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Abstract

One of the major advances in classical planning has been
the development of Graphplan. Graphplan builds a layered
structure called thelanning graph and then searches this
structure backwards for a plan. Modern SAT and CSP ap-
proaches also use the planning graph but replace the regres-
sion search by a constrained-directed search. The planning
graph uncovers implicit constraints in the problem that re-
duce the size of the search tree. Such constraints encode
lower bounds on the number of time steps required for
achieving the goal and account for the huge performance
gap between Graphplan and its predecessors. Still, the form
of local consistencynderlying the construction of the plan-
ning graph is not well understood, being described by vari-
ous authors as a limited form of negative binary resolution,
k-consistency, or 2-j consistency. In this paper, we aim to
shed light on this issue by showing thihe computation

of the planning graph corresponds exactly to the iterative
computation of prime implicates of size one and twer

the logical encoding of the problem with the goals removed.
The correspondence between planning graphs and a precise
form of knowledge compilation provides a well-founded
basis for understanding and developing extensions of the
planning graph to non-Strips settings, and suggests novel
and effective forms of knowledge compilation in other con-
texts. We explore some of these extensions in this paper
and relate planning graphs with bounded variable elimina-
tion algorithms as studied by Rina Dechter and others.

Introduction

search (Kautz & Selman 1999; Do & Kambhampati 2000;
Rintanen 1998; Baioletti, Marcugini, & Milani 2000). The
planning graph uncovers implicit constraints in the prob-
lem that reduce the size of the search tree. Such con-
straints are known to encode lower bounds on the num-
ber of time steps required for achieving the goal and ac-
count for the huge performance gap between Graphplan
and its predecessors. Still, the formlotal consistency
underlying the construction of the planning graph is not
well understood, being described as a limited but efficient
form of negative binary resolution (Kautz & Selman 1999;
Brafman 2001), k-consistency (Smith & Weld 1999), or
2-j consistency (Lopez & Bacchus 2003). In this paper,
we aim to shed light on this issue by showing titfa
computation of the planning graph corresponds exactly to
the iterative computation of prime implicates of size one
and two over the logical encoding of the problem with
the goals removed. The correspondence between plan-
ning graphs and a precise form of knowledge compila-
tion (Selman & Kautz 1996; Cadoli & Donini 1997) pro-
vides a well-founded basis for understanding and devel-
oping extensions of the planning graph to non-Strips set-
tings, and suggests novel and effective forms of knowl-
edge compilation related to those studied Rina Dechter
and colleagues over the last few years (Dechter 1999;
Rish & Dechter 2000).

The paper is organized as follows. We start reviewing
the planning graph and how it encodes lower bounds for
Strips planning problems. We then analyze how lower

One of the major advances in classical planning has been bounds can be defined from logical encodings of planning

the development of Graphplan. Given a Strips planning
problem, Graphplan builds a layered structure called the
planning graph and then searches this structure back-
wards for a plan (Blum & Furst 1995). Modern SAT

problems, and how the two types of lower bounds are re-
lated. We do so by considering what we call flek task:

the computation of the sets of prime implicates of size
bounded by a parametkiover the layers of a general class

and CSP approaches also use the planning graph butof stratified propositional theories. Stratified theories pro-
replace the regression search by a constrained-directedvide a suitable, logical abstraction of the theories found in
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planning. They are defined over a set of indexed boolean
variablesx;, for i = 0,...,n and comprise clauses that
involve variablese; from the same layer or from adjacent
layers only. We show that for the stratified theories that
encode Strips planning problems, the planning graph com-
putation solves th@l-k taskexactly fork = 2. We con-
clude discussing extensions for dealing with conditional



effects, an alternative scheme for deriving lower bounds
from planning theories, and related work.

The Planning Graph

Consider a Strips planning problem with initial situation
I = {po}, goalG = {p,} and operators; with pre-
conditionp; and postconditiomp;,, fori = 0,...,m for

m > n. Clearly, this problem has cost equaktpnamely,

n actionsag, a1, ...,a,—1 are needed in order to achieve
G from I. While in general determining the cost of a plan-
ning problem is intractable (Bylander 1994), there are sim-
ple and efficient procedures for obtaining lower bounds.
Lower bounds are critical for optimal planning and search

The construction of the planning graph differs from the
construction of the set8; andA; above in two ways. First,
in addition to these sets, Graphplan keeps tragsadafs of
propositions and actions that while ‘reachable’ individu-
ally in ¢ steps, are not ‘jointly reachable’. These pairs are
said to bemutually exclusiver mutexat leveli. For ex-
ample, ifp is not in P;, and some actions id; addp but
all of them deletey, then the paip andq will be marked
as mutex at level 4+ 1, meaning that while andq may
be achievable separately in+ 1 steps, the conjunction
p and g may not. Graphplan uses information about mu-
texes in one layer to infer mutexes in the next layer, start-
ing with the mutexes that correspond to interfering actions.
Then, in order to make the propagation of mutexes more

as they can prune large parts of the search space from con-effective, atoms in a layerP; are no longer automatically

sideration.

We represent Strips planning problems by tuples of the
form P = (A, O, I, G), whereA is the set of all possible
(ground) atoms/ C A andG C A represent the initial
and goal situations, an@ is the set of (ground) actions
a, each with a precondition, add, and delete list(a),
add(a), anddel(a). A simple procedure for computing
lower bounds for a problen® can then be obtained by
constructing iteratively the following sets:

Py 1
A; = {a€O]pre(a) C P}
Py = P U{p€add(a)|ac A}

Namely, P, contains the atoms in the initial situatiénA;
contains all the actions applicablefy, andP;, ; contains
all the atoms inP; along with the atoms that can be added
by the actions in4;. This construction can be continued
until a fixed pointP,, = P, 4, is reached.

We say then that a set of ator6sis reachable at level
1 if ¢ is the index of the first layeP; that contaings. It
is simple to verify that this index represent®wer bound
on the number of steps needed to achiéviom I. This
lower bound, that we will denote &s,,...(G), is not exact

in general because it presumes that all applicable actions as h,(G).

can be executed in parallel. Moreover, while the estimate
hmaz(G) provides an exact bound for the problem above,
it is normally too weak to speed up the search for plans
sufficiently.

