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Abstract

Focusing on the computation of conformant plans whose ver-
ification can be done efficiently, we have recently proposed
a polynomial scheme for mapping conformant problemsP
with deterministic actions into classical problemsK(P ). The
scheme is sound as the classical plans are all conformant, but
is incomplete as the converse relation does not always hold.
In this paper, we extend this work and consider an alterna-
tive, more powerful translation based on the introduction of
epistemic tagged literalsKL/t whereL is a literal inP and
t is asetof literals inP unknown in the initial situation. The
translation ensures that a plan makesKL/t true only when
the plan makesL certain inP given the assumption thatt is
initially true. We show that under general conditions the new
translation scheme is complete and that its complexity can be
characterized in terms of a parameter of the problem that we
call conformant width. We show that the complexity of the
translation is exponential in the problem width only, find that
the width of almost all benchmarks is1, and show that a con-
formant planner based on this translation solves some inter-
esting domains that cannot be solved by other planners. This
translation is the basis forT0, the best performing planner
in the Conformant Track of the 2006 International Planning
Competition.

Introduction
Conformant planning is the problem of finding a sequence
of actions for achieving a goal in the presence of uncer-
tainty in the actions or initial state (Goldman & Boddy 1996;
Smith & Weld 1998). The problem is more complex than
classical planning, as the verification of plans itself is in-
tractable in the worst case (it must consider all possible ini-
tial states and transitions) but simpler than the more general
problem of planning with partial observability (Haslum &
Jonsson 1999; Rintanen 2004). While few practical prob-
lems are purely conformant, the ability to find conformant
plans appears to be a necessity in contingent planning where
conformant situations are an special case (null observability
being an special case of partial observability) and where re-
laxations into conformant planning appear to provide useful
heuristics (Brafman & Hoffmann 2004).

In (Palacios & Geffner 2006), we have recently proposed
a polynomial scheme for mapping conformant problemsP
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with deterministic actions into classical problemsK(P ) that
can then be solved efficiently by an off-the-shelf classical
planner. The scheme is sound in sense that the classical
plans obtained fromK(P ) are all conformant, but is incom-
plete, asK(P ) may admit no solution whenP does. As
shown empirically in (Palacios & Geffner 2006), however,
few of the existing benchmark domains cannot be solved in
this way, and those that can be solved in this way, are nor-
mally solved faster than by other methods. This is apparent
from the results of the recent Conformant Planning Com-
petition held at ICAPS-06, available from (Bonet & Givan
2006), where the translationK(P ) was fed to the classical
FF planner (Hoffmann & Nebel 2001) producing a planner,
KP, that was dominated only byT0, the planner based on the
translation that is developed in this paper.

TheK(P ) translation is defined with the aid of new lit-
eralsKL and L/X for literals L and X in the problem
P , ensuring thatKL and L/X are true whenL and the
conditional ’if X then L’ are known to be true respec-
tively. The tagged literalsL/X are ’produced’ by condi-
tional effects of the forma : C ∧ X → L, translated into
a : KC → L/X, and are ’consumed’ by merge actions of
the formd : L/X1, L/X2 → KL provided thatX1 ∨X2 is
known to hold, accounting thus for a simple form of reason-
ing by cases.

In this paper, we extend this work and consider an alter-
native translation schemeKi(P ), wherei is a non-negative
integer, that overcomes some of the theoretical and practical
limitations of K(P ). In particular, we define a parameter
w(P ) that we call theconformant widthof P , and show that
the translationKi(P ) is provably complete whenw(P ) ≤ i,
while being exponential only ini. Moreover, we will see
that almost all conformant benchmarks have actually width
equal to 1. The plannerT0 takes advantage of this fact and
is built on the translationKi(P ) for i = 1.

The translationKi(P ) is stronger thanK(P ) for any
i ≥ 1 while for i = 0 coincides with thecore translation
K0(P ) (Palacios & Geffner 2006) that captures the plans
valid under the so-called 0-approximation (Baral & Son
1997). The key departures fromK(P ) are in the syntax and
semantics of the conditionals represented by the ’tagged’ lit-
eralsKL/t: syntactically,t no longer has to be a single lit-
eral but can be an arbitrary set of literals, and semantically,
the truth ofKL/t no longer means thatL is true if t is true



at the same time, but thatL is true if t was truein the initial
situation. In other words, the tagst will refer to possible
local contexts in the initial situation, and the tractability re-
sults for problemsP with bounded widthw(P ) mean that
only a bounded number of such local contexts need to be
considered.

