A Concise Introduction to
Models and Methods for
Automated Planning

Synthesis Lectures on Artificial
Intelligence and Machine
Learning

Editor

Ronald J. Brachman, Yahoo! Labs

William W. Cohen, Carnegie Mellon University
Peter Stone, University of Texas at Austin

A Concise Introduction to Models and Methods for Automated Planning
Hector Geffner and Blai Bonet
2013

Essential Principles for Autonomous Robotics

Henry Hexmoor
2013

Case-Based Reasoning: A Concise Introduction

Beatriz Lépez
2013

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
2012

Planning with Markov Decision Processes: An Al Perspective
Mausam and Andrey Kolobov
2012

Active Learning
Burr Settles
2012

Computational Aspects of Cooperative Game Theory
Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge
2011

Representations and Techniques for 3D Object Recognition and Scene Interpretation

Derek Hoiem and Silvio Savarese
2011

A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice
Francesca Rossi, Kristen Brent Venable, and Toby Walsh
2011

Human Computation
Edith Law and Luis von Ahn
2011

Trading Agents
Michael P. Wellman
2011

Visual Object Recognition
Kristen Grauman and Bastian Leibe
2011

Learning with Support Vector Machines
Colin Campbell and Yiming Ying
2011

Algorithms for Reinforcement Learning

Csaba Szepesviri
2010

Data Integration: The Relational Logic Approach
Michael Genesereth
2010

Markov Logic: An Interface Layer for Artificial Intelligence
Pedro Domingos and Daniel Lowd
2009

Introduction to Semi-Supervised Learning
XiaojinZhu and Andrew B.Goldberg
2009

Action Programming Languages
Michael Thielscher
2008

Representation Discovery using Harmonic Analysis
Sridhar Mahadevan
2008

Essentials of Game Theory: A Concise Multidisciplinary Introduction
Kevin Leyton-Brown and Yoav Shoham
2008

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence
Nikos Vlassis
2007

Intelligent Autonomous Robotics: A Robot Soccer Case Study
Peter Stone

2007

Copyright © 2013 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

A Concise Introduction to Models and Methods for Automated Planning
Hector Geftner and Blai Bonet

www.morganclaypool.com

ISBN: 9781608459698 paperback
ISBN: 9781608459704 ebook

DOI 10.2200/500513ED1V01Y201306 AIM022

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Lecture #22
Series Editors: Ronald J. Brachman, Yahoo! Labs
William W. Cohen, Carnegie Mellon University
Peter Stone, University of Texas at Austin
Series ISSN
Synthesis Lectures on Artificial Intelligence and Machine Learning
Print 1939-4608 Electronic 1939-4616

www.morganclaypool.com

A Concise Introduction to
Models and Methods for
Automated Planning

Hector Geftner
ICREA and Universitat Pompeu Fabra, Barcelona, Spain

Blai Bonet

Universidad Simén Bolivar, Caracas, Venezuela

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING #22

1\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

Planning is the model-based approach to autonomous behavior where the agent behavior is derived
automatically from a model of the actions, sensors, and goals. The main challenges in planning are
computational as all models, whether featuring uncertainty and feedback or not, are intractable in the
worst case when represented in compact form. In this book, we look at a variety of models used in
Al planning, and at the methods that have been developed for solving them. The goal is to provide
a modern and coherent view of planning that is precise, concise, and mostly self-contained, without
being shallow. For this, we make no attempt at covering the whole variety of planning approaches,
ideas, and applications, and focus on the essentials. The target audience of the book are students and
researchers interested in autonomous behavior and planning from an Al, engineering, or cognitive
science perspective.