The planning graphconstructed by Graphplan is an
elaboration of this idea that yields more informative
(tighter) lower bounds and hence a more effective search.
Graphplan computesptimal parallel planswvhere sets of
non-interfering actioncan be done in parallel. Two ac-
tions are interfering in Graphplan when one deletes a pre-
condition or positive effect of the other. Plans in Graph-
plan are thus sequences of sets of actidgs A4, ...,
A,—1, and Graphplan minimizes the number of time steps
n rather than the total number of actions. The measure
hmaz(G) above remains a lower bound on the ‘parallel’
costh*(G) for achievingG from I, yet the lower bound
hg(G) computed by Graphplan is more informative (i.e.,
0 < Pz < hg < h7).

copied into layerP; 1, rather ‘dummy’ actionsio-0P(p)
are introduced for each atopy with precondition and ef-
fectp, that interfere with all the actions the deleteThe
resulting sets in the planning graph are then:

Py = I
MPy, = 0
A; = {a|pre(a) C P, & pre(a) IMP;}
MA; {(a,d') | a,a’ € A;,a # a’,anda_La’ or
[pre(a) Upre(a’)) N M P;}
P = {pecadd(a)|ac A}
MPiy1 = {(p,9)|p.g€ P, andva,a’ € A; st

p € add(a)&p’ € add(d'), (a,a") € MA;}

where M X, stands for the sets of atom and action mu-
texesa_La’ expresses thatanda’ interfere, and”NM X

(Y 7iM X;) indicates thaly” contains (resp. contains no)
pair in M X;.

The iteration can be continued until a fixed paift =
P,y and M P, = MP,, is reached, yet Graphplan
stops at the first layem < n at which the goals are
reached without a mutexy( C P,, andG (iM P,,). This
indexm is a lower bound fol*(G) which we will denote
Graphplan then searches the planning graph
backwards for a plan, starting with the last layer, and if the
search fails, a new layer is added, and the process repeats.
Graphplan can actually be seen as a performing an IDA*
regression search informed by the heurigtjcimplicitly
encoded in the planning graph for all go&¥$ with esti-
mateh,(G’) no greater than the planning horizon (Bonet
& Geffner 2001).

Graphplan, introduced in (Blum & Furst 1995), was
shown to be orders of magnitude faster than previous plan-
ners, a difference that can be traced to the derivation and
use of an informative and admissible heuristic function en-
coded in the planning graph. Modern SAT and CSP ap-
proaches, make use of the planning graph but replace the
regression search by a constraint-directed search (Kautz &
Selman 1999; Do & Kambhampati 2000; Rintanen 1998;
Baioletti, Marcugini, & Milani 2000). While direct SAT
and CSP encodings of Strips problems are possible (Kautz
& Selman 1992; 1996), the planning graph encoding is



known to speed up the search by uncovering implicit con-
straints in the problem like the bountlg above. The form

of local consistencyinderlying this process, however, is
not well understood. In (Haslum & Geffner 2000) a dy-
namic programming formulation of a parametric family of
polynomial and admissible heuristiég®, m = 1,2,...
was given that generalizes Graphplan’s heurigtjcand
the h,,., heuristic above. The heuristi¢g™ assume re-
cursively that the cost of achieving a set of atonisgiven

by the cost of achieving the most costly subset of size

in the set. In the parallel setting,,, ... corresponds to the
h' heuristic,h, corresponds t@?, and so on. Our aim in
this paper is to understand the form of local consistency
that yields these bounds.

Deductive Lower Bounds for Planning
The logical encoding of a Strips planning problem is a

results in (Bylander 1994), it follows though that the com-
putation of these bounds is intractable. We thus focus on
the definition of informative andractable lower bounds

r¥ (G) whose general form can be captured in terms
of setsT;(T") of deductive consequences of at times
i=20,...,n as follows:

{

The bounds: Y are normally weaker than the bounids
i.e., R < hy, yet they become equal when the sets
of deductive consequenc&s(T") corresponds to the sets
PI;(T) of prime implicateof T at timei. The prime im-
plicates ofT" are the inclusion-minimal, non-tautological
clauses that follow fron¥’, and the prime implicates of
T at time+ are the prime implicates &f including vari-
ables with index only. Provided with such sets of prime-

mins < n such thaf’;,(T) = -G;
n+1ifTyT) E -Gy, Vie[0,n]

def

hy (G) = )

propositional theory whose models are in correspondence implicates, it is possible to determine the bound$(G)

with the plans; namely, every model encodes a plan, and
every plan is reflected in some model (Kautz & Selman
1992). For a given planning problem = (A,0,1,G)

with horizonn, these encoding® feature boolean vari-
ablespg, p1, ..., pn, andag, aq, ..., a,_1 for each flu-
entp and actiona in the problem, and clauses encoding
the initial situation, the action pre and postconditions, the
frame axioms, and the goal. Early SAT approaches fed

such encodings to a SAT solver that returned a model, and
hence a plan, when the horizon was such that the problem

was solvable. Modern SAT approaches do not work on
such direct encodings but on encodings obtained from the
planning graph. Here we consider such direct encodings
but for deriving lower bounds on the optimal cdst(G)

of achievingG from I. For this,we remove fronT the
clauses encoding the goél, and consider the status of
the formulas; encoding the goal condition at the differ-
ent time pointsi = 0,...,n in the resultingconsistent
theory. Clearly; is a lower bound for achieving if -G
follows fromT for all j = 0,...,7 — 1. This suggests the
first class of deductive lower boundg; (G) defined as:

{

Namely, iy (G) encodes the first time point at which the
formulaG; becomes consistent wiffi; if no suchi exists
before the planning horizon, the lower bound is defined
asn + 1.

The definition of the lower bounfiy (G) implies that
no matter what actions are doné&' cannot be made true
in less tharh  (G) steps. We calk y (G) anegativelower

min¢ < n such thafl’ £ -G,
n+1if T -G, foralli e [0,n]

def

hn(G) = (1)

for arbitrary goals= efficiently; namely,GG; follows from
PI;(T) either if G; contains complementary literals or is
subsumed by a clause iZ;(T") (Cadoli & Donini 1997;
Marquis 2000). Of course, the computation of the sets of
prime implicatesPI;(T) itself cannot be done efficiently,
yet a suitable approximation of these sets will provide us
with the tools for understanding the meaning of the plan-
ning graph from a logical point of view.

Stratified Theories
For the choice and computation of the Se{€7T") for defin-

ing the lower bound&Y in (2), we consider first thgen-
eral logical formof planning theories. A key characteristic
of them is their stratified nature as reflected in the defini-
tions below.

Stratified theoriesare propositional theories defined
over a language made up of a number of indexed variables
z;,1=0,1,...,n, wheren is the given horizon. We refer
to the language defined by the variahigdor a particular
indexi, asL;, and use the notatiofi;, C/, ..., to refer to
clauses irn’;.

A stratified theoryl" is made up of layerdy, 71, ...,

T, such thatl’ = U;— ,,T;. The first layerTy, is given
by a set of clause€y € Ly, while each layefl;,, for
0 < i < nis comprised of two sets of clauses: a’fef,,
of transition clauses’; v C;41 for C; € L; andC; 14 in
L;+1, and a selR; ; of constraintsC;,; € L;+1. Fora
transition clause€’; v C;; we assume that neithéf; nor
C;+1 is empty, and call’; thebodyof the clause and’;
thehead For uniformity, we sefzy = Tj.