Conformant planning can be formulated as the search for
a sequence of applicable actions that map an initial belief
stateb0 into a target belief statebF . A belief statebel repre-
sents the set of statess that are deemed possible, and actions
a, whether deterministic or not, deterministically map one
belief statebel into another, denoted asbela. This view is
formulated in (Bonet & Geffner 2000) where an admissible
heuristic is introduced for solving this shortest-path problem
over belief space. More recent proposals, incorporate more
effective belief state representations and heuristics (Hoff-
mann & Brafman 2005; Cimatti, Roveri, & Bertoli 2004;
Bryce, Kambhampati, & Smith 2006), while others build
directly on incomplete but tractable belief representations
(Sonet al. 2005). The translation-based approach combines
and extends these ideas providinga tractable but incomplete
belief representationthat at the same time benefits from the
heuristicsthat have been proved successful in classical plan-
ning for guiding the search for plans in such a simplified be-
lief space (Palacios & Geffner 2006). The approach is also
closely related to the notionplanning at the knowledge level
formulated in (Petrick & Bacchus 2002) except that the epis-
temic encoding is derived automatically and is solved by an
off-the-shelf classical planner that uses an automatically de-
rived heuristic as well.

The paper is organized as follows. We consider first the
translationK(P ) and some of its limitations. Then we in-
troduce an alternative translation schemeKT,M that is based
on two parameters: a set of tagst and a set of mergesm. We
consider next two special instances of this general scheme:
the KS0(P ) translation that is complete but exhaustive as
T is selected to stand for the set of all possible initial states,
and theKi(P ) translation that is complete for problems with
width w(P ) ≤ i and involves tags of size no greater thani.
The translationKi(P ) for i = 1 is then used as the basis of
a conformant planner that is tested over many domains.

The translation K(P )
Following (Palacios & Geffner 2006), a conformant plan-
ning problemP is a tupleP = 〈F,O, I, G〉 whereF stands
for the fluent symbols in the problem,O stands for a set of
actionsa, I is a set of clauses overF defining the initial sit-
uation, andG is a set of literals overF defining the goal. In
addition, every actiona has a precondition given by a set of
fluent literals, and a set of conditional effectsC → L where
C is a set of fluent literals andL is a literal. All actions are
assumed to bedeterministicand hence all uncertainty lies in
the initial situation.

We refer to the conditional effectsC → L of an actiona
as therulesassociated witha, and sometimes write them as
a : C → L. Also, we use the expressionC ∧ X → L to
refer to rules with literalX in their bodies. In both cases,
C may be empty. Last, whenL is a literal, we take¬L to
denote the complement ofL.

The basic core of the translationK(P ) in (Palacios &
Geffner 2006) mapsP into a classical planning problem
K0(P ) = 〈F ′, O′, I ′, G′〉 where1

• F ′ = {KL, K¬L | L ∈ F}
• I ′ = {KL | L ∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but with each literal preconditionL for a ∈ O

replaced byKL, and each conditional effecta : C → L
replaced bya : KC → KL anda : ¬K¬C → ¬K¬L.

For any literalL in P , KL denotes its ‘epistemic’ coun-
terpart inK0(P ) whose meaning is thatL is known. The
expressionsKC and ¬K¬C for C = L1 ∧ L2 . . . are
used as abbreviation of the formulasKL1 ∧ KL2 . . ., and
¬K¬L1 ∧ ¬K¬L2 . . ..

The intuition behind the translation is simple: first, the
literal KL is true in the initial stateI ′ if L is known to be
true inI; else it is false. This removes all uncertainty from
K0(P ). In addition, to ensure soundness, each conditional
effecta : C → L in P maps, not only into thesupporting
rule a : KC → KL but also into thecancellation rule
a : ¬K¬C → ¬K¬L that guarantees thatK¬L is deleted
(prevented to persist) when actiona is applied whenC is not
known to be false.

The core translationK0(P ) is sound as every classical
plan that solvesK0(P ) is a conformant plan forP , but it is
incomplete, as not all conformant plans forP are classical
plans forK(P ). The meaning of theKL literals follows a
similar pattern: if a plan achievesKL in K0(P ), then the
same plan achievesL with certainty inP , yet a plan may
achieveL with certainty inP without making the literalKL
true inK0(P ).

The translationK(P ) extendsK0(P ) with new literals,
actions, and effects, enabling the solution of a wider range
of problems by accounting for a simple form of reasoning
by cases. The new literalsL/Xi whereL is a literal inP
andXi is a literal in a clauseX1 ∨ · · · ∨Xn in I, stand for
the conditionals ’ifXi thenL’ as long as the boolean flag
FX,L, initially set to true, remains true. The new translation
rules added inK(P ) are (see (Palacios & Geffner 2006) for
details):

• Split: If a : C ∧ Xi → L andX1 ∨ · · · ∨ Xn in P for
somei ∈ [1, n], then adda : KC → L/Xi to K(P ),
initializing the literalL/Xi to false

• Merge: If X1 ∨ · · · ∨ Xn in P , then add new action
mergeX,L to K(P ) with conditional effect

(L/X1∨K¬X1)∧· · ·∧(L/Xn∨K¬Xn)∧FX,L → KL

• Protect: If a : C → Y in P , then adda : ¬K¬C →
¬FX,L in K(P ) whenY is¬L or¬Xi.