KEYWORDS

planning, autonomous behavior, model-based control, plan generation and recognition,
MDP and POMDP planning, planning with incomplete information and sensing, action
selection, belief tracking, domain-independent problem solving

Contents

Preface o xi
Planning and Autonomous Behavior. L 1
1.1 Autonomous Behavior: Hardwired, Learned, and Model-based 1
1.2 Planning Models and Languages 3
1.3 Generality, Complexity, and Scalability 6
1.4 Exampleso 8
1.5 Generalized Planning: Plans vs. General Strategies. 11
1.6 History. oo 12
Classical Planning: Full Information and Deterministic Actions. 15
2.1 Classical Planning Model i 15
2.2 Classical Planning as Path Finding o o i i 16
2.3 Search Algorithms: Blind and Heuristiccooiiiiiiiiiiii .. 16
2.4 Online Search: Thinking and Acting Interleaved 20
2.5 Where do Heuristics come from? 23
2.6 Languages for Classical Planning oot 24
2.7 Domain-Independent Heuristics and Relaxations 27
2.8 Heuristic Search Planning i 33
2.9 Decomposition and Goal Serializationuiiiii... 34
2.10 Structure, Width, and Complexityt 34
Classical Planning: Variations and Extensions 37
3.1 Relaxed Plans and Helpful Actions, 37
3.2 Multi-Queue Best-First Search 38
3.3 Implicit Subgoals: Landmarks o i il 38
3.4 State-of-the-Art Classical Planners i .. 39
3.5 Optimal Planning and Admissible Heuristics 41
3.6 Branching Schemes and Problem Spaces L 42
3.7 RegressionPlanning i il 43
3.8 Planning as SAT and Constraint Satisfaction 45
3.9 Partial-Order Causal Link Planning 46
3.10 Cost, Metric, and Temporal Planning o . o ... 47
3.11 Hierarchical Task Networkst i 49

Beyond Classical Planning: Transformations. 51

4.1 Soft Goalsand Rewards i 51
42 Incomplete Informationl 53
43 Planand Goal Recognition.o i, 57
4.4 Finite-State Controllerst 60
4.5 Temporally Extended Goalsttt 62
Planning with Sensing: Logical Models 65
51 Modeland Language i 65
5.2 Solutions and Solution Forms. 67
5.3 Offline Solution Methods 69
5.4 Online Solution Methodso o e 72
5.5 Belief Tracking: Width and Complexity 73
5.6 Strong vs. Strong Cyclic Solutionso i i i i 76
MDP Planning: Stochastic Actions and Full Feedback 79
6.1 Goal, Shortest-Path, and Discounted Models 79
6.2 Dynamic Programming Algorithms i 84
6.3 Heuristic Search Algorithms o i i i i i i, 86
6.4 Online MDP Planning 92
6.5 Reinforcement Learning, Model-based RL, and Planning 95
POMDP Planning: Stochastic Actions and Partial Feedback............... 97
7.1 Goal, Shortest-Path, and Discounted POMDPs 97
7.2 Exact Offline Algorithms i i 99
7.3 Approximate and Online Algorithms 102
7.4 Belief Trackingin POMDPs i i 105
7.5 Other MDP and POMDP Solution Methods. 107
Discussion 109
8.1 Challenges and Open Problems 109
8.2 Planning, Scalability, and Cognition, 111
Bibliography 113

Author’s Biography 129

Preface

Planning is a central area in Artificial Intelligence concerned with the automated generation of behav-
ior for achieving goals. Planning is also one of the oldest areas in Al with the General Problem Solver
being the first automated planner and one of the first Al programs [Newell et al., 1959]. As other ar-
eas in A, planning has changed a great deal in recent years, becoming more rigorous, more empirical,
and more diverse. Planners are currently seen as automated solvers for precise classes of mathematical
models represented in compact form, that range from those where the state of the environment is fully
known and actions have deterministic effects, to those where the state of the environment is partially
observable and actions have stochastic effects. In all cases, the derivation of the agent behavior from the
model is computational intractable, and hence a central challenge in planning is scalability. Planning
methods must exploit the structure of the given problems, and their performance is assessed empiri-
cally, often in the context of planning competitions that in recent years have played an important role
in the area.

In this book, we look at a variety of models used in Al planning and at the methods that have
been developed for solving them. The goal is to provide a modern and coherent view of planning that is
precise, concise, and mostly self-contained, without being shallow. For this, we focus on the essentials
and make no attempt at covering the whole variety of planning approaches, ideas, and applications.
Moreover, our view of the essentials is not neutral, having chosen to emphasize the ideas that we find
most basic in a model-based setting. A more comprehensive treatment of planning, circa 2004, can be
found in the planning textbook by Ghallab et al. [2004]. Planning is also covered at length in the Al
textbook by Russell and Norvig [2009].