Stratified theorieq” are classical propositional theories

bound because itis based on the entailment of the negation with a classical semantics and in particulaentailsa for-

of the goal. Later on we will discuss a type pbsitive
lower bound defined in terms of the entailment of the goal
itself but from a revised theory.

Negative lower bounds may be quite informative, and
indeed for planning problems that do not involve incom-
plete information or non-determinism (as Strips), such
bounds are exact; namelyy (G) = h*(G). From the

mula 4; € L; when A; is true in all models off". It is

also useful, however, to interpret the modelgodsstate
trajectoriessg, s1, ..., S,, Wheres; is a possible world
(truth assignment) over the languabg A state trajectory
50, . .-, 5p then satisfied” = U;—o, ... ,,T; whens, satisfies
T, and each transitior;, s; 1 satisfiesl; 11,0 < i < n;

namely,s; satisfies all constraints;_ , in 7;,, and all



headsC;; of the transition clause€’; v C; 11 in T; 11
whose bodyC; is not satisfied by;. Clearly T entails
A; € L; when for all state trajectories, ..., s;,..., Sn
satisfyingT’, s; satisfiesA;.

We also say that a stratified theoryaglically consistent

if there is a least one state trajectory that satisfies the the-

ory, and iscausally consisternf any partial state trajectory
s0, - . ., 8; satisfying the stratified theo’ = Ty U- - -UT;
can be extended into a full state trajectegy ..., s;, ...,
s,, satisfying the theory’ = Ty U ---UT,, 0 < i < n.?
Clearly, if T' is causally consistent, th@nwill be logically
consistent if the first lay€r; is consistent.

As an example, the clausegV yo, 7o V1, ~yo V21
represent a logically consistent stratified the®ry- 7y U
T with To = {x(] \/y(]} andT'1 = {_‘ZL'()\/xl, —Yo \/"(ﬂl}.

This theory, however, is not causally consistent as the state

so satisfyingTy with x¢ andy, true, cannot be extended
into a full trajectory satisfyin@. On the other hand, the
theory T” that is like T' but includes inT} the resolvent
-z V -y Of the two clauses iff’; is logically and causally
consistent.

Pl-k Inference

Consider now the following sefS;(7") of deductive con-
sequences of a stratified thedfyover the languages;,
defined iteratively foi =0,...,n — 1 as

def

Lo(T) Ply(Th) 3)
Lipa(T) Pl (Di(T) U Ti41) (4)

where PI,1(T’) stands for the prime implicates of
T’ over the languagel; . ; (del Val 1999); namely
PI,1(T") = PI(T") N L;41. Itis possible to prove then
that if 7' is causally consistent, these sets, defined itera-
tively one in terms of the other, capture exactly the prime
implicates ofT" over the various sublanguages:

Proposition 1 (Markov) If the stratified theoryT is
causally consistent thed;,(T) = PIL;(T) for i =
0,...,n.

The computation of these sets, however, is intractable in
general. In order to obtain informative sets that can be
computed in polynomial time, we focus on the iterative
computation of prime implicates of bounded size. If we
let PT*(T) stand for the prime implicates @f of size at
mostk for an integerk > 1, and letPI¥(T) stand for
the prime implicates of size no greater thaaver the lan-
guageL;, i.e., PI¥(T) = PI*(T) N L;, then a sequence
of sets of clause§¥(T) for i = 0,...,n involving the
iterative computation of prime implicates of bounded size
can be defined as:

§(T)
¥ (T)

def

def

PI§(Tp)
PIF (TH(T) U Tigq)

(®)
(6)

2The notion of causal consistency is closely related to a simi-
lar notion in probabilistic and logical causal networks; see (Pearl
1988; Darwiche & Pearl 1994).

def

We call these setE¥(T), theiterated PI-k setsand dis-
tinguish them from the non-iterated PI-k sets defined sim-
ply asPIF(T). Iterated and non-iterated PI-k sets are not
equivalent in general as the ‘markovian’ property captured
by Proposition 1 does not hold for a bounded

For example, for a stratified theory given by the
clausesrq V g, —xo V 21, and—yg V 21, and fork = 1,
I¥(T) = 0 while PI¥(T) = {z,}. On the other hand, the
setsI'¥(T') and PI}(T') coincide fork = 2.

We refer to the computation of the iterated Pl-k sets, as
thePl-k task This task is intractable in general yet we will
determine conditions under which it is tractable, and estab-
lish a formal correspondence between the iterated PI-k sets
and the sets computed by Graphplan in the construction of
the planning graph.

The first condition for making the computation of the
['¥(T) sets tractable has to do with the way the stratified
theory iscompiled. Basically, the compilation makes ex-
plicit certain consequences that follow in isolation from
each layelT; of the theory. We will say that a stratified
theoryT is strongly compiledf the resolvent of every pair
of clauses in each layédr; is subsumed by a clause
or is tautological (contains a pair of complementary liter-
als). For us, however, a weaker form of compilation suf-
fices where this condition is imposed only on resolvents
obtained over variables; € L;:

Definition 1 A stratified theoryl’ = U;— ,,1; is com-
pilediff every clause” obtained by resolving two clauses
in T; upon variabless; € L;, fori = 0,...,n, is sub-
sumed by a clause il or contains a pair of complemen-
tary literals.

Clearly, strongly compiled theories are compiled, but not
the other way around. For example, the the®@rwith
clausesry V y1 and—xq V y; is compiled as both clauses
belong to layefl; and they cannot be resolved upon vari-
ables inL; (i.e., variables with index equal th. At the
same time,T" is not strongly compiled because the two
clauses can be resolved upon the variahjeleading to
the clausey; which is not subsumed. As another example,
the theoryl” with clauses:y \ y; andy, Vv —y; is not com-
piled as the resolvent, V y, of the two clauses iff] over
variabley; € L; is not subsumed i@”. Similarly for the
theoryT” with clausest, V y; andyg V —y; V 21 which
lacks the resolventy V Vi V 1.

The compilation of a stratified theof involves a clo-
sure operation under a restricted form of resolution where
only clauses in the same lay&} are resolved, and they
are resolved only upon non-body variablese L;. We
will later see that Strips theories are compiled in this way.
More generally, the compilation of a stratified theory is
intractable yet similar (intractable) compilation schemes
have been successfully used in the ‘Planning as Model-
Checking’ approach where planning theories are compiled
into oBBDs (Cimattiet al. 2003). Indeed, prime implicates
andoBDDs are two among several canonical logical forms
that are appealing as they render certain kinds of boolean
operations tractable (Darwiche & Marquis 2002). Some



important properties of compiled theories are the follow-
ing:

Proposition 2 LetT = U;—,1; be a compiled stratified
theory. Then, 1Y is logically and causally consistent if
T does not contain an empty clause;2J(R;) C R;, for
1=0,...,n.

