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Abstract is feedback. In all cases, the task of the planner is to com-
pute a plan or solution; thierm and costof these solutions
depending on the model; e.g., in classical planning, solutions
are sequences of actions and cost is measured by the number
of actions, while in planning with uncertainty and feedback,
solutions map states into actions, and cost stands for expected
or worst-possible cost.

Planning is a form of ‘'general problem solving’ over a class
of models, or more precisely,raodel-base@pproach to in-
telligent behavior: given a problem in the form of a com-
pact description of the actions, sensors (if any), and goals,
a planner must compute a solution, and if required, a solu-
tion that minimizes costs. Some of the models used in plan-
ning, as for example Markov Decision Processes (MDPs), are
not exclusive to Al Planning, and are used for example in
Control Theory[Bertsekas, 1995 Reinforcement Learning
[Sutton and Barto, 1998 and Behavioral EcologyHous-
ton and McNamara, 1988; Clark, 199dmong other fields.
What is particular about Al planning are tfenguagesfor
representing these models, tteehniquedor solving them,
and the ways these techniques aedidated. Techniques
do matter quite a lot: even simple problems give rise to
very large state spaces that cannot be solved by exhaus-
tive methods. Consider the well known Rubik Cube puz-
zle: the number of possible configurations is in the order
of trillions, yet methods are known for solving it, even op-

) timally, from arbitrary configurationgorf, 1994. The key
1 Introduction idea lies in the use afdmissible heuristic functiortbat pro-

In the late 50's, Newell and Simon introduced the first Al Vide an optimistic approximation of the number of moves
planner — the General Problem Solver or GPS — as a psych& so_lve the problem from_arbltrary configurations. These
logical theory[Newell and Simon, 1958; 1963Since then, functions enable the solution of large problems, even en-
Planning has remained a central area in Al while changing ifuring optimality, by focusing the search and avoiding most
significant ways: it has become more mathematical (a varietgtates in the problem. Interestingly, recent work in plan-
of planning problems has been clearly defined and studied)ing has shown that such functions can be derigetb-
and more empirical (planners and benchmarks can be dowrpatically from the problem descriptiofBonet and Geffner,
loaded freely, and competitions are held every two years), and001, and can be used to drive the search in problems in-
as aresult, new ideas and techniques have been developed tMalving uncertainty and feedback as wignet and Geffner,
enable the automatic solution of large and complex problemg00d. Such functions can be understood as a specific and ro-
[Smith, 2003. bust form ofmeans-ends analysislewell and Simon, 1958;

Al Planning studies languages, models, and algorithms fot963 that produces goal-directed behavior in complex set-
describing and solving problems that involve the selection ofings even in the presence of large state and action spaces.
actions for achieving goals. In the simplest caseclassi- In this paper, we review some of the key computational
cal planning the actions are assumed deterministic, while inideas that have emerged from recent work in planning and
contingent planningactions are non-deterministic and there problem solving in Al, and argue that these ideas, although

Humans encounter a huge variety of problems
which they must solve using general methods.
Even simple problems, however, become compu-
tationally hard for general solvers if the struc-
ture of the problems is not recognized and ex-
ploited. Work in Artificial Intelligence Planning
and Problem Solving has encountered a similar dif-
ficulty, leading in recent years to the development
of well-founded and empirically tested techniques
for recognizing and exploiting structure, focusing
the search for solutions in certain cases, and by-
passing the need to search in others. These tech-
nigues include the automatic derivation of heuristic
functions, the use of limited but effective forms of
inference, and the compilation of domains, all of
which enable a general problem solver to ‘adapt’
automatically to the task at hand. In this paper, |
present the ideas underlying these new techniques,
and argue for their relevance to models of natural
intelligent behavior as well. The paper is not a re-
view of Al Planning — a diverse field with a long
history — but a personal appraisal of some recent
key developments and their potential bearing on ac-
counts of action selection in humans and animals.