'The book is organized into eight chapters. Chapter 1 is about planning as the model-based ap-
proach to autonomous behavior in contrast to appproaches where behaviors are learned, evolved, or
specified by hand. Chapters 2 and 3 are about the most basic model in planning, classical planning,
where a goal must be reached from a fully known initial state by applying actions with deterministic
effects. Classical planners can currently find solutions to problems over huge state spaces, yet many
problems do not comply with these restrictions. The rest of the book addresses such problems in two
ways: one is by automatically translating non-classical problems into classical ones; the other is by
defining native planners for richer models. Chapter 4 focuses thus on reductions for dealing with soft
goals, temporally extended goals, incomplete information, and a slightly different task: goal recogni-
tion. Chapter 5 is about planning with incomplete information and partial observability in a logical
setting where uncertainty is represented by sets of states. Chapters 6 and 7 cover probabilistic planning
where actions have stochastic effects, and the state is either fully or partially observable. In all cases,
we distinguish between offline solution methods that derive the complete control offline, and online
solution methods that derive the control as needed, by interleaving planning and execution, thinking
and doing. Chapter 8 is about open problems.

We are grateful to many colleagues, co-authors, teachers, and students. Among our teachers,
we would like to mention Judea Pearl, who was the Ph.D. advisor of both of us at different times, and
always a role model as a person and as a scientist. Among our students, we thank in particular Hector

xii PREFACE

Palacios, Emil Keyder, Alex Albore, Miquel Ramirez, and Nir Lipovetzky, on whose work we have
drawn for this book. The book is based on tutorials and courses on planning that one of us (Hector)
has been giving over the last few years, more recently at the ICAPS Summer School (Thessaloniki,
2009; Sdo Paulo, 2012; Perugia, 2013), the International Joint Conference on Al (IJCAI, Barcelona,
2011), La Sapienza, Universita di Roma (2010), and the Universitat Pompeu Fabra (2012). We thank
the students for the feedback and our colleagues for the invitations and their hospitality. Thanks also
to Alan Fern who provided useful and encouraging feedback on a first draft of the book.

A book, even if it is a short one, is always a good excuse for remembering the loved ones.

A los chicos, caminante no hay camino, a Lito, la llama eterna, a Marina, mucho mds que dos, a la
familia toda; a la memoria del viejo, la vieja, la bobe, y los comparieros tan queridos — Hector

A ITker y Natalia, por toda su ayuda y amor, a la familia toda, por su apoyo. A la memoria de joszyfna
Gorgal Caamaiio y la iaia Francisca Prat — Blai

Hector Geffner, Barcelona
Blai Bonet, Caracas
June 2013

CHAPTER 1

Planning and Autonomous
Behavior

Planning is the model-based approach to autonomous behavior where the agent selects the action to
do next using a model of how actions and sensors work, what is the current situation, and what is the
goal to be achieved. In this chapter, we contrast programming, learning, and model-based approaches
to autonomous behavior, and present some of the models in planning that will be considered in more
detail in the following chapters. These models are all general in the sense that they are not bound
to specific problems or domains. This generality is intimately tied to the notion of intelligence which
requires the ability to deal with new problems. The price for generality is computational: planning over
these models when represented in compact form is intractable in the worst case. A main challenge in
planning is thus the automated exploitation of problem structure for scaling up to large and meaningful
instances that cannot be handled by brute force methods.

1.1 AUTONOMOUS BEHAVIOR: HARDWIRED, LEARNED,
AND MODEL-BASED

At the center of the problem of intelligent behavior is the problem of selecting the action to do next.
In Artificial Intelligence (Al), three different approaches have been used to address this problem. In
the programming-based approach, the controller that prescribes the action to do next is given by the
programmer, usually in a suitable high-level language. In this approach, the problem is solved by the
programmer in his head, and the solution is expressed as a program or as a collection of rules or
behaviors. In the learning-based approach, the controller is not given by a programmer but is induced
from experience as in reinforcement learning. Finally, in the model-based approach, the controller is not
learned from experience but is derived automatically from a model of the actions, sensors, and goals.
In all these approaches, the controller is the solution to the model.