Recall that every layeT; of a stratified theoryl”, except
for Ty, is given by a sef?; of primitive constraints’; €

L; and a sefl'r; of transition clauseg’;_; Vv C;. This
proposition implies that the set of constraints in a compiled
theory is strongly compiled.

Compiled stratified theories yield also a decomposition
property useful for computing the iterated PI-k sets. We
use the notatioriLi.C to denote the set of clausesiin with
size no greater thah, and assume that all the primitive
constraints inR; are inL¥ for i = 0,...,n. When this
is not the case, the teri?f' (7)) should be replaced by the
termT'¥(T') U R;, both in the following proposition and in
(6). For simplicity, we will not consider that case further.

Proposition 3 (Decomposition) For a compiled stratified
theoryT and any clause”!,, € LF |, T¥(T),T;11 =
Chy iff TF(T), Trig1 = Clyor R = Clyy

Indeed, ifC?, , belongs tol'¥, | (T'), it must follow from
I'¥(T) U Ty, by resolution, and moreover, the resolution
steps can be ordered so that all resolvents upgn vari-
ables are computed before resolvents upgrvariables
(Tison 1967; del Val 1999; Marquis 2000). Since the for-
mer resolvents can only involve clauses fr@m 1, due to
the compilation, they are all subsumed by claus€g;in

or R;, and hence by clauses i, or T¥(T). Thus res-
olutions uponz;; variables are not needed for deriving

C?,,, and therefore any such clause must be subsumed by

a clause ink; 1, or must follow from resolutions upam;
variables involving clauses frof* (7)) andT'r;, 1 only.

Proposition 3 suggests an approach for computing the

I'¥ ,(T) sets. We initialize this set to be empty and then
consider each of the clauség, , in LY , in increasing

7

order of size. If the clause is a tautology or is subsumed

by a clause already iﬂfﬂ(T), we skip it. Else, we test

whetherC? , follows from R, or T¥(T)UTritq1. The
first part of this test is easy in a compiled theory, where

it can be checked by subsumption. The second part is
more subtle and is not tractable in general. We provide
conditions however under which this second part can be

computed in polynomial time. Then, since there is a poly-
nomial number of clause§?, , in L¥ ,, it follows that
the computation of ¥, | (T') from I'¥ () will run in those
cases in polynomial time too. A procedure for computing

the supporting clauseandsupportsof C7, ; respectively,
and let the claustrue be the single support @7, ; when
C!, , has no supporting clauses. Then for a compiled strat-
ified theory, the following property allows us to ‘regress’ a
l‘ormuIaCfJrl in L;y; into a formula inZ;:

Proposition 4 (Regression)Let C}, ..., Cr be the sup-
ports of a non-tautological claus€? , in a compiled
stratified theoryl' = U;—o,,T;. ThenT'¥(T),Tr;11 =

Clyy iff TH(T) | ~(CH A -+ ACT)

We will refer to the formula—(C} A --- A CF) involv-

ing all the supports of’!, , as theregressiorof C/__ |, in
analogy to the notion of regression used in planning, and
formulate conditions under which the number of clauses
encoding this formula is polynomial and the entailment of
such clauses can be checked efficiently. In relation to this
latter point we have that

Proposition 5 For a compiled theon’, PI*(T'¥(T)) =
I'¥(T), and fork < 2, PI(T¥(T)) = T¥(T).

The first property follows from PI*(PI*(X)) =
PI*(X); the second from the closure of 2-CNF formulas:
the resolvent of two clauses containing two literals at most,
cannot contain more than 2 literals. This second property
is what we need, it reduces validity checks to subsumption
tests. For generalizing it to higher valueskoflet us say
that a stratified theory" = U, ,,T; is purewhen each of
the variables;; € L;, fori = 0,...,n appears only posi-
tively or negatively in all clauses ifi; (notice that variable

x; may also occur in the body of a transition claus&in;

yet such occurrences are not considered). Cleaflyig
pure, so will be th&*(T') sets, and hence

Proposition 6 For a compiled stratified theor§” that is
pure, PI(T(T)) = TK(T).

Consider now the regressier{C} A--- ACT) of Ct .
The CNF representation of this formula is given by the
conjunction of all the clauses I'v ~ 2V .-V ~["
wherel’ is a literal fromC?. The number of such clauses
is exponential in the number disjunctive supportof
Ct,,; namely the number of suppor€s of C7 , with
size|CY| > 1.

Letwp(l;+1) stand for the number of transition clauses
C; Vv C;11 in T with disjunctive bodie€§’; such that;; €
Ci+1, and letwr stand for the max such number over all
literalsl; 1 in L;,y and alli = 0,...,n— 1. We will call
the parametew, thesupport widthof T" as it plays a role
analogous to the width parameter in variable elimination
algorithms (Dechter 1999). For Strips theories, we will
show their support width to be

these sets based on these ideas is shown in Fig. 1. The The results above lead to the procedure shown in Fig. 1
procedure exploits also an additional property that is ex- for computing the set§¥(T), i = 0,...,n defined in

plained next.

The PI-k Inference Procedure

Let us refer to the transition clausé€$ v C;. 1 in Tr; 1
with C; 41 C C’fH, and to the bodie€; of such clauses, as

(6) that we call theri-k procedure. Theri-k procedure
projects a sef¥ of clauses inL! into a setl’¥, ; of valid
consequences ovér’, | given a stratified theor{". For
theoriesI” with bounded support widtthe procedure runs
in polynomial time and if in addition, the theory is pure



SetT'f , =0
for each non-taut clause C/,; € L§+1 in order of size do
if C!,, subsumed by clause in I‘i&rl, continue
if C{;, subsumed by clause in R; 1, add C},, to I'};,
else let C/, j = 1,...,r be the supporters of Cf+1 inT
if no supporters, continue,
if some Of empty, add C; 4, to F?+1 and continue
if for each C} =~I}V ~Z V-V T 1 € OFj=1,..., 1
C! is taut or subsumed by clause in T'}, add C}, , to T'%,,
end for
Return I'},,

Figure 1:pI-k Procedure: MapE? intoT'¥, | givenT

and compiled, the procedure ¢®@mplete;namely, given
a PI-k set, it computes the next Pl-k set in the sequence
exactly.

Theorem 7 (Main) For a pure and compiled stratified
theoryT = U;—¢.,,T; with bounded support width, thre-k
procedure shown in Fig. 1 computes the iterated PI-k sets
¥(T),i=0,...,n, in polynomial time.

