) are computed not only for the seed statbut for
all the statess’ = s/’ whenz’ is an atom that refers to
the same variable as’, and b) during the computation, the
preconditions other thaa in the rulesa : z,z — 2z are
evaluated in the stat€x|z’) that results from achieving the
'pivot’ condition x. producing then the side effeetz”|z’)
associated with”. This recursion starts with”” = =’ when
h(z”|z") = 0 ands(z”|2’) = s/’ (the seed stateupdated
with).

The context-enhanceddditive heuristidhé (s) is defined

then as
c def
ho(s) €) hlalzy)

TES,

(8)

wherex; is the value ofr in s and h(z|2’) is defined by

(6)-(7).

Example

As an illustration, consider a problem with a boolean vari-
ableY and a multivalued variabl& < [0...n], represented
by the booleang, —y, andx;, standing for the assigments

Y = true, Y = false,andX = ifori = 0,...n, and
actionsa andb;, i = 0, ..., n with rules

a:-y—y , bi:ixiy— g1 Ay

wherez — z A y stands fora : z — z anda : z — y.
We want to determine the value &f (s) whenzy and—y
hold in s and the goal is,,. From (8),hS(s) = h(zy,|zo).
The optimal plan for the problem is the action sequence
a,bg,a,by,...,a, b, 1 foracost of2n. The plans must in-
crease the value oX one by one, but before each step the
value ofY that is made false by each increase&Xinmust be
restored to true.

From (6), it follows that

h(wit1lzo) = 1+ h(zilzo) + h(yly') 9)

for: = 0,...,n — 1, wherey' represents the value af
in the states(x;|zo) that results from achieving; from z
characterized as:

s(zip1lzo) = s(xilwo)/@iv1, 7y -

The relevant 'border’ conditions ark(zo|zg) = 0 and
s(zo|zg) = s. Clearlyy’ above is—y, as—y holds in
s(xi|zo) foralli = 0,1,..., so that (9) becomes:

h(xiyi|xo) = 14 h(x;|xo) + 1

foralli > 0 ash(—yly) = 1. Thus,h(z;y1|ze) = 2 +
h(zx;|zo) with h(xzg|ze) = 0. Soh(z,|xe) = 2n and thus
h¢(s) is optimal. The plain additive heuristic, on the other
hand, ish,(s) = n+1, which is optimal only for the delete-
relaxation.

Causal Graph and Additive Heuristics

The causal graph underlying the problem above involves a
cycle between the two variablé§ andY . In the absence of
such cycles the following correspondence can be stown:

Theorem 1 (Causal and Additive Heuristics) If the
causal graphCG(II) is acyclic then the causal graph
heuristic h., and the context-enhanced additive heuristic
h¢ are equivalent, i.e., for every stageh.,(s) = h(s).

The sketch of the proof proceeds as follows. When
CG(I) is acyclic, a correspondence can be established be-
tween the costsost, (d, d') defined by Helmert's procedure
and the cost&(2’|z) defined by Equations 6—7 far: v = d
andz’ : v = d’, and between the stateg associated with
the noded’ and the states(x’|x) defined by 6 and 7.

These correspondences must be proved inductively: first
on the root variables of the causal graph, and then on the
execution of the modified Dijkstra’s procedure.

The first part is straightforward and was mentioned above:
if v is a root variablegost, (d, d’) is the optimal cost of the
subproblemll, 4 4+ which involves no other variables, and

the costsi(z’|x) remain optimal as well, as there is a single
condition in every rule and hence no sums or additivity as-
sumptions, and all these conditions are mutex. At the same
time, the states,; ands(2’|z) remain equivalent too.

If v is not a root variable, the correspondence between
cost,(d,d") ands’, on the one hand, arit{z’|z) ands(z’|x)
on the other, must hold as well faf = d before any node
is expanded in Helmert's procedure. Assuming inductively
that the correspondence holds also for all valyes; € D,,
of all ancestors; of v in the causal graph, and for all values
cost,(d,d") and states, after the firsti-nodes have been
expanded, it must be shown that the correspondence holds
after thei + 1-node is expanded as well.

Computing the Heuristic for Cyclic Graphs

The extended additive heuristic; reduces to the causal
graph heuristic., in MPT’s with acyclic causal graphs, but
does not require acyclicity, and indeed, does not use the no-
tion of causal graphs or domain transition graphs. In this
sense, the induction over the causal graph for defining the
costscost, (d, d'), from variables to their descendants, is re-
placed ink¢ by an implicit induction over costs.