'The three approaches to the action selection problem are not orthogonal, and exhibit different
virtues and limitations. Programming agents by hand, puts all the burden on the programmer that
cannot anticipate all possible contingencies, and often results in systems that are brittle. Learning
methods have the greatest promise and potential, but their flexibility is often the result of learning a
model. Last, model-based methods require a model of the actions, sensors, and goals, and face the
computational problem of solving the model—a problem that is computationally intractable even for
the simplest models where information is complete and actions are deterministic.

The Wumpus game, shown in Figure 1.1 from the standard Al textbook [Russell and Norvig,
2009], is an example of a simple scenario where an agent must process information arriving from the
sensors to decide what to do at each step. The agent, initially at the lower left corner, must obtain the
gold while avoiding deadly pits and a killer wumpus. The locations of the gold, pits, and wumpus are

2 1. PLANNING AND AUTONOMOUS BEHAVIOR

Stench Breeze
PIT
Breeze Breeze
Stench PIT
iy
=
Stench Breeze

Breeze Breeze
|

Figure 1.1: Autonomous Behavior in the Wumpus World: What to do next?

not known to the agent, but each emits a signal that can be perceived by the agent when in the same
cell (gold) or in a contiguous cell (pits and wumpus). The agent control must specify the action to be
done by the agent as a function of the observations gathered. The three basic approaches for obtaining
such a controller are to write it by hand, to learn it from interactions with a Wumpus simulator, or to
derive it from a model representing the initial situation, the actions, the sensors, and the goals.

While planning is often defined as the branch of Al concerned with the “synthesis of plans of ac-
tion to achieve goals,” planning is best conceived as the model-based approach to action selection—a view
that defines more clearly the role of planning in intelligent autonomous systems. The distinction that
the philosopher Daniel Dennett makes between “Darwinian,” “Skinnerian,” and “Popperian” crea-
tures [Dennett, 1996], mirrors quite closely the distinction between hardwired (programmed) agents,
agents that learn, and agents that use models respectively. The contrast between the first and the lat-
ter corresponds also to the distinction made in Al between reactive and deliberative systems, as long
as deliberation is not reduced to logical reasoning. Indeed, as we will see, the inferences captured
by model-based methods that scale up are not logical but heuristic, and follow from relaxations and
approximations of the problem being solved.

PLANNING IS MODEL-BASED AUTONOMOUS BEHAVIOR

Model-based approaches to the action selection problem are made up of three parts: the models that
express the dynamics, feedback, and goals of the agent; the languages that express these models in
compact form; and the a/gorithms that use the representation of the models for generating the behavior.

A representation of the model for the Wumpus problem, for example, will feature variables for
the locations of the agent, the gold, the wumpus, the pits, and a boolean variable for whether the
agent is alive. The location variables can take 16 different values, corresponding with the cells in the
4 x 4 grid, except for the gold that can also be held by the agent and hence has 17 possible values.!
A state for the problem is a valuation over these seven variables. The number of possible states is thus
16° x 17 x 2, which is slightly more than 35 million. Initially, the agent is alive and knows its location

11f the number of pits and wumpus is not known a priori, an alternative representation would be needed where each cell in the
grid would contain a wumpus, a pit, or neither.

1.2. PLANNING MODELS AND LANGUAGES 3

but not the value of the pit and wumpus variables. The state of the system is thus not fully observable.
The agent gets partial knowledge about the hidden variables through each of its three sensors that relate
the true but hidden state of the world with observable tokens. The agent receives the observation token
“stench” in the states where the wumpus is in one of the (at most) four cells adjacent to the agent, the
token “breeze” in the states where a pit is adjacent to the agent, and the token “bright” when the gold
and the agent are in the same cell. The actions available to the agent are to move to an adjacent cell,
and to pick up the gold if known to be in the same cell. The actions change the state of the system in
the expected way, affecting the location of the agent or the location of the gold. Yet the agent dies if
it enters a cell with a wumpus or a pit, and a dead agent cannot execute any of the actions, and hence
cannot achieve the goal of getting the gold.