The pi-k procedure can be modified slightly so that it
will alwaysrun in polynomial time at the cost of com-

pleteness. For example, in the same way that we can ap-

proximate a testd = B; V By V --- V B, by consid-
ering whetherA entails the disjunction of any subset of
m disjunctsB;, for m < r, we can approximate the test
'Y = =C} v ... v =Crimplemented in the algorithm in
Fig. 1, where th&’s are the supports of the target clause
Ct, ,, by considering whethdr¥ entails any subset of the

disjuncts containing at most disjunctive supportg;.
There is a polynomial number of such subsets and each
such disjunction can be checked in polynomial time. The
resulting procedure would thus use at mostransition
clauses with disjunctive bodies at a time for projecting the
setl'¥ intoI'?, ;. We will call such a sound but incomplete
procedurePI-k-m  Since for Strips theories the support
width is 1, thepi-k-mprocedure will remain complete then
for anyk by settingm to k. Thus, when only clauses (mu-
texes) of sizel and2 are inferred, as in Graphplan, and
hencek = 2, at most two disjunctive supports will need to
be considered at a time.

Variations

Before analyzing the relation between the PI-k sets and the
planning graph, let us briefly examine the relation between
the procedures for computing them. Consider for example
the inference of the mutex pair ¢ at time: 4+ 1 when the
actionsa’ addingp at times are mutex with the action's
addinggq at the same time. Thel-k procedure will draw

the same inference in this case, very much in the same way.

For the target claus€?,, = —p;4+1 V ~¢i;1 there will be
two supporting clauses corresponding to the frame axioms
atVv---VarV-p;y1 andb}V- - -VbiV-g;. 1. The regression

CNF becomes the set of clauses] v b for eacha’ and
eachb!. If these actions are mutex at timethen they will

be part of the sef¥, and hence the regression formula and
the target-p;11 V —g;11 Will be both entailed.

Three optimizations in the the computation of the PI-k
sets will make the correspondence betweenrthle pro-
cedure and the planning graph algorithm even closer. The
first optimization involveaunit simplification a procedure
akin to unit resolution. Iﬂ“éc contains the unit clause;,
then transition clauses ifi, ; includingz; can be ignored,
while the literal—z; can be removed from the remain-
ing clauses. Likewise, iF'*¥ contains the unit clausez;,
then the transition clauses i including —z; can be
ignored, while the literak; can be removed from the re-
maining clauses. A result of this simplification is that the
regression of any formul&? , ; will no longer involve vari-

ables that are known ifi¥, and hence, while we may have
to check whether a clause! is subsumed by a clause of
size2 of higher, we will never have to check whether one
such clause is subsumed by a unit clause. Moreover the
simplification may reduce the support width of the theory
as well.

The second optimization involves the eliminatiorref
dundant transition clauses The notion of redundancy
needs to be defined carefully as the compilation adds en-
tailed clauses t@" that are needed for completeness. A
transition claus€; v C;; is redundantn T, ; givenT¥,
if there is another transition clauég v C; , , in T;,; such
thatC},, C Ci41 andC; follows fromI'¥ andC/. Since
by construction; is subsumed b¥'¥, then this last con-
dition can be safely approximated By being entailed by
R; andC}. We will see that in Strips, ‘delete clauses’ are
made redundant by the primitive action mutexes and the
frame clauses.

Finally, we are often interested in the consequences of
T over some target language (del Val 1999). For example,
in planning, we are commonly interested in goal condi-
tions G expressed by a conjunction of atoms, and then, in
order to derive (negative) lower bounds fréfhwe care
only about thenegativeconsequences df that may al-
low us to disprove the encoding of such goals. For such
cases, rather working with the original, compiled theory
T, we may as well work with a simplified theor§y—,
where all transition clausés; v C; ., and constraint§’;
with C;11 ¢ L~ are removed [~ is the set of negative
clauses). Under some conditions it is possible to show
that no relevant information is lost in the simplification,
namely that*(T) N L~ = I'¥(T~). We say in that case
that the restriction of” over L~ is admissible A sufficient
condition fork < 2 is the following:

Proposition 8 For k£ < 2, the restrictionT~ of a com-
piled theoryT over the target languagé.— is admissi-
ble, namelyl'¥(T) N L= = I'¥(T~) fori = 0,...,n, if
the variablesz; occurring positively inT; do not occur

negativelyin the body of a transition clause i ,, for

of the target clause through these transition clauses yields ¢ = 0,.-.,n — 1.

the formula—[(a} V -V al) A (b} V --- Vv b3)] which in

We will see that this condition holds naturally for plan-



ning theories, and hence, they can be simplified in thisway It is also simple to show, using Proposition 8, that the

resulting in theories that apure. restriction of a stratified Strips theofyover the target lan-
guagel~ is admissible fork < 2; the only variables;
Stratified Strips Theories appearing positively iff;, fori = 0,. .., n, are the propo-

sitional variable®; in the positive clauses if, or in Add
clauses, and such variables do not appear negatively in the
body of any clause. As a result, fbr< 2 we can remove

the positive clauses ifi; and the Add clauses in ea@h,

A Strips planning problen® = (A, O, I, G) with horizon
N, where A is the set of relevant atoms) is the set of
(grouno!) _a_ctions (includ!nglo_-ops), and/ andG stand
for the initial and goal situations, can be encoded by the fori = 2.4.....n, without losing information about the

theory (Kautz & Selman 1996) consequences over the target langubge The simplified

1. Init: po for p € I, —~qo for g in A but notin/ theoryT~ remains compiled and is pure. In addition, for
2. Actions: Fori =0,1,...,N —1anda € O: any literall; ., the number of supporting claus€sv C;.+1
with disjunctive bodie<”; is at most one, this occurring

® piV —a; for eachy € pre(a) only for the frame clauses argy; = —p;,1. Thus the

e —a; V pit1 foreachp € add(a) support width of stratified Strips theories lis Applying
e —a; V —p; 1 for eachp € del(a) Theorem 7 we thus obtain that:

3. Frame: If a1, as, ...,ay, are the actions i) that add Theorem 10 (PI-k Sets for Strips) For a stratified Strips
p,thenfori=0,...,.N — 1 theoryT', the PI-k procedure computes the sets of clauses

T¥(T~),i = 0,...,n in polynomial time. Moreover, for
k<2,TH(T-)=TKT)NL".