ConditionalsL/Xi are thus ’produced’ when a conditional
effectC ∧Xi → L is triggered andC is known (Split) and
are ’consumed’ producingKL when allL/Xi hold along
with the disjunctionX1 ∨ · · · ∨ Xn holds (Merge). The

1For every rulea : KC → KL introduced inK(P ), the
rule a : KC → ¬K¬L is also added that enforces the invariant
¬(KL ∧K¬L).



persistence of the clause and the conditionals is represented
by a boolean flagFX,L which is initially true but is deleted
when effects that can delete eitherL or someXi cannot be
ruled out with certainty (Protect). The mappingK(P ) also
includes the translation rule:

• Action Compilation: If a : C ∧ ¬L → L in P , then add
a : KC → KL to K(P )

that yields the headL of a conditional effect with certainty
when all body literals are known with the exception of¬L.

The range of conformant problemsP that can be solved
with the translationK(P ) is illustrated by the results in
(Palacios & Geffner 2006) and those of the recent confor-
mant planning competition (Bonet & Givan 2006) where the
output of the translationK(P ) was fed into the classical FF
planner (Hoffmann & Nebel 2001) with good results.

The classical plans forK(P ) are valid conformant plans
for P once the merge actions are removed. On the other
hand,P may have valid conformant plans that are lost in
K(P ). This is shown below.

Example 1Consider the problem of moving an object from
an origin to a destination using two actions:pick(l) that
picks up an object from a location if the object is in that
location, anddrop(l) that drops the object in a location if
the object is being held. Let us assume that these are condi-
tional effects, and that there are no preconditions. Given an
instanceP where the object is at eitherl1 or l2, and must be
moved tol3, K(P ) has a solution

π1 = {pick(l1), pick(l2),mergeX,L, drop(l3)}

whereX = l1 ∨ l2 andL = hold, as the first action yields
hold/at1, the secondhold/at2, and the thirdKhold. This
plan with the merge action removed is a conformant plan for
P .

Let us now modify the problem slightly so thatpick(l)
picks up the object if the object is atl andthe hand is empty,
while if the hand is not empty,pick(l) just releases the object
at l. For this variation the planπ1 above does not work for
eitherK(P ) or P because if the first actionpick(l1) is suc-
cessful then the second actionpick(l2) cannot be. Actually,
K(P ) has no solution then, and yetP has the conformant
solution

π2 = {pick(l1), drop(l3), pick(l2), drop(l3)}

By analyzing the beliefs that result from this plan, one can
see why this plan cannot be captured inK(P ): the actions
pick(li) produce the conditionalshold/at(li), yet these con-
ditionals cannot be merged to yieldKhold as indeedhold
is never true with certainty along the execution ofπ2. We
will show next, however, that such plans can be captured by
a similar translation where conditionals have a slightly dif-
ferent meaning.

General Translation SchemeKT,M(P )
We consider a family of translations that can all be under-
stood as arising from a common pattern that we refer to as
KT,M (P ) whereT andM are two parameters: a set oftags
and a set ofmerges. A tag t ∈ T is a set of literalsL from

P whose truth value is not known in the initial situationI.
The tagged literalsKL/t in the translationKT,M , whereL
is a literal inP andt ∈ T is a tag, capture the conditional
’it is known that if t is true initially, thenL is true’, which
we would write in logic asK(t0 ⊃ L). The key departure
from tagged literals inK(P ) is that now tags can besetsof
literals and they all refer to conditions in theinitial situation
only. Syntactically, we writeKL/t rather thanL/t because
there is a distinction between¬KL/t andK¬L/t: roughly
¬KL/t means that the conditionalK(t0 ⊃ L) is not true,
while K¬L/t means that the conditionalK(t0 ⊃ ¬L) is
true.

Each merge(R,L) ∈ M is a pair whereR ⊆ T is a
collection of tags inT and L is a literal in P . A merge
m = 〈R,L〉 is valid when one of the tagst ∈ R must be
true inI; i.e., when

I |=
∨
t∈R

t .

We assume that all merges are valid in this sense. Merges
(R,L) will map into ’merge actions’mR,L with effects

mR,L :
∧
t∈R

KL/t → KL .

We assume thatT always includes a tagt that stands
for the empty collection of literals, that we call theempty
tag. If t is empty, we denoteKL/t simply asKL. Simi-
larly, for a set (conjunction)C of literalsL1, L2, . . . ,KC/t
stands forKL1/t,KL2/t, . . . , while¬K¬C/t stands for
¬K¬L1/t,¬K¬L2/t, . . ..