In this problem, an intelligent agent should notice first that there is no wumpus or pit in cells
(1,2) or (2, 1) as there is no stench or breeze at the initial agent location (1, 1). It is then safe to move
either up or right. If it moves up, it’ll sense a stench at (1, 2) and conclude that the wumpus is at either
(1,3) or (2,2). Likewise, since it senses no breeze, it can conclude that neither of these cells contains
a pit. The only safe move is then to get back to (1, 1) where it can move safely to (2, 1). From the
sensed breeze, it can conclude that there is a pit at (3, 1) or (2, 2), or one pit at each, and from sensing
no stench, that there is no wumpus at either (3, 1) or (2, 2). At this point, it should conclude that cell
(2,2) is safe as it cannot contain either a wumpus or a pit. It should then move up to (2,2), from
which the process of visiting new cells that are safe is repeated until the gold is found.

Writing a program for solving any instance of the Wumpus domain, for any (solvable) initial
situation and grid size, is interesting enough. Yet, the task in planning is quite different. We want a
program that can take a representation of any problem exhibiting a certain mathematical structure, not
limited to the Wumpus domain, and find a solution to it. A number of planning models will make these
mathematical structures explicit. Other problems that have a number of features in common with the
Wumpus domain include the familiar Battleship game or the popular PC game Minesweeper. These
are all problems where a goal is to be achieved by acting and sensing in a world where the state of the
system, that may change or not, is partially observable.

While a program that has been designed to play the Wumpus can be deemed as intelligent, a
program that can play the Wumpus without having been designed specifically for it will be intelligent
in a much broader sense. The first contains the recipes for playing the Wumpus; the latter contains
“recipes” for playing an infinite collection of domains, known or unknown to the programmer, that
share a general mathematical structure. The formulation of these mathematical structures and the
general “recipes” for solving them is what planning is about.

1.2 PLANNING MODELS AND LANGUAGES

A wide range of models used in planning can be understood as variations of a basic state model featuring:

* a finite and discrete state space S,
* a known initial state sy € S,

* anon-empty set Sg € S of goal states,

* actions A(s) € A applicable in each state s € S,

4 1. PLANNING AND AUTONOMOUS BEHAVIOR

* a deterministic state transition function f(a,s) such that s’ = f(a, s) stands for the state result-
ing of applying action a in s, a € A(s), and

* positive action costs c(a, s).

'This is the model underlying classical planning where it is normally assumed that action costs
c(a,s) do not depend on the state, and hence c(a,s) = c(a). A solution or p/an in this model is
a sequence of applicable actions that map the initial state into a goal state. More precisely, a plan
T =dy,...,dy—1 Must generate a state sequence So, ..., S, such that a; € A(s;), si+1 = f(ai,si),
and s, € Sg, fori = 0,...,n — 1. The cost of the plan is the sum of the action costs c(a;. 5;), and a
plan is optimal if it has minimum cost over all plans.

Classical planners accept a compact description of models of this form in /anguages featuring
variables, where the states are the possible valuations of the variables. A classical plan & = aq, ..., a,
represents an open-loop controller where the action to be done at time step i depends just on the step
index i. The solution of models that accommodate uncertainty and feedback, produce closed-loop con-
trollers where the action to be done at step i depends on the actions and observations collected up to
that point. These models can be obtained by relaxing the assumptions in the model above displayed in
italics.

'The model for partially observable planning, also called planning with sensing or contingent plan-
ning, is a variation of the classical model that features both uncertainty and feedback—namely, uncer-
tainty about the initial and next possible state, and partial information about the current state of the
system. Mathematically such a model can be expressed in terms of the following ingredients:

* a finite and discrete state space S,

* anon-empty set So of possible initial states, So C S,

* anon-empty set Sg € S of goal states,

* aset of actions A(s) € A applicable in each state s € S,

* a non-deterministic state transition function F(a,s) for s € S and a € A(s), where F(a,s) is
non-empty and s” € F(a,s) stands for the possible successor states of state s after action a is
done, a € A(s),

* a set of observation tokens O,

* a sensor model O(s,a) € O, where 0 € O(s,a) means that token 0 may be observed in the
(possibly hidden) state s if @ was the last action done, and

* positive action costs c(a, s).