4. Mutex: If a, o’ interfere,—a;V—a; fori =0,...,N—1 We note that the el (T) ain cl that

: e note that the sef§’(7') may contain clauses that are
5 Goal: pw for-eachp €a. o not in L~. For example, if all tr>1/e actions that agdlso
In order tostratify this theory we define first the languages addp, then the clauseg; V p; will be derivable in each
L; for each layer. We do this as in Graphplan: the lan- propositional layer. However, since propositignsio not
guages; fori = 0,2,4,..., 2N represenpropositional occur negatively in the body of any transition clause in
layersand are defined in terms of the atomdor p € A; T, such clauses do not lead to further inferences of either

while the languages; for j = 1,3,...,2N — 1 represent  positive or negative clauses when< 2 (Proposition 8).
action layersand are defined in terms of the actioms

e alva?v.--va" V-pi

for a € O. The resulting stratified theo¥ = U;—g .7} We are finally ready to state the correspondence be-
for n = 2N, is a simple rearrangement of the clauses and tween iterated Pl-k sets and the sets of atoms and mutexes
indices, with the goal clauses excluded: in the planning graph:

1. Init Ty: po for p € I, and—qq for g € A notinI Theorem 11 (Planning Graphs) Let P be a Strips plan-

ning problem, letT" be the stratified theory encoding

2. Action Layers Toy: fori =0,2,...,n —2 with horizonN, andlet; = 0, ..., 2N stand for the propo-

e p; V —a;y foreacha € O andp € pre(a) sitional and actions levels in the planning graph. Then

e —ajy1 V —a;, forinterferinga, o’ in O 1. Forz; € L;, = is reachable at level of the planning
3. Propositional LayersT;,,: fori=1,3,...,n—1 graph iff~z; & T3(T)

o —a; V p;1 for eacha € O andp € add(a) 2. Fora;,y; € Ly, the r_nute>(a:,y) is m;erred at level of

e —a; V —p; 4 foreacha € O andp € del(a) t.he planning graph iffxz; V —y; € I (T).

o alVaZV..-Val' V-p, foreachp € A Thls (_:orrespondence extends_ also t(_)rt’rmhquused for

’ _ . i . ) inferring these sets of propositions, in particular after the

We call these theoriestratified Strips theoriesProvided gjmplifications in thee1-k procedure discussed earlier. The
that no atom is added and deleted by the same action, it's restriction of the Strips theory over the languake al-
simple to establish the following property: lows us to remove the Add and positive clause®jrirom
Proposition 9 Stratified Strips theories are compiled, and ~ consideration. The deletion of subsumed clauses allows
are logically and causally consistent. us to eliminate the Delete clauses as well. Indeed, the

delete clausesa; V —p;+1 in T are made redundant by
the frame clause;} vV a? V- --Va;” V —p;;1 and the ‘mu-

tex’ clauses-a; Vv ﬁa{ , as by deleting, a interferes with

Notice thawithoutthe constraints«a, vV —a; for interfering
actionsa andd’, the theory wouldhot be causally consis-
tent or compiled. Indeed, if addsp anda’ deleteg, then

the non-tautological clauses; v —a, follows from resolv-  €ach of the actions’ that addsp. As a result, the com-

ing the transition clausesa; \V p;+1 and—a’,V —p;+1 over putation of the iterated PI-k sets over the target language
K2 — . oy

their head variablg;_ ;. Such a clause must be subsumed L~ can proceed with the precondition, frame, and mutex

by a constraint ink; for the theory to be compiled. clauses only. Moreover, with unit simplification, the cor-

respondence between the two inference procedures draws
$The theory with the goals is stratified but is not compiled or ~ even closer. Due to the formulation, however, g pro-
causally consistent. cedure can handle a broader range of theories, including



theories not arising from planning domains. At the same
time it suggests incomplete approximations, like the

k-m procedure discussed earlier, that runs over a much a
broader set of theories in polynomial time.

Extensions

We consider briefly the application of the proposed frame-
work to a planning language that includes negation and
conditional effects, and an alternative compilation scheme
for derivingpositiverather thamegativelower bounds.

Negation and Frame Axioms

Strips does not accommodate negated literals in either the
preconditions or goals, and neither can the above logical
encodings. For example, the encoding of a problem in
which p is true initially and no action deletgs does not
entail the truth ofp at timesi > 0; namelyp, is entailed

but notp, or p,. The limitation for handling negation in

Strips arises from the semantics: states are sets of atoms,ai|

and no assumption is made about the truth of atoms not
in the set. The limitation of the logical encoding arises
from the way it handles persistence; like Graphplan and
the SAT encodings based on Graphplan, it ugesoP ac-
tions, which like the other actions, are assumed to be ex-
ogenous. As a result, the encodings admit ‘abnormal mod-
els’ where a fluenp true at: becomes false at-+ 1 with-

fects cannot be compiled away in Strips without causing an
exponential blow up (Nebel 2000); second, from a seman-
tic point of view, they are an essential component for plan-
ning with incomplete information (Smith & Weld 1998).
Extensions of the planning graph concept for dealing with
conditional effects have been considered in (Koebtexl.
1997) and (Anderson, Smith, & Weld 1998). These pro-
posals differ in their semantics, and while valuable compu-
tationally, they lack a clear theoretical justification. Here
we follow the semantics proposed by Anderson, Smith,
and Weld (from here on ASW), and derive the ‘planning
graphs’ from the iterated PI-k sets obtained from the cor-
responding stratified theory.

We represent a planning problem involving actions with
conditional effects by a tupl®. = (A,0.,I,G), with
A, I, and G as before, and),. as a set of actions,,
each represented by a precondition fist(a.) and a set
of conditional effect§cond’(a.), add'(a.), del*(a.)), i =
1,...,na,, With pre(a.), cond(a.), add*(a.), del'(a.)
being sets of atoms (possibly empty). Actions with con-
ditional effects are like Strips actions but with add, delete,
and precondition lists that depend on the statéhere the
actions are applied, given by the active effects and con-
ditions respectively. The semantics of parallel planning
given by ASW follows from this correspondence; in par-
ticular, two different actions,. anda,, interfere in a state
s whenin the states, one action deletes a precondition or

out being deleted, just because the model does not make add-effect of the other. Likewise, a valid parallel plan is a

the actionNO-OP(p) true ati. Such models do not hurt in
the Strips setting, because ofreonotonicity propertyany
such ‘abnormal’ modelM can always be extended into a
‘normal’ modelM’ that encodes the same plan, where flu-
ents persist as they should. Yet ‘abnormal’ modig$iurt

in other settings where the monotonicity property does not
hold, as for example, those includiagtions with condi-
tional effects. In this sense, actions with conditional ef-
fects require a proper handling of negation, a point already
made in (Anderson, Smith, & Weld 1998). While the en-
codings can be fixed biprcing the truth ofNo-oP actions
when the corresponding fluent should persist, here we will
follow an approach that also works in Strips and is com-
monly used: for every atomin the problem, a new atom

p is added that stands for the negationpof To enforce
this interpretationp is included in the initial situatiod if

p ¢ I, in each delete list that contaipsn the add list, and

in each add list that containsin the delete list. For an
Strips problem, we refer to the problem that results from
these modifications, the Strips problem with negation. No-
tice that in the logical encoding of the problem with nega-
tion it is not true that the equivalenge,; = —p; 1 holds

in all models. Yet as before, for any ‘abnormal’ model
where the equivalence does not hold, there is a ‘normal’
model that validates the same plan, where fluents persist
as they should and the equivalence holds.