The general translationKT,M (P ) is nothing but the core
K0(P ) of theK(P ) translation ’conditioned’ with the tags
t in T and extended with the merges inM :

Definition 1 (KT,M (P )) LetP = 〈F,O, I, G〉 be a confor-
mant problem, thenKT,M (P ) = 〈F ′, I ′, O′, G′〉 is defined
as:2

• F ′ = {KL/t, K¬L/t | L ∈ F andt ∈ T}
• I ′ = {KL/t | if I |= t ⊃ L}
• G′ = {KL | L ∈ G}
• O′ = {a : KC/t → KL/t, a : ¬K¬C/t →
¬K¬L/t | a : C → L in P}∪ {mR,L : [

∧
t∈R KL/t] →

KL | (R,L) ∈ M}
whereKL is a precondition of actiona in KT,M (P ) if L is
a precondition ofa in P .

The translation schemeKT,M (P ) reduces to the core trans-
lationK0(P ) in K(P ) when the set of mergesM is empty,
and the set of tagsT contains only the empty tag. On the
other hand, for suitable choices ofT andM , we will see
that the new translation scheme iscomplete, and under cer-
tain conditions, bothcomplete and polynomial. At the same
time the scheme is simpler thanK(P ), as there is no need to
keep track of flags, nor are thereSplit andProtection rules.
The lack of flags will also pay off computationally when

2As in K0(P ), for every rulea : C/t → KL/t introduced in
KT,M (P ), the rulea : C/t → ¬K¬L/t is added for enforcing
the invariant¬(KL/t ∧K¬L/t).



Problem #S0 KS0 KP POND CFF
Bomb-10-1 1k 648,9 0 1 0
Bomb-10-5 1k 2795,4 0,1 3 0
Bomb-10-10 1k 5568,4 0,1 8 0
Bomb-20-1 1M > 1.8G 0,1 4139 0
Sqr-4-16 4 0,3 fail 1131 13,1
Sqr-4-20 4 0,7 fail > 2h 73,7
Sqr-4-24 4 1,6 fail > 2h 321
Sqr-4-48 4 57,5 fail > 2h > 2h
Safe-50 50 4,3 0,1 9 29,4
Safe-70 70 15 0,1 41 109,9
Safe-100 100 58,7 0,3 5013 1252,4
Sortnet-6 64 2,2 fail 2,1 fail
Sortnet-7 128 27,9 fail 17,98 fail
Sortnet-8 256 > 1.8G fail 907,1 fail
UTS-k08 16 5,1 0,8 429 4,4
UTS-k09 18 9,2 1,4 7203 8,6
UTS-k10 20 15,4 2,1 2426 16,5

Table 1: Illustration ofKS0 Translation in comparison with
KP, POND, and Conformant FF.KS0(P ) andK(P ) trans-
lations fed into FF. ForK(P ) ’fail’ means that FF found the
K(P ) problem unsolvable; for CFF means goal syntax not
handled.

solvingK(P ) as the heuristics of many classical planners,
including FF, ignore deletes. While some instances of the
scheme are complete, all of them are sound:

Theorem 2 (SoundnessKT,M (P )) If π is a plan that
solves the classical planning problemKT,M (P ), then the
action sequenceπ′ that results fromπ by dropping the merge
actions is a plan that solves the conformant planning prob-
lemP .

Example 2 For the variation of the problem above where
the translationK(P ) has no plans, let us consider now the
translationKT,M (P ) with T = {at1, at2}, and the single
merge(T,L) ∈ M with L = at3 that is valid asat1 ∨ at2 is
true inI. We can show now that the planπ′

2

{pick(l1), drop(l3), pick(l2), drop(l3),mT,L}

for L = at3 solves the classical problemKT,M (P ) and
hence, from Theorem 2, that the planπ2 obtained fromπ′

2
by dropping the merge action, is a valid conformant plan for
P . We can see how some of the literals inKT,M (P ) evolve
as the actions inπ′

2 are done:

0:Kat1/at1,Kat2/at2 true inI ′

1:Khold/at1,Kat2/at2 true afterpick(l1)
2:Kat3/at1,Kat2/at2 true afterdrop(l3)
3:Kat3/at1,Khold/at2 true afterpick(l2)
4:Kat3/at1,Kat3/at2 true afterdrop(l3)
5:Kat3 true after merge actionmT,L

where the merge(T,L) is the action with the conditional
effect

Kat3/at1 ∧Kat3/at2 → Kat3

whose condition is true before Step 5 producingKat3

The Translation KS0(P )

A completeinstance of the translation schemeKT,M (P ) can
be obtained in a simple manner by setting

• T to the union of the empty tag and the set of possible
initial statess0 (understood as the maximal sets of literals
that are consistent withI), and

• M to the merges(T ′, L) with T ′ equal toT with the
empty tag removed, andL ranging over the literals inP
acting as goals or as action preconditions (as both must be
achieved with certainty in valid conformant plan)

We will denote this instance, where the tagst range over the
possible initial statess0, asKS0(P ). This translation is not
only sound but it is also complete:

Theorem 3 (Completeness ofKS0(P )) If π is a plan that
solves the classical planning problemKS0(P ) then the ac-
tion sequenceπ′ that results fromπ by dropping the merge
actions is a plan that solves the conformant planning prob-
lemP , and vice versa, ifπ is a conformant plan forP , then
there is an action sequenceπ′ that extendsπ with merge ac-
tions that is a plan forKS0(P ).