In the model for the Wumpus problem, the state space S is given by the set of possible valuations
over the problem variables, Sy is the set of states where the agent is initially alive and at location (1, 1),
Sc is the set of states where the agent is holding the gold, and A4 stands for the actions of moving
and picking up the gold, provided that the agent can't leave the grid and can't pick the gold if not
in the same cell. Likewise, the state transitions F(a, s) associated with these actions is deterministic,
meaning that F(a, s) contains a single state s’ so that |F(a,s)| = 1. The same is true for the sensor

1.2. PLANNING MODELS AND LANGUAGES 5

Planning Problem — == Controller <=

Figure 1.2: A planner takes a compact representation of a planning problem over a certain class of models (clas-
sical, conformant, contingent, MDP, POMDP) and automatically produces a controller. For fully and partially
observable models, the controller is closed-loop, meaning that the action selected depends on the observations
gathered. For non-observable models like classical and conformant planning, the controller is open-loop, meaning
that it is a fixed action sequence.

model O(s, a), which does not depend on @ but just on the hidden state s. Namely, O contains nine
observation tokens o, corresponding to the possible combinations of the three booleans stench, breeze,
and bright, so that if s is a state where the agent is next to a pit and a wumpus but not in the same cell
as the gold, then o € O(s, a) iff o represents the combination where stench and breeze are true, and
bright is false. The action costs for the problem, c(a. s), can be all assumed to be 1, and in addition,
no action can be done by the agent when he is not alive.

A partially observable planner is a program that accepts compact descriptions of instances of
the model above, like the one for the Wumpus, and automatically outputs the control (Figure 1.2). As
we will see, planners come in two forms: offfine and on/ine. In the first case, the behavior specifies the
agent response to each possible situation that may result; in the second case, the behavior just specifies
the action to be done in the current situation. These types of control, unlike the control that results
in classical planning, are closed-loop: the actions selected usually depend on the observation tokens
received.

Offline solutions of partially observable problems are not fixed action sequences as in classical
planning, as observations need to be taken into account for selecting actions. Mathematically, thus,
these solutions are functions mapping the stream of past actions and observations into actions, or more
conveniently, functions mapping belief states into actions. The belief state that results after a given
stream of actions and observations represents the set of states that are deemed possible at that point,
and due to the Markovian state-transition dynamics, it summarizes all the information about the past
that is relevant for selecting the action to do next. Moreover, since the initial belief state by is given,
corresponding to the set of possible initial states Sp, a solution function 7, called usually the contro/
policy, does not need to be defined over all possible beliefs, but just over the beliefs that can be produced
from the actions determined by the policy = from the initial belief state by and the observations that
may result. Such partial policies 7 can be represented by a directed graph rooted at by, where nodes
stand for belief states, edges stand for actions @; or observations 0;, and the branches in the graph
from by, stand for the stream of actions and observations ag, 09, d1, 01, . . ., called executions, that are
possible. The policy solves the problem when all these possible executions end up in belief states where
the goal is true.”

'The models above are said to be /ogica/ as they only encode and keep track of what is possible or
not. In probabilistic models, on the other hand, each possibility is weighted by a probability measure.
A probabilistic version of the partially observable model above can be obtained by replacing the set of
possible initial states Sp, the set of possible successor states F(a, s), and the set of possible observation
tokens O(s, a), by probability distributions: a prior P(s) on the states s € Sy that are initially possible,

2We will make this all formal and precise in Chapter 5.

6 1. PLANNING AND AUTONOMOUS BEHAVIOR

transition probabilities P,(s|s) for encoding the likelihood that s’ is the state that follows s after a,
and observation probabilities Pg(ols) for encoding the likelihood that o is the token that results in the
state s when a is the last action done.

