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Planning as SAT (Kautz and Selman)

• Encode: Map Strips problem P with horizon n into a propositional
theory T

• Solve: Using a SAT solver, determine if T is consistent, and if so, find
a model

• Decode: Extract plan from model
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Our goal

Use of propositional logic for defining and computing lower bounds for
planning (admissible heuristics)

• understand the planning graph construction as a precise form of
inference

• exploit account to uncover relations (e.g., to variable elimination) and
introduce generalizations (e.g., incomplete information)
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Strips Refresher

• A problem in Strips is a tuple 〈A,O, I, G〉 where

– A stands for set of all atoms (boolean vars)
– O stands for set of all operators (ground actions)
– I ⊆ A stands for initial situation
– G ⊆ A stands for goal situation

• The operators o ∈ O represented by three lists

-- the Add list Add(o) ⊆ A
-- the Delete list Del(o) ⊆ A
-- the Precondition list Pre(o) ⊆ A

• The task is to find a plan: a sequence of applicable actions that maps
I into G . . .

Hector Geffner, Planning Graphs and Knowledge Compilation, 6/2004 4



Lower Bounds and Planning Graphs

• Build graph with layers P0, A0, P1, A1, . . . where

P0 A0 P1 A1

...

...

...

P0 = {p ∈ s}
Ai = {a ∈ O | Prec(a) ⊆ Pi}

Pi+1 = {p ∈ Add(a) | a ∈ Ai}

• Graph represents lower bound for achieving G from s:

hmax(s) = min i such that G ⊆ Pi

Need No-op(p) action for each p: Prec = Add = {p}
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More Informed h in Graphplan

• Planning graph in Graphplan also keeps track of pairs that cannnot be
reached simultaneously in i steps, i = 0, 1, . . .

– action pair mutex at i if incompatible or preconditions mutex at i
– atom pair mutex at i + 1 if supporting action pairs all mutex at i

• Mutexes computed along with planning graph and yield more informed
admissible h

hG(s) def= min i s.t. G ⊆ Pi and G not mutex at i

Graphplan is an IDA* regression solver driven by this heuristic
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Lower Bounds crucial in Planning and Problem Solving

• LBs explain performance gap between Graphplan and predecessors

• In SAT/CSP planning models, LBs represent implicit constraints that
speed up the search:

SAT/CSP approaches to planning indeed do not encode the planning
problem directly but its planning graph

• Our main goal in this work: understand derivation of these LBs
or implicit constraints in the planning graph as a precise form of
inference
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Deductive Inference and Lower Bounds for Planning

• Consider following heuristic h where T encodes Strips problem with
horizon n without the goal

h(G) def= min i ≤ n such that T 6|= ¬Gi

i.e., h(G) encodes first time i at which goal G consistent with T

• Such h is well defined

– Good news: h very informative; indeed h(G) = h∗(G) (optimal)
– Bad news: h intractable
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Deductive Inference and Lower Bounds (cont'd)

Consider now approximation hΓ given by sets Γ0, . . . , Γn of deductive
consequences of T at the various time points 0, . . . , n:

hΓ(G) def= min i ≤ n such that Γi 6|= ¬Gi

• If sets Γi = ∅, then hΓ(G) = 0 (non-informative)
• If sets Γi = PIi(T ), then hΓ(G) = h(G) (intractable)
• Always 0 ≤ hΓ ≤ h

Question: how to define sets Γi so that resulting LBs are informative
and tractable?

(PIi(T ) = prime implicates of T at time i)
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Prime Implicates and Lower Bounds: First attempt

Stratify Strips theory T (without the goal) as

T = T0 ∪ T1 ∪ · · · ∪ Tm

Define sequence of sets Γi iteratively as

Γ0
def= PI0(T0)

Γi+1
def= PIi+1(Γi ∪ Ti+1)

It follows that no info lost in iteration, and same sets and h result:

Γi = PIi(T )

hΓ = h = h∗

But then computation of hΓ remains intractable . . .
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Prime Implicates and Tractable Lower Bounds

Define sequence of sets Γi iteratively as

Γ0
def= PIk

0 (T0)

Γi+1
def= PIk

i+1(Γi ∪ Ti+1)

for a fixed k = 1, 2, . . ., where PIk
i (T ) stands for set of prime implicates

of T at time i with size no greater than k

Key result: We show in paper that for Strips theories T

• sequence of Γi sets and hΓ informative and tractable
• hΓ equal to Graphplan hG for k = 2, and
• x ∈ Layeri iff ¬xi 6∈ Γi AND (x, y) ∈ Layeri iff ¬xi ∨ ¬yi ∈ Γi

where x ∈ Layeri and (x, y) ∈ Layeri stand for atom and mutex pair in
layer i of planning graph

Hector Geffner, Planning Graphs and Knowledge Compilation, 6/2004 11



General Framework: Stratified Theories

Propositional theories T defined over indexed variables xi ∈ Li, 0 ≤ i ≤ m,
that can be expressed as union of subtheories T0, . . . , Tm where

• T0 made up of clauses C0 ∈ L0

• Ti+1 made up of clauses Ci∨Ci+1, where Ci+1 ∈ Li+1 and Ci ∈ Li (Ci+1

non-empty)