not necessarely in their current form, are likely to be rele- Another distinction that is relevant for fitting the work in
vant for understanding natural intelligent behavior as well Al Planning within the broader work on Intelligent Behavior
Humans encounter indeed a huge variety of problems whicis the one betweefinding solutionsss. executing solutions.
they must solve using general methods. It cannot be otheFor many models, such as those involving uncertainty and
wise, because there cannot be as many methods as problerfeedback, the solutions, from a mathematical point of view,
Yet, simple problems become computationally hard for a genare functions mapping states into actions (these functions are
eral solver if the structure of the problems is not recognizectalled closed-loop policiesand in the partially observable
and exploited. This is well known in Al, where systems thatcase map actuallyelief stateénto actions; see below). These
do not exhibit this ablity tend to be shallow and brittle. In functions can be represented in many ways; e.g. as condition,
the last few years, however, work in Planning and Problemaction rules, as value functions, etc. Indeed, in what is of-
Solving has led to well-founded and empirically tested techten calledbehavior-based AlBrooks, 1997, these solutions
niques for recognizing and exploiting structure, focusing theare encoded by hand for controlling mobile robots. In na-
search for solutions, and in certain cases, bypassing the neadre, similar solutions are thought to be encoded in brains but
to search altogether. These techniques include the automatiot by hand but by evolution. Representing and executing
derivation of heuristic functions, the use of limited but effec- solutions, however, while challenging, is different than com-
tive forms of inference, and the compilation of domains, alling up with the solutions in the first place which is what Al
of which enable a general problem solver to ‘adapt’ automatPlanning is all about. Whether this is a requirement of intelli-
ically to the task at hand. Interestingly, the need for focus-gent behavior in animals is not clear although it seems to be a
ing the search for solutions has been recognized in a numbelistinctive feature of intelligent behavior in humans. Interest-
of recent works concerned with natural intelligent behavior,ingly, in many cases, the same models can be used for both
where it has been related to the role of emotions in the apanderstandinghe solutions found in nature, and fgener-
praisal and solution of problems. We will say more about thisating those solutiongMcFarland and Bosser, 1903The in-
as well. terest in the latter case, however, is not only with the models
Since Newell's and Simon’s GPS, the area of Al planningbut also with the algorithms needed for solving those models
has departed from the original motivation of understandinggffectively. We thus consider both models and algorithms.
human cognition to become the mathematical and computa-
tional study of the problem of selecting actions for achiev-2 Models
ing goals. Yet after all these years, and given the progres
achieved, it is time to reflect on what has been learned in th
abstract setting, and use it for informing our theories in the
natural setting. This exercise is possible and may be quite rél
warding. It parallels the approach advocated by David Marr, 1. a discrete and finite state spéte
and echoed more recently b@limcher, 2003 and others in 2. aninitial statesg € S,
the Brain Sciences; namely: charactengeat needs to be 3. a non-empty set of terminal staigés C 5,
computedhowit can be computed, and how these computa- 4, actionsA(s) C A applicable in each non-terminal state,

tions areapproximatedn real-brains. The findings that we g a functionF (a, s) mapping non-terminal statesind ac-
summarize below, aim to provide a partial account of the first  ionsq A(s)7into setsof states

two tasks. ) _ . 6. action costg(a, s) for non-terminal states, and
A few methodological comments before proceeding. First 7 ormina| costs;(s) for terminal states.
aboutdomain-generalitws. domain-specificityn action se- o _ _ _ )
lection. | have said that humans are capable of solving a widé deterministic planning, there is a single predictable next
range of problems using general methods. This, however, igtate and hencg'(a,s)| = 1, while in non-neterministic
controversial. Both evolutionary psychologi$ooby and ~ Planning|F'(a, s)| > 1. In addition, in probabilistic plan-
Cosmides, 1992and cognitive scientists from the 'fast and ning (MDPs), non-deterministic transitions are weighted with
frugal heuristics’ schoolGigerenzer and Todd, 19pplace  Probabilities P, (s'|s) so thatd, c p(, o Pa(s'[s) = 1. In
an emphasis on modularity and domain-specificity. Othersgeneral, action costqgq, s) are assumed to be positive, and
without necessarily denying the role of specialization, posterminal costscr(s) non-negative. When zero, terminal
tulate the presence of general reasoning and problem solstates are callegioals The models underlying 2-player
ing mechanisms as well, at least in humans (see for examplgames such as Chess can be understood also in these terms
[Stanovich, 200)). We are not going to address this contro- with opponent moves modeled as non-deterministic transi-
versy here, just emphasize that 'general’ and 'adapted’ argons. Often models are described in terms of rewards rather
not necessarily opposite of each other. Indeed, the work in Athan costs, or in terms of both, yet care needs to be taken
planning is domain-independent, yet the recent techniques iko that models have well-defined solutions. State models of
lustrate how a general problem solver can ’adapt’ to a specifithis type are also considered in Control ThebBertsekas,
problem by recognizing and exploiting structure, for exam-1993, Reinforcement LearningSutton and Barto, 1998
ple, in the form of heuristic functions. These heuristics areand Behavioral EcologfHouston and McNamara, 1988;
indeed in line with the 'fast and frugal heuristics’, the differ- Clark, 1991. In [Astrom, 1963, it is shown how problems
ence being that they are general and can be extracted autowvolving partial feedback can be reformulated as problems
matically from problem descriptions. involving full state feedback ovdrelief statesi.e., states that