Actions with Conditional Effects

Conditional effects are important in planning for two rea-
sons. First, from a syntactic point of view, conditional ef-

sequence of sets of applicable and non-interfering actions
that map the initial situatiod into the goalG. For sim-
plicity, we will assume that the various conditional effects
of the same action are not in conflict.

For the encoding of the probleR. we follow the in-
tuition of ASW and convert it into a normal Strips plan-
ning problem withnegation P augmented with a num-
ber of constraints. The resulting set of action® in P is
given by thecomponentsf P.: namely, for each actios,.
with conditional effects(cond’(a..), add(a.), del*(a.)),
i=1,...,n4,, O will contain the Strips actiong’ with
preconditiongre(a.)Ucond’(a.), and add and delete lists
add'(a.) anddel®(a.). We say in that case that actiehis
of typea., meaning that action’ in P comes from action
a.in P,.

The constraints must express that actions of the same
type in P are not independent; namely, that the execution
of an actiona € O in a states implies the execution of all
the actionsy’ € O of the same type whose preconditions
hold in s. This means that in order to encogkein logic,
in addition to the encoding of the Strips problgmwith
negation, we need for every pair of actiananda’ of the
same type inP, and all; = 0, ...,n — 1, the clauses

Pr V... VPLVoa;Va, 7
wherep!, ... p" are the atoms ipre(a’) — pre(a), and
p',...,p" are the atoms encoding their negatfon.

4Using the literals-p’ instead of the atom@ would yield an
incorrect encoding for the reasons discussed above; namely, the



In order to apply our methods for characterizing and
computing the iterated PI-k sets, we need to stratify the
resulting encoding and consider its compilation. The strat-
ification works out as for normal Strips theories, with the
addition of the clauses (7) indexed as transition clauses in
theaction layers With the addition of these new clauses,
however, the resulting stratified theory is no longer com-
piled. If as before, we restrict our attention to thegative
clausesthe compilation yields the followingonditional
mutexes:

C)

for actionsa' of the same type as, anda? of the same
type asa’, such thaww anda’ interfere, ang', ..., p" =
pre(a) — pre(at) andql,...,q" = pre(a’) — pre(a?).
That s, ifa anda’ interfere, and.! anda? are of the same
type asa anda’ respectively, then! anda? will be mutex
unless the conditions that maké anda? triggera anda’
respectively do not hold.

The compiled theor{ can be fed to thel-k procedure
for computing the iterated PI-k self§ (7). The complex-
ity of this computation, as before, is given by the support
width of the theory; namely the max number of transition
clauses’; v C; 1 with disjunctive bodie€”; with a com-
mon literall; ; in their heads. While for Strips, however,
this parameter is equal g for these theories, this param-
eter is not bounded and hence the procedure may run in
exponential time.

For example, consider two actions andb,. with ‘con-
flicting’ conditional effects; e.g., foi = 1,...,r, if ¢t is
true, thena, addse?, and if d’ is true, b, deletese’. The
above encoding yields a number of conditional mutexes
of the formel v & v —a¥,, V —bY,, which is quadratic
in r, and hence the support width of the theory becomes
guadratic in- as well. The extension of the planning graph
in (Anderson, Smith, & Weld 1998) is polynomial but
incomplete. The polynomial procedupe-k-m discussed
above that considers at mast disjunctive supports at a
time yields an stronger approximation for the saime 2
andm = 2. In any case, stratified theories, the notion of
compilation, and the various projection procedures seem
to provide a convenient framework for studying and eval-
uating such tradeoffs.

_1 = 1 = 1 2
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Positive Deductive Lower Bounds

We have considered the definition and computation of
lower bounds for planning theori@sconsidering the first
time pointi at which the encodingr; of a goalG is con-
sistent with the theory, or equivalently, the first time point
¢ at which the negation of the goal=; is not entailed by

T. We called these lower boundegativein Section 3
for this reason. We want to consider n@asitivelower
bounds defined in terms of the first time poirdt which

the goalG; itself is entailed, rather than its negation, from

monotonicity property would not hold, and hence, the theory may
have ‘abnormal’ models that cannot be extended into ‘normal’
models validating the same plans.

4. Action Closure: —pre(a); V aj+1,1=0,2,..

an slightly different and stronger thedfy". We will con-
sider one such definition for the Strips setting.

For a given Strips planning problef, we consider the
stratified encoding” of the delete-relaxation aP where
all delete effects are assumed empty. This is a common
and useful relaxation in planning that has given rise to a
number of informative heuristics. The stratified the@ry
is thus given by the following clauses:

1. Init Ty: po forp € I, and—qq forg € Anotinl
2. Action Layers T;4: fori =0,2,...,n — 2:
e p; V —a;11 foreacha € O andp € Prec(a)
3. Propositional LayersT;: fori =1,3,...,n — 1:
e —q; V p;4q foreacha € O andp € Add(a), and
e alVa? VeV a;” V —p;41 for eachp € A and the
actionsa’ € O that addp

Since delete clauses and mutex constraints are no longer
part of the theory, the theor¥’ is weaker than the theory

T encoding the original problen®, and thus we cannot
expect it to yield positive lower bounds. We thus build
our target theory™* from 7" by forcing the equivalences
pre(a); = a;+1, wherepre(a); is the formula encoding

the preconditions of at level.

L,n—=2

The resulting stratified theor§* is compiled as the res-
olutions upornz;,, variables in each lay€er;, ; all yield
clauses that include complementary literals. As a result,
the theory is causally consistent, and sifigés consistent,
the theory is consistent as well. Moreover, the thebry

is completein the sense that it has a single state trajectory
S0, S1, - - - » Sy, SAtisfying it. Thus, for any variable, either

x; € PL;(TT) or ~z; € PI;(TT). This also implies that
these sets are equivalent to the iterated Pl-k BEtg'™+)

for anyk > 1 which are also complete. Hence for any goal
G; € Ly, Ff(TJF) either entails&; or ~G;. Moreover, it
can also be shown that the sEf7+)N L~ are equivalent

to the setd"¥ (7)) N L~ obtained from the theory encod-

ing the original problemP with & = 1. It follows then
thatT}(T) = -G, iff TF(TT) & -G, iff TF(T) = G;.
Thus, the positive lower bounds obtained frafit are
equivalent to the negative lower bounds obtained from the
original theoryT for £ = 1, and hence that the former
bounds are weaker than the latter for values afreater
thanl.