'The model that results from changing the sezs So, F(a. s), and O(s, a) in the partially observable
model, by the probability distributions P (s), Pa(s’|s), and P, (0ls), is known as a Partially Observable
Markov Decision Process or POMDP [Kaelbling et al., 1998]. The advantages of representing uncer-
tainty by probabilities rather than sets is that one can then talk about the expected cost of a solution
as opposed to the cost of the solution in the worst case. Indeed, there are many meaningful problems
that have infinite cost in the worst case but perfectly well-defined expected costs. These include, for
example, the problem of preparing an omelette with an infinite collection of eggs that may be good
or bad with non-zero probabilities, but that can be picked up and sensed one at a time. Indeed, while
the scope of probabilistic models is larger than the scope of logical models, we will consider both, as
the latter are simpler, and the computational ideas are not all that different.

A fully observable model is a partially observable model where the state of the system is fully
observable, i.e., where O = § and O(s, a) = {s}. In the logical setting such models are known as Fully
Observable Non-Deterministic models, abbreviated FOND. In the probabilistic setting, they are known
as Fully Observable Markov Decision Processes or MDPs [Bertsekas, 1995].

Finally, an unobservable model is a partially observable model where no relevant information
about the state of the system is available. This can be expressed through a sensor model O containing
a single dummy token o that is “observed” in all states, i.e., O(s,a) = O(s’,a) = {o} for all 5, &/,
and a. In planning, such models are known as conformant, and they are defined exactly like partially
observable problems but with 7o sensor model. Since there are no (true) observations, the solution
form of conformant planning problems is like the solution form of classical planning problems: a fixed
action sequence. The difference between classical and conformant plans, however, is that the former
must achieve the goal for the given initial state and unique state-transitions, while the latter must
achieve the goal in spite of the uncertainty in the initial situation and dynamics, for any possible initial
state and any state transition that is possible. As we will see, conformant problems make up an interesting
stepping stone in the way from classical to partially observable planning.

In the book, we will consider each of these models in turn, some useful special cases, and some
variations. This variety of models is the result of several orthogonal dimensions: uncertainty in the
initial system state (fully known or not), uncertainty in the system dynamics (deterministic or not),
the type of feedback (full, partial or no state feedback), and whether uncertainty is represented by sets
of states or probability distributions.

1.3 GENERALITY, COMPLEXITY, AND SCALABILITY

Classical planning, the simplest form of planning where actions have deterministic effects and the
initial state is fully known, can be easily cast as a path-finding problem over a directed graph where
the nodes are the states, the initial node and target nodes are the initial and goal states, and a directed
edge between two nodes denotes the existence of an action that maps one state into the other. Classical
planning problems can thus be solved in theory by standard path-finding algorithms such as Dijkstra’s
that run in time that is polynomial in the number of nodes in the graph [Cormen et al., 2009, Dijkstra,
1959]. Yet in planning, this is not good enough as the nodes in the graph stand for the problem states,
whose number is exponential in the number of problem variables. If these variables have at least two

1.3. GENERALITY, COMPLEXITY, AND SCALABILITY 7
Init

A

Ic] [B] C
B|C B|C]| [AlC ’A|B Alc AlB
NE [A[B]C]
Goal

Figure 1.3: The graph corresponding to a simple planning problem involving three blocks with initial and goal
situations as shown. The actions allow to move a clear block on top of another clear block or to the table. The size
of the complete graph for this domain is exponential in the number of blocks. A plan for the problem is shown

by the path in red.

possible values, the number of nodes in the graph to search can be in the order of 2", where n is the
number of variables. In particular, if the problem involves 30 variables, this means 1,073,741, 824
nodes, and if the problem involves 100 variables, it means more than 10° nodes. In order to get
a concrete idea of what exponential growth means, if it takes one second to generate 107 nodes (a
realistic estimate given current technology), it would take more than 10%* seconds to generate 103°
nodes. This is however almost one million times the estimated age of the universe.’®