ost models considered in Al Planning can be understood in
erms ofactionsthat affect thestateof a system, and can be
iven in terms of



encode the information about the true state of the system. Alturrently exist. This is the result of new ideas and a solid em-
these problems can also be castaarch problem either  pirical methodology in Al Planning followinfPenberthy and
the original state space or belief spd@onet and Geffner, Weld, 1992, [Blum and Furst, 1995 and others in the 90’s.
200d.

The solutions to these various state models have a mathg  |s Strips Planning relevant at all?
matical form that depends on the type of feedback. In prob- . _ _
lems without feedback, solutions are sequences of action§efore getting into the techniques that made this progress
while in problems with full-state feedback solutions are func-P0Ssible, let us address some common misconceptions about
tions mapping states into actions (called also closed-loop contiPS planning. First, itis often said that Strips planning can-
trol policies). The form of the solution to the various models "0t deal with uncertainty. This is true in one way, but not in
need to be distinguished from the way they are representegnother. Namely, the model(P) implicit in a Strips en-
A common, compact representation of policies is in terms of0ding P does notrepresentuncertainty. Yet this does not
condition, action rules; yet many of the standard algorithmdMPply that Strips planning cannateal with uncertainty. It
assume a representation of policies in terms of less-compaggtually can. Indeed, the ‘winner’ of the ICAPS 2004 Proba-
value functions. The problem of combining robust algorithmsPIStic Planning CompetitiofLittman, 2003, FF-Replar?, is
with compact representations is not yet solved, although sig2@sed on a Strips planner called Rffoffmann and Nebel,

nificant progress has been achieved when actions can be 2201. While the actions in the domain were probabilistic,
sumed to be deterministic. FF-Replan ignores the probabilities and replans from scratch

From a complexity point of view, if there are variables, using FF after every step. Since currently, this can be done

the state space (range of possible value assignments) is e&Xtremely fast even in domains with hundred of actions and
ponential inn. Thus, except for problems involving very variables, this deterministic re-planner did better than more
few variables, exhaustive approaches for specifying or solySophisticated _probab|I|st|c planners. It d_oes pot_ ta!<e much
ing these models are unfeasible. A key characteristic of AfC S€€ that this strategy may work well in a ‘noisy’ Block

Planning are the languages for representing these models, alj¢Prids domain where blocks may accidentally fall off grip-
the techniques used for solving them. per, and actually it is not trivial to come up with domains

where this strategy will not work (this was indeed the problem

in the competition). Control engineers know this very well:
3 Languages stochastic systems are often controlled by closed-loop con-
A standard language for representing state models in compalff! policies designed under deterministic approximations, as
form is Strips[Fikes and Nilsson, 1971 In Strips, a prob- in many cases errors in the model can be safely corrected
lem P is expressed as a tuple = (4,0,1,G) whereA is  through the feedback loop.
the set of atoms or boolean variables of interésts the set A second misconception about Strips or ‘classical’ plan-
of actions, andl C A, andG C A are the atoms that are ning is that actions denote ‘primitive operations’ that all take
true in the initial and goal situations respectively. In addition,a unit of time. This is not so: Strips planning is about plan-
each actiomn € O is characterized by three sets of atoms:ning with operators that can be chacterized in terms of pre
the atomgpre(a) that must be true in order for the action to and postconditions. The operator themselves can be abstrac-
be executable (preconditions), the atamd(a) that become  tions of lower level policies, dealing with low level actions
true after the action is done (add list), and finally, the atomgind sensors. For example, the action of grabbing a cup in-
del(a) that become false after doing the action (delete list). volves moving the arm in certain ways, sensing it, and so on;

A Strips planner is @eneral problem solvethat accepts Yet for higher levels, it is natural to assume that the action

descriptions of arbitrary problems in Strips, and compute$an be summarized in terms of preconditions involving the
a solution for them; namely, sequences of actions mappingroximity of the cup, a free-hand, etc; and postconditions in-
the initial situation into the goal. Actually, any deterministic Volving the cup in the hand and so on. Reinforcement learn-
state model can be expressed in Strips, and any Strips prot!d has been shown to be a powerful approach for learning

lem P = (A,0,I,G) defines a precise state mode(P) low-level skills, but it has been less successful for integrating
where these skills for achieving high-level goals. The computational

success of Strips planning suggests that one way of doing this

o the fStf"‘_teg are th? different subsets of atomsdn is by characterizing low-level behaviors in terms of pre and
e the initial states is postconditions, and feeding such behaviors into a planner.