Indeed, in the presence of a cyclic graph, the chétée’)
in (6)—(7) can be computed using a modified Dijkstra’s al-
gorithm, similar to Helmert’s but that works over all domain
transition graphDT'G(v) and possible sourcese D, at
the same time. More precisely, the nodes in the graph would
correspond to the transitiongz’, for all atom pairsz and
2’ referring to the same variable. Initially the costse|x)
are zero and all other transition costs are infinite, and in each
step the transition from OPEN with least cost is selected and
its cost and state are propagated as in the modified Dijkstra’s
procedure. The algorithm remains polynomial, and indeed,
Dijkstra’s algorithm can be used for computing thermal
additive heuristicswhether the causal graph is cyclic or not,
although in practice the Bellman-Ford algorithm is preferred
(Liu, Koenig, & Furcy 2002).

Generalizations

The context-enhanced heuristif is more general than the
causal graph heuristic as it applies to problems with cyclic
causal graphs. The heuristic can be generalized further,
however, while remaing polynomial by relaxing the two as-
sumptions that led us to it from the more general form (5)
where each condition; is evaluated in a potentially dif-
ferent contexts; in h(xz;|s;). The two assumptions were
1) that the contexts; for all the conditionsz; in a rule

a: x',z1,...,x, — x are all the same and correspond
to the state’ resulting from achieving the first conditiar,

and 2) that(z;|s’) is reduced tav(z;|s/z;) wherez] is the
value ofz; in &, thus effectively throwing away all the infor-
mation ins’ that does not pertain to the variablassociated
with z;. Both of these assumptions can be relaxed, leading

The correspondence assumes that edges in domain transitionto potentially more informed heuristics, still expressable in
grapahs and rules in the problem are ordered statically in the same the style of (5) and computable in polynomial time. Some

way, so that ties in Helmert's procedure and in (6-7) are broken in

the same way. Note that there is a direct correspondence between

edgeq(d, d') labelled with conditions in DT'G(v) and rulesy =
dz—v=d.

possibilities follow.

The formulation that follows from Assumptions 1 and 2
above presumes that in every rule— =z in the problem,

a) there is a condition in the body of the rule that must be
achieved first; call it theoivot condition, b) that this pivot

the exclusion of the non-parent variablé€sfrom the sub-
problemsll, 4 o. There may be a bounded number of such

condition involves the same variable as the head, and c) that variablesv’ however that one may want to keep in all such

no precedence informatiomvolving the rest of the condi-
tions inz is available or usable.

Condition a) is not particularly restrictive as it is always
possible to add a dummy pivot condition. Condition b) on
the other hand, is restrictive, and often, unnecessarily so.
Consider for example the following rule for 'unlocking a
door at a location’

have_key(D),at = L — unlocked(D) (10)

and say that the key is at a locatibhdifferent thanZ, while

L, is the current agent location. The cost of applying such a
rule should include the cost of going fralg to L' to pick up

the key, as well as the cost of going frarhto L to unlock to

the door. However, this won't follow from the formulation
above or from the causal graph heuristic, as the variable in
the head of the rule is boolean. We can actually cast this rule
in the format assumed by the formulation as

—unlocked(D), have_key(D), at = L — unlocked(D)

where for boolean variables v is used as an abbreviation
of v = true and—-w of v = false, yet one can show
that the context-mechanism that the causal graph heuristic
adds to the normal additive heuristic, has no effect on rules
z — v = d with boolean variables in the head. This is
because, either = d is true ins for a cost of0, orv = d’
is true ins for d’ # d, with no side-effect. For a rule such
as (10), it makes sense to treat the booleare_key(D) as
the pivot condition even if it involves a variable that is dif-
ferent than the one mentioned in the rule head. Actually the
generalization of the heuristic for accounting for arbitrary
pivot conditions in rules, as opposed to pivot conditions in-
volving the head variable, is easy to accommodate. In the
example above, the side effect of achieving the pivot con-
dition have_key(D) involvesat = L', so that the second
condition in the rulexit = L should be evaluated in that con-
text, accounting for the cost of getting to the key location,
and from there to the door.