The significance of this result is not only theoretical. There
are plenty of conformant problems that are quite hard for
current planners even if they involve a handful of possible
initial states only. An example of this is the ’Square-Center-
n’ task (Cimatti, Roveri, & Bertoli 2004), where an agent
has to reach the center of an empty square grid with cer-
tainty, not knowing its initial location. There are four actions
that move the agent one unit in each direction, except when
in the border of the grid, where they have no effects. In the
standard version of the problem, the initial position is fully
unknown resulting inn2 possible initial states, yet the prob-
lem remains difficult, and actually beyond the reach of most
planners for small values ofn even when the uncertainty is
reduced toa pair possible initial states.The reason is that
then the agent must locate itself before heading for the goal.
The same occurs in many other conformant problems.

Table 1 shows results for a conformant planner based on
the KS0(P ) translation that uses FF (Hoffmann & Nebel
2001) for solving the resulting classical problem, com-
paring it with three of the four planners that entered the
Conformant track of the last competition (Bonet & Givan
2006): POND (Bryce, Kambhampati, & Smith 2006), Con-
formant FF (Brafman & Hoffmann 2004), and KP (Palacios
& Geffner 2006), which uses theK(P ) translation also with
FF. Clearly, the approach based on theKS0(P ) translation
does not scale up to problems with many possible initial
states, yet the number of such states is small, it does quite
well. TheK(P ) translation yields better results in many do-
mains, but not in the IPC problem ’sortnet’ that cannot be
solved and where POND does best, and in Sqr-4-n that pro-
duces an encoding that FF reports unsolvable (recall that the
translations are incomplete). This is a variation of Square-
Center-n where the only possible initial locations are the
four corners.



Width: Exploiting Relevance and Structure
The translationKS0(P ) introduces a number of literals
KL/t that is exponential in the worst case: one for each pos-
sible initial contextt. Yet, planning problems have a struc-
ture and it is possible and common that many of the literals
L′ in a contextt are relevant to some literals but irrelevant
to others. If for each literalL we could then remove all lit-
eralsL′ that are irrelevant toL from the tagst in the transla-
tion KS0(P ), we could end up with a polynomially bounded
number of tagged literalsKL/t while retaining complete-
ness. We will show that this is actually possible in almost all
existing benchmarks, but let us first make precise the notion
of (conformant) relevance.

Definition 4 (Conformant Relevance) The relevance rela-
tion L −→ L′ in P , read L is relevant toL′, is defined
inductively as

1. L −→ L
2. L −→ L′ if a : C → L′ in P with L ∈ C
3. L −→ L′ if L −→ L′′ andL′′ −→ L′

4. L −→ L′ if L −→ ¬L′′ andL′′ −→ ¬L′

5. L −→ L′ if both¬L andL′ in a clause inI.

The first clause defining relevance stands for reflexivity, the
third for transitivity, the second captures conditions relevant
to the effect, and the last captures deductive relevance in the
initial situation. The fourth clause, which is the least ob-
vious, captures conditions under whichL preempts condi-
tional effects that may deleteL′. If we replace 4 by

4’ L −→ L′ if ¬L → ¬L′

which is equivalent to 4 in the context of 1–3, and exclude 5,
the resulting definition would be precisely the one in (Son &
Tu 2006), where the notion of relevance is used to generate
a limited set of possible ’partial’ initial states over which
the 0-approximation is complete. Here we follow a different
path, focused on the conditions under which the number of
the required tags as opposed to the number of such ’partial’
initial states can be polynomially bounded, as the former can
be bounded when the latter is not.3

Notice that according to the definition a preconditionp of
an actiona is not taken to be ’relevant’ to an effectq. The
reason is that we want the relationL −→ L′ to capture the
conditions under whichuncertainty aboutL is relevantto
the uncertainty aboutL′. This is why we say this is a relation
of conformant relevance. Preconditions must be known to
be true in order for an action to be applied, so they do not
introduce nor propagate uncertainty into the effects of the
action.

In order to have polynomial but complete translations we
need to make certain assumptions about the formulas in the
initial situationI of P . Otherwise, just checking whether

3In particular, when each literalL unknown in the initial situa-
tion is part of a clause that is relevant to some goal or precondition,
the number of possible ’partial’ initial states to consider in (Son &
Tu 2006) is exponential, yet as we will see, this does not imply that
the conformant width of the problem, and hence, the number of
tags needed, is not bounded. Actually, this is a common situation
in the existing benchmarks.

a goal is true inI is intractable by itself and therefore a
polynomial but complete translation into classical planning
would be impossible (unless P = NP). We will thus assume
thatI is in prime implicate (PI) form(Marquis 2000), mean-
ing thatI includes only the inclusion-minimal clauses that it
entails but no tautologies. It is known that checking whether
a clause follows logically from a formulaI in PI form re-
duces to checking whether the clause is subsumed by a
clause inI and hence is polynomial. The initial situationsI
in most benchmarks is inPI form or can easily be cast into
it as they are given by a set of literals and non-overlapping
one-of expressionsoneof(X1, . . . , Xn) that translate into
clausesX1 ∨ · · · ∨ Xn and binary clauses¬Xi ∨ ¬Xj for
i 6= j, so that any resolvent is a tautology.