Positive lower bounds, however, may be useful in non-
Strips settings. Recently, for example, an heuristic estima-
tor for conformant planning has been proposed in (Braf-
man & Hoffmann 2004) which seems to be based on a
closed, relaxed theory lik&€ " that allows for disjunctive
information in the initial situatiord. However, rather than
computing a representation of the sEf¢7+) using a pro-
cedure likepi-k, Brafman and Hoffmann rely on an ap-
proximation based on a compilation into 2-CNF: a closed
and tractable fragment of CNF including the clauses with
two literals at most. Indeed, any thedfyb“ stronger than
T+ would yield positive lower bounds, and in particular,



if 7); is in 2-CNF, the computation of these lower bounds
is tractable. In this sense, the notion of lower bounds used
in knowledge compilation, that refers to stronger theories
(Selman & Kautz 1996), may turn out to be useful for
computing lower bounds in planning. The ideal compi-
lation target for a theory likd™ in situations where the
domain features incompleteness or non-determinism, is
the weakestheoryT;; over the target tractable language
(whether 2-CNF, Horn, etc) that is as strong/as the so-
calledgreatest lower boundf 7. However, since such a
compilation is intractable in general, one must settle for a
good lower bound theory rather than for the best one. The
scheme developed by Brafman and Hoffmann follows this
approach building the corresponding 2-CNF theory incre-
mentally. The reasons they don't get a lower bound is that,
as in FF, they do not use the index of the layer where the
goals become derivable but the number of actions involved
in the derivation; an heuristic that appears more informa-
tive but is not admissible.

Related Work

The ideas in this work are closely related to the idea of
variable or bucket eliminatioras formulated in (Dechter
1999). In a CSP context, variable elimination algorithms
process the problem variables in a fixed order. .., x,,
eliminating the variables one by one. The elimination of a
variablex; in a problemP; inducesa constraint’; ; over

the remaining variables; 1, ..., z,,, which is added to
the existing constraints to yield a subproblétn ;. The
nature of this subproblem is such that its solutions can all
be extended to solutions of the probldinvolving vari-
ablez; as well. Thus after eliminating all variables, all
solutions to the original probler® = P, can be obtained
backtrack free in reverse order starting with the subprob-
lem P, involving only the variabler,,. The computation

of the constraintd’;;; induced by the elimination of a
variable, however, may be exponential in time and space.
A tractable alternative is Boundedorm of variable elim-
ination in which the elimination of a variable; induces
constraints of size at moét among the remaining vari-
ablesz;1, ..., z,. Such weak form of elimination runs

inated by computing the resolvents of claugés and

C! involving the literal z; and the literal—-z; respec-
tively, inducing new clauses over the remaining variables
Zix1,- -, %n (Rish & Dechter 2000).Bounded Directed
Resolution,is the bounded version of DR which runs
in polynomial time and only posts resolvents of size no
greater thark. For example, Bounded DR-2, generates
resolvents of sizé and2 only. In this sense, BDR-2 is
related to Graphplan, and more generally, BDR-k is re-
lated to the inference scheme based on the computation
of the iterated PI-k sets that also derives consequences of
sizek or less. The two inference methods, however, are
not equivalent; the latter method is stronger, and is poly-
nomial only under certain conditions (such as those ex-
pressed in Theorem 7). Indeed, while the computation of
the PI-k setsesultsin clauses of size bounded Byit may
involveintermediate resolution steps producing clauses of
arbitrary size. For example, consider two frame axioms
al V---Val V-piq andbl V- VbV —gq along
with the ‘mutex’ clauses-a; v bl for eacha’ andb!. In
such a situation, thel-k procedure for any: > 2 infers

the ‘'mutex’ —p; 11 V g;11, Yet the first level resolvents of
these clauses have all sizavhich may be much higher
thank. Such inferences are common in planning and are
critical in the construction of the planning graph.

The computation of the sef¥ (T') stands thus halfway
between full and bounded forms of variable elimination:
it involves full resolution over the; variables but results
in clauses of size bounded layover thez;,; variables.
Without the restriction of thé parameter, these sets be-
come equal to the sets of prime implicatesiobver the
languaged.;, i.e.,T';(T) = PI;(T), an intractable, com-
piled representation that corresponds to the one obtained
by the clause-based tree-clustering algorithm in (Rish &
Dechter 2000).

Other works on propositional inference methods that
exploit the structure of the underlying theories, are (Dar-
wiche 1996), (del Val 1999), (Kohlas, Haenni, & Moral
1999), and (Mcllraith & Amir 2001).

Discussion

in polynomial time but the backward search for solutionsis We have formulated an inference scheme over stratified
no longer backtrack free: the constraints that are inferred propositional theories, and have shown the conditions un-
and posted as variables are eliminated remove some butder which this inference scheme is tractable and com-
not necessarily all the backtracks. This is actually what putes exactly the iterated sets of prime implicates of size
Graphplan does: a forward weak variable elimination pass bounded by:. We have also established a correspondence
that induces constraints of sizeand 2, followed by a between this computation and the construction of the plan-
backtracking search over the resulting graph starting from ning graph, and more generally, the derivation of lower
the last layer. The inference scheme based on the compu-bounds in planning. The scheme is also related to bounded
tation of the iterated* (T') sets by means of thei-k pro- variable elimination methods considered in constraint sat-
cedure provides a generalized logical account of the com- isfaction and optimization.
putations performed by Graphplan in the weak elimination ~ We have focused only in ‘classical’ planning theories
pass. We have shown the conditions under whichrthe  where the initial state is known and actions, with or with-
k procedure runs in polynomial time and computes these out conditional effects, are deterministic. The account,
sets exactly. however, may provide a basis for defining and deriving
Variable elimination algorithms for SAT take the form  cost-effective lower bounds in non-classical planning set-
of Directed Resolution (DRWhere variables; are elim- tings such as those involving incomplete information and



non-deterministic actions. The use of Graphplan as a front
end of current SAT and CSP planners indicates that in the

classical setting, the proposed PI-k inference methods pro-

vide indeed a cost-effective preprocessing filter. In more
complex planning tasks that cannot be reduced to SAT, we

expect the leverage gained by the use of these inference

methods to be even greater.

As a concrete example of the challenges involved in the
definition and derivation of lower bounds in problems that
involve incomplete information in the initial state, con-
sider a robot that can move deterministically, one step at
a time in the four directions, in a square grid of side
Moves that would take the robot out of the grid leave the
robot in the same location. The robot does not know its
initial location and the goal is to get to the center of the
square with certainty. Any optimal plan for the problem
involves a self-localization stage where the robot takes
steps in one direction, and steps in an orthogonal di-
rection. The robot will be then at a particular corner of the
grid and will know its location, and from there, it can reach
the goal inn steps more. The problem has thus cost equal
to 3n. The challenge is to have a tractable and general
inference scheme capable of deriving such bounds.

The ideas we have laid out above are not sufficient for
handling these situations, yet some of them may turn out to
be relevant. A possible way for approaching the derivation
of lower bounds in such settings may involve the computa-
tion of positivelower bounds over encodings in a proposi-
tionalmodallogic that distinguishes atoms beitrge from
atoms beindgnown.This will be an interesting possibility,
as if true, it would lead naturally to further connections
between propositional and problem solving methods.
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