¢ the goal states are those for whicli C s¢

e A(s) is the subset of actionsc O s.t.pre(a) C s 5 Heuristic Search

e F(a,s) ={s+ Add(a) — Del(a)}, fora € A(s) . .

« the actions costa(a, s) are uniform (e.g.1) How can current Strips planners assemble dynamically and

effectively low-level behaviors, expressed in terms of pre and
Extensions of the Strips language for accommodating nonpost conditions, for achieving goals? The idea is simple: they
boolean variables and other features have been developeskploit the structure of the problems by extracting automati-
and planners capable of solving large and complex problemsally informative heuristic functions. While the idea of using

IStrips is the name of a planner developed in the late 60's at SRI, 2FF-Replan was developed by SungWook Yoon, Alan Fern and
a successor of Newell's and Simon’s GPS. Robert Givan from Purdue.



heuristic functions for guiding the search is ¢idartet al,  free Strips problem can be done quite efficiently, and the
1964, the idea of extracting these functions automaticallyheuristich(s) can be set to the cost of the relaxation. The
from problem encodings is more recdMcDermott, 1996; idea of obtaining heuristics by solving relaxed problems is
Bonetet al, 1997, and underlies most current planners. old[Pearl, 1988 but the use of Strips relaxations for deriving
In order to illustrate the power of heuristic functions for them automatically for planning is more recéhtcDermott,
guiding the search, consider the problem of looking in al996; Bonett al, 1997. Since then other relaxations have
map for the shortest route between Los Angeles and Neween been considered. IBonetet al, 1997, the derived
York. One of the best known algorithms for finding short- heuristics are used for selecting actions greedily, in real-time,
est routes is Dijkstra’s algorithdfCormenet al,, 1989: the  without finding a complete plan first. The proposal is closely
algorithm efficiently and recursively computes the shortestelated to thespreading activation modeif action selection
distanceg)(s) between the origin and the closest ‘unvisited’ in [Maes, 1990} with activation levelseplaced by or inter-
cities s til the target is reached. A characteristic of the al-preted aheuristic valuegcost estimators).
gorithm when applied to our problem, is that it would first The automatic derivation of heuristic functions for guiding
find a shortest path from LA to Mexico City, even if Mexico the search provides what is probably the first fast and robust
City is way out of the best path from LA to NY. Of course, mechanism for carring out means-end analysis in complex
this is not the way people find routes in a map. Hesrris- domains.
tic search algorithmsleveloped in Al approach this problem
in a different way, taking into account an estimates) of 7 Greedy Selection and Lookahead

the cost (distance) to go fromto the goal. In route find- . ) ,
ing, this estimate is given by the Euclidian distance in theHeuristic functions, as cost estimators, have also been found

map that separates from the goal. Using then the sum Cr_ucial for focusing the search in_problems involving uncer-
of the costg(s) to get tos and an estimaté:(s) of the tainty and feedback where solutions are not ‘paths’ in the
cost-to-go froms to the goal, heuristic or informed search Staté space. Solutions to the various models can be all ex-
algorithms are much morfacusedthan blind search algo- Pressed in terms of control policiesthat aregreedywith
rithms like Dijkstra, without sacrificing optimality. For ex- "€SPECt to a given heuristic functién A control policy is
ample, in finding a route from Los Angeles to New York, @ function mapping statese S into actionsu € A(s), and a
heuristic search algorithms like A* or IDAfPearl, 1983; Policy 7 is greedy with respect t iff m is the best policy
Russell and Norvig, 1994 would never consider ‘cities’ 2assuming that the cost-to-go is given/yi.e.

whose valugy(s) + h(s) is above the cost of the problem. _ .