A more vivid illustration of the complexity inherent to the planning problem can be obtained
by considering a well known domain in Al: the Blocks World. Figure 1.3 shows an instance of this
domain where blocks A, B, and C, initially arranged so that A is on B, and B and C are on the table,
must be rearranged so that B is on C, and C is on A. The actions allow to move a clear block (a block
with no block on top) on top of another clear block or on the table. The problem can be easily expressed
as a classical planning problem where the variables are the block locations: blocks can be on the table
or on top of another block. The figure shows the graph associated to the problem whose solution is a
path connecting the node representing the initial situation with a node representing a goal situation.
'The number of states in a Blocks World problem with n blocks is exponential in n, as the states include
all the n! possible towers of n blocks plus additional combinations of lower towers. Thus, a planner

3The age of the universe is estimated at 13.7 x 10 years approximately. Visiting 2!°0 nodes at 107 nodes a second would
take in the order of 1012 years, as 2190/(107 * 60 * 60 * 24 * 365) = 4.01969368 x 10'°.

8 1. PLANNING AND AUTONOMOUS BEHAVIOR

able to solve arbitrary Blocks World instances should be able to search for paths over huge graphs. This
is a crisp computational challenge that is very different from writing a domain-specific Blocks World
solver—namely, a program for solving any instance of this specific domain. Such a program could
follow a domain-specific strategy, like placing all misplaced blocks on the table first, in order, from top
to bottom, then moving these blocks to their destination in order again, this time, from the bottom
up. This program will solve any instance of the Blocks World but will be completely useless in other
domains. The challenge in planning is to achieve both generality and scalability. That is, a classical
planner must accept a description of any problem in terms of a set of variables whose initial values are
known, a set of actions that change the values of these variables deterministically, and a set of goals
defined over these variables. The planner is domain-general or domain-independent in the sense that
it does not know what the variables, actions, and domain stand for, and for any such description it
must decide effectively which actions to do in order to achieve the goals.

For classical planning, as for the other planning models that we will consider, the general prob-
lem of coming up with a plan is NP-hard [Bylander, 1994, Littman et al., 1998]. In Computer Science,
an NP-hard problem (non-deterministic polynomial-time hard) is a problem that is at least as hard
as any NP-complete problem; these are problems that can be solved in polynomial time by a non-
deterministic Turing Machine but which are widely believed not to admit polynomial-time solutions
on deterministic machines [Sipser, 2006]. The complexity of planning and related models has been
used as evidence for contesting the possibility of general planning and reasoning abilities in humans
or machines [Tooby and Cosmides, 1992]. The complexity of planning, however, just implies that no
planner can efliciently solve every problem from every domain, not that a planner cannot solve an
infinite collection of problems from seen and unseen domains, and hence be useful to an acting agent.
This is indeed the way modern Al planners are empirically evaluated and ranked in the Al planning
competitions, where they are tried over domains that the planners” authors have never seen. Thus, far
from representing an insurmountable obstacle, the twin requirements of generality and scalability have
been addressed head on in Al planning research, and have resulted in simple but powerful computa-
tional principles that make domain-general planning feasible. The computational challenge aimed at
achieving both scalability and generality over a broad class of intractable models, has actually come
to characterize a lot of the research work in Al, that has increasingly focused on the development of
effective algorithms or so/vers for a wide range of tasks and models (Figure 1.4); tasks and models that
include SAT and SAT-variants like Weighted-Max SAT and Weighted Model Counting, Bayesian
Networks, Constraint Satisfaction, Answer Set Programming, General Game Playing, and Classi-
cal, MDP, and POMDP Planning. This is all work driven by theory and experiments, with regularly
held competitions used to provide focus, to assess progress, and to sort out the ideas that work best
empirically [Gefner, 2013a].

1.4 EXAMPLES

We consider next a simple navigation scenario to illustrate how different types of planning problems
call for different planning models and different solution forms. The general scenario is shown in Fig-
ure 1.5 where the agent marked as A has to reach the goal marked as G. The four actions available
let the agent move one unit in each one of the four cardinal directions, as long as there is no wall.
Actions that lead the agent to a wall have no effect. The question is how should the agent select the
actions for achieving the goal with certainty under different knowledge and sensing conditions. In all