Provided then with an initial situationI in PI form, letCI

stand for the set of clauses representing uncertainty aboutI:
these are the non-unit clauses inI along with the tautologies
L ∨ ¬L for complementary literalsL and¬L not appearing
as unit clauses inI. We extend the notion of (conformant)
relevance to such clauses as follows:

Definition 5 (Relevant Clauses)A clausec ∈ CI is rele-
vant to a literalL in P if all literals L′ ∈ c are relevant to
L. The set of clauses inCI relevant toL is denotedCI(L).

Let us also say that a clausec ∈ CI subsumesanother clause
c′ ∈ CI , written c � c′, if for every literalL ∈ c and for
some literalL′ ∈ c′, I |= L ⊃ L′, and let us keep inC∗

I (L),
a minimal set of clauses fromCI(L), such that all clauses in
CI(L) are subsumed by a clause inC∗

I (L). The setC∗
I (L)

is not necessarily unique but all such sets areequivalentand
have the same size, which we denote as|C∗

I (L)|. Indeed, the
relationc � c′ partitionsCI(L) into equivalence classes that
can be ordered by the relation≺, wherec ≺ c′ if c � c′ and
c′ 6� c, so that|C∗

I (L)| is the number of classes inCI(L)
that are minimal with respect to≺.

We can then define theconformant widthparameterw(P )
of a problemP in terms of the number of ’irredundant’
clauses inCI(L) over all preconditions and goal literalsL:

Definition 6 (Conformant Width) Let thewidth of a literal
L in P , written asw(L), bew(L) = |C∗

I (L)|, and let the
width of the conformant problemP , w(P ), be the max width
of anyprecondition or goal literalL.

We will get then that if the width of a conformant prob-
lem P is bounded, i.e., it does not grow with the number of
variables in the problem, then it is possible to choose the set
of tagsT and mergesM in the translationKT,M (P ) so that
the translation becomesbothpolynomial and complete.

This will be an important result as most of the existing
benchmarks in conformant planning, with few exceptions,
have bounded width, and moreover width equal to1, mean-
ing that for each precondition or goal literalL there is at
most one (unsubsumed) non-unit clause in the initial situa-
tion that is relevant toL. More precisely, among the existing
benchmarks, theonly ones having conformant width greater
than 1 are Blocks, the Adder problem in the last IPC, and
Sortnet (in its IPC encoding). All the others, including the
ones we consider below in the experiments, have conformant
width 1.



P K1(P )
Problem #Acts #Atoms #Effects Translation time (secs) #Acts #Atoms #Effects PDDL size

Bomb-100-100 10100 402 40200 1,36 10300 1304 151700 11,77
Sqr-64-ctr 4 130 504 2,34 8 16644 58980 6,1
Sqr-120-ctr 4 242 952 12,32 8 58084 204692 21,7

Logistics-4-10-10 3820 872 7640 1,44 3830 1904 16740 0,9
1-Dispose-8-3 352 486 1984 26,72 361 76236 339410 60,2

Look-n-Grab-8-1-1 352 356 2220 4,03 353 9160 151630 25,3

Table 2: Translation Data: #Effects stands for number of conditional effectsa : C → L. PDDL size is in Megabytes.

The translation schemeKi(P ) that implements such a
choice of tags and merges inKT,M (P ), uses tags of size
i and is complete for problems with widthw(P ) ≤ i.

We note that while the results above imply that a prob-
lem with low conformant width is relatively ’easy’, they do
not imply that a problem with a high width is necessarily
hard. Indeed, we have found that it is possible to reformu-
late the Sortnet encoding given in the IPC, into a version
with quadratically more fluents that can be solved with the
K0(P ) translation. This new version involves the fluents
’ i < j’, that represent that content at wirei is less than con-
tent at wirej, and ’compare and swap’ actions that takei
andj as arguments, swapping the contents of the two wires
if i > j.

The translationK0(P ) in (Palacios & Geffner 2006) is
equivalent to the translationKi(P ) for i = 0 which is com-
plete for problems with zerowidth. These are precisely the
problems where the disjunctive information plays no role:
Theorem 7 (Completeness ofK0(P )) The translation
K0(P ) is sound and complete for problemsP with width0.
The notion of relevance above is actually defined and used
in (Son & Tu 2006) where a similar result shows that the
0-approximation semantics is complete for problemsP with
what we call width0. This result is equivalent to Theorem 7
as theK0(P ) translation is sound and complete with re-
spect to the0-approximation semantics (Palacios & Geffner
2006).