A second generalization can be obtained by making use
of furtherprecedence constrainggnong the rule conditions.
In the extreme case, if we have@al ordering among all
of the rule conditionsthen we should evaluate the second
condition in the context that results from the achievement of
the first, the third condition in the context that results from

the achievement of the second, and so on. Indeed, such an

ordering among conditions @ubtaskss one of the key el-
ements that distinguishé$TN planning(Erol, Hendler, &
Nau 1994) from ’'classical’ planning. An heuristic of the

type proposed can be used to provide an estimator capable

of taking such precedence constraints into account.

The two generalizations above follow from relaxing As-
sumption 1 above. Assumption 2, that maps the heuristics
h(z;|s") for contextss’ into the estimates(x;|s/x;) where
x} is the value ofz; in s, throws away information in the
contexts’ that does not pertain directly to the multivalued
variable associated with; but which may be relevant to it.

In the causal graph heuristic, this assumption translates in

subproblems. Such an extension would cause polynomial
complexity growth, and can be accommodated simply by
changing the assumptioi(x;|s") = h(z;|s/x}) implicit in

(6), wherez} is the value ofz; in s, by an explicit assump-
tionh(x;|s") = h(z;|s/x},y’) wherey’ stands for the values

of such 'core variables’ to be preserved in all contexts.

It must be said that all these generalizations inherit cer-
tain commitments from the additive and causal graph heuris-
tics, in particular, the additivity of the former, and the greedy
(min) rule selection of the latter.

Discussion

Defining heuristics mathematically rather than procedurally
seems to pay off as mathematical definitions are often
clearer and more concise, and force us to express the as-
sumptions explicitly, separatingshat is to be computed
from howit is computed. Also, the functional equation form
used in definition of the additive heuristic, that is common in
dynamic programming, appears to be quite general and flex-
ible. It has been used to define the max heuristig,., the

h™ heuristics (Haslum & Geffner 2000), and more recently,
the set-additive heuristic (Keyder & Geffner 2007) and the
cost-sharing heuristics (Mirkis & Domshlak 2007).

The resulting formulation of the causal graph heuristic
does not require acyclicity or causal graphs, and admits
some interesting generalizations all of which have to do with
the use of ordering information among action precondition
to capture side-effects in the computation of the heuristic.
There are some interesting connections with HTN planning,
where precedence constraints among preconditions or sub-
tasks are common, that are worth exploring too.

We have not explored the practical ramifications of the
new formulation, e.g., on the performance of domain-
independent planners, but hope that some of these ideas will
turn out to be helpful in domains where the delete-relaxation
heuristics, or relaxations that render a causal graph acyclic,
are not appropriate. Actually, the causal graph heuristic is
weak even in acyclic graphs where multivalued variables
have many children. This happens for example when differ-
ent values of such variables are needed by many other vari-
ables in the graph, as in a problem where many packages
must be picked from different locatioihs The causal graph
heuristic will behave in such a case as the normal additive
heuristic, ignoring the side effects on the agent location that
follow from getting the other packages. A refinement of the
additive heuristic that is able to approximate the TSP cost in
such cases is given in (Keyder & Geffner 2007).

Acknowledgements. H.Geffner is partially supported by
Grant TIN2006-15387-C03-03 from MEC, Spain.

References

Backstbm, C., and Nebel, B. 1995. Complexity results for
SAS' planning. Computational Intelligence1(4):625—
655.

Bertsekas, D. 1991Linear Network Optimization: Algo-
rithms and CodesMIT Press.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search Artificial Intelligence129(1-2):5-33.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planningPlo-
ceedings of AAAI-97714—-719. MIT Press.

Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1989.
Introduction to AlgorithmsThe MIT Press.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. IRroc. AAAI-94

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProc. of the Fifth International
Conference on Al Planning Systems (AIPS-2000}-82.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. I®roc. ICAPS-04161-170.

Helmert, M. 2006a. Solving Planning Tasks in Theory
and Practice Ph.D. Dissertation, Freiburg University, Ger-
many.

Helmert, M. 2006b. The Fast Downward planning system.
Journal of Artificial Intelligence Resear@6:191—-246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic seafotirnal

of Artificial Intelligence Research4:253-302.

Keyder, E., and Geffner, H. 2007. Set-Additive and TSP
Heuristics for planning with action costs and soft goals.
Technical report, Proc. 2007 ICAPS Workshop on Heuris-
tics for Domain-Independent Planning.

Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up
the calculation of heuristics for heuristic search-based plan-
ning. InProc. AAAI-02 484—491.

Mirkis, V., and Domshlak, C. 2007. Cost-sharing approxi-
mations forh ™. In Proc. ICAPS-07