These algoritrgr%s guér;ntee also that the solutions found are mals) = irff(li? @nla:s) @
optimal provided that the heuristic functidnis admissible

or optimistig i.e., if for anys, h(s) < V*(s), whereV*is  whereQy(a, s) is the expression of the cost-to-go whose ac-
the optimal cost function. In the most informed case, wheriual form depends on the model; e.g., for non-deterministic
h = V*, heuristic search algorithms are completely focusednodels isc(a, s) + maxy cp(a,s) h(s"), for MDPsc(a, s) +

and consider only states along optimal paths, while in the - . p(, ) Fa(s'|s)h(s"), etc. In all cases, if the heuristic
other extreme, ih = 0, they consider as many states as Dijk- is optimal; i.e.,h = V*, the greedy policyr;, is optimal as
stra’s algorithm. Most often, we are not in either extreme,well [Bellman, 1957; Bertsekas, 199%\s mentioned above,
yet good informed heuristics can be found that reduce théhe planner that won that the last Probabilistic Planning Com-
space to search quite drastically. For example, while witpetition, used a greedy policy based on an heuristic function
today’s technology it is possible to explore in the order ofderived ignoring probabilistic information.

1010 states, optimal solutions to arbitrary configuration of the  Often, if the heuristic estimatdr is good, the greedy pol-
Rubik’s Cube with more thah0*° states, have been reported icy 7, based on it is good as well. Otherwise, there are two
[Korf, 1994. These search methods are very selective angyays for improving the policyr;, without having to consider
consider a tiny fraction of the state space only, smaller actuthe entire state space: one is lopk ahead the other is by

ally than1/10". learning,and both involvesearch Look-ahead is the strategy
used in 2-player games like Chess that cannot be solved up
6 Deriving Heuristic Functions to the terminal states; it is a variation of the greedy strategy

7, Where theQy, (a, s) term is obtained not from the direct

Two key guestions arise: 1) How can these heuristics be obsuccessors of but from further descendants. The lookahead
tained? and 2) Whether similar gains can be obtained in othegearch is not exhaustive either, as valligs) of the tip nodes
models, e.g., when actions are not deterministic and states agee used to prune the set of nodes considered; a technique
not necessarily fully observable. We address each question known as alpha-beta seardtiewellet al,, 1963. The quality
turn. of the play depends on the search horizon and on the quality

The power of current planners arises from methods for exef the value function, which in this case, does not estimate
tracting heuristic valuek(s) automatically from problem en- cost but reward. In all the models, the greedy potigyis in-
codings. The idea is to set the estimated chétg of reach-  variant to certain types of transformationfine.gm, = m
ing the goal froms to the cost of solving a simpler, relaxed if ' = ah + § for constantsy and 3, a > 0, so the value
problem. Strips problems, for example, can be relaxed bcale is not critical. Moreover, in Chess, any transformation
dropping the delete lists. Solving (hon-optimally) a delete-of the heuristic function that preserves the relative ordering



of the states, yields an equivalent policy, even if lookahead ipossible to solve a wide variety of ‘simple’ problems that are

used. used as benchmarks in planning (including the famous Blocks
World problems), by performing efficient (low polynomial)
8 Learning inference anaho search.To our surprise, we have found that

this is possibldVidal and Geffner, 2006 We believe that
there are a number of useful consequences to draw from this
fact, given that most problems faced by real intelligent agents
are not puzzles. In any case, inference and heuristic func-
tions are two sides of the same coin: they both extract useful
knowledge from a domain description and use it to focus the
h(s) == aglAil(ﬂs) Qn(a, s) (2)  search, and if possible, to eliminate the search altogether.

Interestingly, if b is admissible § < V*), and these up- 10 SAT: Search and Inference in Logic
dates are performed as the greedy poligyis simulated, '

the resulting algorithm exhibits two properties that distin- Logic has played a prominent role in Al as a basis for knowl-
guish it from standard methods: first, unlike a fixed greedyedge representation and programming languages. In recent
policy, it will never get trapped into a loop and will even- Years, logic restricted to propositional languages has become
tually get to the goal (if the goal is reachable from every@ powerful computational paradigm as well. A variety of
state), and second, after repeated trials, the greedy peolicy problems can be encoded as SAT problems which are then
converges to an optimal policy, and the valugs) to the fed and solved by po_werfL_JI SAT solvgers: programs that take
optimal valuesV*(s) (over the relevant states). This algo- @ set of clauses (disjunctions of positive or negated atoms),
rithm is called Real-Time Dynamic Programming (RTDP) in @nd determine if the clauses are consistent, and if so, return a
[Barto et al, 1995 as it combines a greedy, real-time ac- truth-valuation that satisfies all the clauses (a model). While
tion selecting mechanism, with the improvements broughfhe SAT problem |s_|ntractable, problems involving thousands
about by the updates. Like heuristic search algorithms iPf clauses and variables can now be solf¢dutz and Sel-