Example: Stratified theory for Strips with horizon n

1. Init T0: p0 for p ∈ I, and ¬q0 for q ∈ A not in I

2. Action Layers Ti+1: for i = 0, 2, . . . , n − 2

• pi ∨ ¬ai+1 for each a ∈ O and p ∈ pre(a)

• ¬ai+1 ∨ ¬a′i+1 for interfering a, a′ in O

3. Propositional Layers Ti+1: for i = 1, 3, . . . , n − 1

• ¬ai ∨ pi+1 for each a ∈ O and p ∈ add(a)

• ¬ai ∨ ¬pi+1 for each a ∈ O and p ∈ del(a)

• a1
i ∨ a2

i ∨ · · · ∨ a
np
i ∨ ¬pi+1 for each p ∈ A
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Tractable PI-k Inference over Stratified Theories

Three conditions guarantee that the iterative computation of prime
implicates of bounded size remains tractable for stratified theories T :

Γ0
def= PIk

0 (T0)

Γi+1
def= PIk

i+1(Γi ∪ Ti+1)

1. T is compiled: resolvents over variables xi+1 in Ti+1 subsumed in T

2. T has bounded support width: number of clauses Ci ∨ Ci+1 in Ti+1

with common literal li+1 ∈ Ci+1 and body |Ci| > 1, bounded

3. T is pure: only xi+1 or ¬xi+1 occur in Ti+1

• Stratified Strips theories are compiled, have support width 1, and can
easily be made pure (3. not needed for k ≤ 2)

• Paper contains sound algorithm for computing Γi sets that under
conditions 1--3 is complete and polynomial
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Graphplan vs. Variable Elimination and Variations

• Variable Elimination is a family of algorithms for solving SAT, CSPs,
Bayesian Networks, etc (Dechter et al) that follows the pattern of
gaussian elimination for solving linear equations

• Given a theory T = T0 over variables x0, . . . , xn

– Forward pass: eliminate var xi from Ti resulting in theory Ti+1 over
xi+1, . . . , xn, 0 ≤ i < n

– Backward pass: Solve theories Tn, Tn−1, . . . , T0 in order, each for
a single variable; result is a model (if T is satisfiable)

-- Good: backward pass (solution extraction) is backtrack free

-- Bad: forward pass (elimination pass) is exponential in time and space
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Alternative 1: Bounded-k Variable Elimination

• Restricts size of constraints induced by elimination of vars to k

• Elimination sound but not complete; performs in polynomial time
(removes some but not all backtracks)

Alternative 2: Bounded-k Block Elimination

• Eliminates blocks of vars in one-shot, inducing constraints of size ≤ k
only

• Stronger than Bounded-k Var Elimination, but exponential in size of
blocks
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Graphplan and Bounded-k Elimination

As a corollary of earlier results we get that:

• For Strips theories, Bounded-k Block Elimination is polynomial in the
size of the blocks (blocks are the sets of vars in same layer)

• Graphplan actually does a Bounded-2 Block Elimination pass foward
exactly, followed by a backward Backtrack Search

• Thus Graphplan fits nicely in the variable elimination framework, where
it exploits the special structure of Strips theories
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Negative vs. Positive Deductive Lower Bound

LB scheme based on proving negation of the goal

h(G) def= min i ≤ n such that T 6|= ¬Gi

h(G) is a LB because

if ∃ Plan that achieves G in m ≤ n steps,
then ∃ M of T ∧Gm,
then T 6|= ¬Gm

Question: Can we define LBs based on the proving the goal itself,
possibly from transformed theory T+?

h+(G) def= min i ≤ n such that T+ |= Gi
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A Positive Deductive Lower Bound

• Define T+ as Strips encoding (without the goal) but with

– deletes removed
– all possible actions applied: prec(a)i ⊃ ai

• Then it turns out

– T+ consistent and tractable
– T+ |= Gi iff Γi 6|= Gi for k = 1

• Thus

– Positive and Negative LBs coincide for k = 1
– Positive LBs weaker than negative ones for k > 1
– Nonetheless former useful in non-Strips settings . . .
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Positive Deductive LBs when Information is Incomplete

h+(G) def= min i ≤ n such that T+ |= Gi

• With incomplete info, test T+ |= Gi intractable

• Still heuristic h++ defined as

h++(G) def= min i ≤ n such that T++ |= Gi

for any theory T++ stronger than T+ remains a LB

• Thus tractable LB can be obtained by mapping T+ into stronger and
tractable T++

• So `bounds' in Planning and Knowledge Compilation (Kautz and Selman)
related after all . . .

• Indeed, h used in Brafman-Hoffmann ICAPS 04, can be understood in
terms of a compilation of T+ into a 2-CNF theory T++ (which is not
necessarily the 2-CNF LUB of T+)
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Summary

• Framework: Iterative computation of prime-implicates of bounded
size over stratified theories

• Conditions under which this computation is tractable; Strips theories
as special case

• Correspondence with planning graph computation and weak forms of
variable elimination

• Positive vs. Negative Deductive Lower bounds

• Uses beyond Strips: conditional effects; incomplete information
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