The Translation Ki(P )
The translationsKi(P ), where the parameteri is a non-
negative integer, are complete for problems with width no
greater thani and have a complexity that is exponential only
in i. In order to define them, let us first recall thatCI stands
for the set of non-unit clauses inI along with the tautologies
L ∨ ¬L for complementary literalsL and¬L that do not
appear as unit clauses inI.

We will denote byCi
I(L) the collection of maximal sub-

sets ofC∗
I (L) containing at mosti clauses. If the width ofP

is no greater thani, Ci
I(L) will contain thus a single collec-

tion which isC∗
I (L) itself. Also acovert for a set of clauses

S stands for any minimal set of literals that contains one lit-
eral from every clause inS, and the covert is consistent if
I 6|= ¬t. This test is polynomial as we are assuming thatI
is in PI form. Notice also that a covert for a set of clauses
S ∈ Ci

I(P ) will have always size no greater thani.
Definition 8 The translationKi(P ) is obtained from the
general schemeKT,M by setting

• T to the union of the empty tag and the set of consistent
covers of any setS ∈ Ci

I(L) for any precondition or goal
literal L, and

• M to the set of merges(R,L) for each a precondition
and goal literalL and setR given by the collection of all
consistent covers of a setS ∈ Ci

I(L)

For making this definition more transparent, note that this
definition implies thatKi(P ) for i = 1 is KT,M where

• T is the union of the empty tag and the set of literalsL
(i.e., singletons) in some clause inCI(L) for some pre-
condition or goal literalL,

• M is the set of merges(R,L) whereL is a precondition
or goal literalL andR is the set of literals in a clause in
CI(L).
The translationKi(P ) applies to problemsP of any

width, remaining in all cases exponential only ini but poly-
nomial in both the number of fluents and actions inP . For
problems with widths bounded byi, the translation is com-
plete:

Theorem 9 (Completeness ofKi(P )) For conformant
problemsP with width bounded byi, the translationKi(P )
is sound, complete, and exponential only ini.

The soundness is the result of the mergesM above be-
ing valid; the completeness, on the other hand, can be
proved by establishing a theoretical equivalence between the
Ki(P ) translation and the complete but exhaustive transla-
tion KS0(P ) where the tagst associated with the possible
initial states ofP are reduced to tagst′ of size no greater
thani. In problems with conformant widthw(P ) ≤ i, it is
possible to prove that if a plan inKi(P ) does not achieve
KL/t′ then the corresponding plan inKS0(P ) does not
achieveKL/t for some possible initial states0 = t with
t′ ⊆ t. Suchs0 can be chosen to satisfyt′, the literals im-
plied by t′ in the initial situation, and literals that are not
relevant toL. For this, the assumption thatI is in PI form is
needed.

Experimental Results
The conformant plannerT0 is a version of theKi(P ) transla-
tion for i = 1 optimized for performance, combined with the
FF classical planner v2.3 (Hoffmann & Nebel 2001). The
K1(P ) translation is provably complete for problems with
width 1, but may also solve problems with higher widths as
well, although without guarantees. It assumes on the other
hand that the initial situationI is in prime-implicate form,



problem T0 len KP len CFF len
Bomb-100-60 5,6 140 4,54 140 9,38 140
Bomb-50-50 1,11 50 0,96 50 0,1 50

Sqr-4-ctr 0,05 8 0,05 8 0,01 12
Sqr-8-ctr 0,07 26 0,05 0 70,63 50
Sqr-12-ctr 0,1 32 0,07 32 > 2h
Sqr-64-ctr 10,68 188 1,66 188 > 2h
Sqr-120-ctr > 1.8G 13,23 356 > 1.8G
Sqr-4-16-ctr 0,2 86 fail 13,13 140
Sqr-4-20-ctr 0,51 128 fail 73,73 214
Sqr-4-24-ctr 1,13 178 fail 320,9 304
Sqr-4-64-ctr 267,3 1118 fail > 2h
Log-3-10-10 3,42 109 2,67 109 4,67 108
Log-4-10-10 6,52 125 3,07 125 4,36 121

Ring-4 0,09 13 fail 1,37 26
Ring-5 0,1 17 fail 27,35 45

Safe-100 0,18 100 0,26 100 1252,3 100
Safe-50 0,09 50 0,09 50 29,37 50
Safe-70 0,11 70 0,14 70 109,92 70

UTS-K10 1,09 58 2,11 59 16,53 58
UTS-L10 0,33 88 > 2h 1,64 59
Comm-21 0,39 313 fail 10,39 269
Comm-22 0,51 348 fail 17,31 299
Comm-23 0,61 383 fail 27,04 329
Comm-24 0,7 418 fail 37,52 359
Comm-25 0,84 453 fail 56,13 389

Table 3: Plan times in seconds and lengths over standard
domains. ’fail’ means thatKP problem reported unsolvable
by FF

.

something thatT0 does not check or enforce. The most im-
portant optimizations in theK1(P ) translation come from
exploiting the notion of relevance further. All the translation
schemes above areuniform in the sense that the same set of
tagsT is used over all the literals inP . Yet, whenever a
tagged literalKL/t has a tagt that includes literalsL′ that
are not relevant toL, such literals can be removed fromt so
that literalsKL/t get encoded by means of tagged literals
KL/t′ wheret′ is the relevant part oft.