Al but unlike standard DP methods, RTDP can solve largenan, 2005 Classical planning problems can be mapped
problems involving uncertainty, without having to consider into SAT by translating the problem descriptions into propo-
the whole state space, provided that a good and admissfitional logic, and fixing a planning horizon: if the theory is
ble heuristic functionk is used. Moreover, partial feed- inconsistent, the problem has no solution within the horizon,
back can be accommodated as well, by performing the seard@S€ a plan can be read off the modihutz and Selman,

in "belief space’. GPT is a planner, that accepts descrip1998. For problems involving non-determinism, the SAT
tion of problems involving stochastic actions and sensorsformulation yields only ‘optimistic’ plans, yet work is un-
and computes optimal or approximate optimal policies usder\{vay for reproducing the pract|cal success of SAT in r[cher
ing a refinement of these methol@onet and Geffner, 2000; settings. Current SAT algorithms combine search and infer-

The second way to improve a greedy poligyis by adjusting
the heuristic values during the seaidforf, 1990; Bartoet
al., 1999. More precisely, after applying the greedy action
argmin,e 4.,y Qn(a, s) in states, the heuristic valué(s) in

s is updated to

2004. ence as well, and are complete. Some of the original algo-
rithms, were based on local seaf@elmaret al,, 1994, and
9 Inference were inspired by a neural-network constraint satisfaction en-

Many problems have a low polynomial complexity, and areglne[Adorf and Johnston, 1990

easy for people to solve; e.g., the problem of collecting pack-, . q

ages at various destinations in a city, and delivering them a:l'l Domain Compilation

some other destinations. This ‘problem’ is not even considAnother recent development in logic relevant for action se-
ered a problem by people as, unlike puzzles, can be solvddction isknowledge compilatiohSelman and Kautz, 1996;
(non-optimally) in a very straightforward way. Yet if the Darwiche and Marquis, 2002bIn knowledge compilation,
problem is fed to a planner by describing the actions of driv-a formula is mapped into a logically equivalent formula of
ing the truck from one location to another, picking up anda certain form that makes certain class of operations more
loading the packages, and so on, the planner would tackle trefficient. For example, while testing consistency of a for-
problem in the same way it would tackle a puzzle: by meansnula is exponential in the size of the formula (in the worst
of search This search can often be done quite fast, yet likecase), formulas in d-DNNF can be tested in linear time (d-
in Chess, this does not seem to be the way people solve sueMNNF is a variation of ‘Disjunctive Normal Form’; s¢B®ar-
problems. Psychologists interested in problem solving, havaviche, 2001; 200D. Moreover, for a formuld” in d-DNNF,
focused on puzzles like Towers-of-Hanoi rather than on thet is possible, in linear-time as well (i.e., very efficiently) to
simple problems that people solve every day. The work inrcheck the consistency df + L for any set of literalsL,
planning however reveals that problems that are easy for peg@et a model ofl’ + L, and even count the number of such
ple are not necessarily easy for a general automated problemodels. Of course, compiling a formula into d-DNNF is ex-
solver. It may be argued that people solve these problems hyensive, but this expense is worth if the result of the com-
using domain-specific knowledge, yet this pushes the probpilation is used many times. The idea of theory compila-
lem one level up: how do people recognize when a problention has a number of applications in planning that are begin-
falls in a domain, and how many domains are there? Rening to get explored. For example, Barref Barret, 2004,
cently we have addressed the related question of whether it mompiles planning theories with a fixed planning horizon



into d-DNNF, and shows that from the compiled thedris  ally compute when making plans and selecting actions. Of
possible to obtain plans for arbitrary initial situations and course, there is a lot to be learned, and many other useful and
goals, in linear-time with no searchThis is a very inter- necessary approaches to the problem, yet some of us hope
esting idea that makes technical sense of the intuition thahat a good theory of Al planning and problem solving, as
there are many logically equivalent representations, and ydtiewell, Simon, and others envisioned many years ago, will
some representations that are better adapted for a given tadle an essential part of the global picture.

We are currently exploring a variation of Barret’s idea that

exploits another property of d-DNNF formulds the abil-

ity to efficiently compute not only models @f but alsobest References
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