The empirical results below are over instances taken from
the Conformant-FF distribution, from the recent competition
(Bonet & Givan 2006), and from (Palacios & Geffner 2006),
with some variations added in the latter case, retaining the
encodings in all cases. The experiments were run on a Linux
machine running at 2.33 GHz with 8GB of RAM, with a
cutoff of 2h or 1.8GB of memory.

Table 2 shows data concerning the translation of a num-
ber of instances. The number of conditional effects grows
considerably in all cases, and the translation takes several
seconds in some cases. E.g., in problem 1-Dispose-8-3, to
be explained below, the translation takes almost 28 seconds,
yet this is a hard problem that no other planner appears to
solve.

Table 3 shows the plan times and lengths obtained by
three conformant planners on several standard domains:T0,
K(P ) (Palacios & Geffner 2006), and Conformant FF (Braf-
man & Hoffmann 2004). We have tried also POND (Bryce,
Kambhampati, & Smith 2006) but did not perform as well

as Conformant FF. We had more trouble using KACMBP
(Cimatti, Roveri, & Bertoli 2004) that does not use the same
syntax. In all these domains,T0 scale up very well with the
exception of the Sqr-n-ctr family, where the task is to get to
the middle of a grid of sizenxn without having any infor-
mation about the initial location. HereKP does best. Sur-
prisingly, though, when the set of possible initial locations
is restricted to the four corners as in the Sqr-4-n-ctr family,
KP produces encodings without solutions.

The problems reported in Table 4 are variations of a fam-
ily of grid problems in (Palacios & Geffner 2006). Dispose
is about retrieving objects whose initial location is unknown
and placing them in a trash can at a given, known location;
Push-to is a variation where objects can be picked up only at
two designated positions in the grid to which all objects have
to be pushed to: pushing an object from a cell into a contigu-
ous cell moves the object if it is in the cell. 1-Dispose is a
variation of Dispose where the robot hand being empty is
a condition for the pick up actions to work. As a result, a
plan for 1-Dispose has to scan the grid, performing pick ups
in every cell, followed by excursions to the trash can, and so
on. The plans can get very long (a plan is reported with 1268
actions). Finally, Look-n-Grab is the most interesting prob-
lem: the look-n-grab action picks up the objects that are suf-
ficiently close if there are any, and after each pick-up must
dump the objects it possibly collected in the trash can before
continuing. For the problem P-n-m above,n is grid size
andm is the number of objects. For Look-n-Grab, the third
parameter is the radius of the action: 1 means that picks up
all the objects in the 8 surrounding cells, 2 that picks up all
the objects in the 15 surrounding cells, and so on. In practi-
cally all these instances, theK1(P ) translation works better
thanK(P ), which in certain cases is just incomplete (where
marked ’failed’). We do not include Conformant FF in the
table because it only solves 3 instances: Push-to-4-1/2/3. We
are not aware of any other planner capable of solving these
instances that are rather sophisticated. Actually, among all
the instances in Tables 3 and 4, the only problems withcon-
formant widthdifferent than1 are 1-Dispose and Look-n-
Grab. This is because, the hand being empty is a fluent that
is relevant to the goal, and the init clauses about the loca-
tion of the objects are all relevant to ’hand empty’. Still,
while the width is not 1, theK1(P ) translation underlying
T0, makes such problems solvable. For all other problems
the width is 1 because all the actions deal with single ob-
jects for which the only relevant clause is the one expressing
uncertainty about the object.This is not the case in prob-
lems such as Blocks, where the actions create interactions,
but is a common pattern among the available benchmarks.

Summary
While few practical problems are purely conformant, the
ability to find conformant plans fast appears to be a neces-
sity in contingent planning where conformant situations are
an special case. In this paper, we have extended earlier work,
introducing a novel and general translation scheme that
maps conformant problems into classical problems that can
be both polynomial and complete. The translation scheme
depends on two parameters: a set of tags, referring to lo-



cal contexts in the initial situations, and a set of merges that
stand for exhaustive sets of tags. We have seen how dif-
ferent translations can be obtained from suitable choices of
tags and merges, have introduced a measure of complexity
in conformant planning calledconformant width, and have
introduced a translation schemeKi(P ) that involves only
tags of sizei that is complete for problems of width≤ i.
We have also shown that almost all conformant benchmarks
have width1, have developed a conformant planner based on
theKi(P ) translation that uses the FF classical planner, and
have shown that this planner exhibits good performance over
the existing domains and some challenging new domains.
We are currently working on the use of these ideas for con-
tingent planning.
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