
Width-based Algorithms for Classical Planning: New
Results

Nir Lipovetzky1 and Hector Geffner2

Abstract. We have recently shown that classical planning problems
can be characterized in terms of a width measure that is bounded
and small for most planning benchmark domains when goals are re-
stricted to single atoms. Two simple algorithms have been devised for
exploiting this structure: Iterated Width (IW) for achieving atomic
goals, that runs in time exponential in the problem width by per-
forming a sequence of pruned breadth first searches, and Serialized
IW (SIW) that uses IW in a greedy search for achieving conjunctive
goals one goal at a time. While SIW does not use heuristic estimators
of any sort, it manages to solve more problems than a Greedy BFS
using a heuristic like hadd. Yet, it does not approach the performance
of more recent planners like LAMA. In this short paper, we intro-
duce two simple extension to IW and SIW that narrow the perfor-
mance gap with state-of-the-art planners. The first involves changing
the greedy search for achieving the goals one at a time, by a depth-
first search that is able to backtrack. The second involves computing
a relaxed plan once before going to the next subgoal for making the
pruning in the breadth-first procedure less agressive, while keeping
IW exponential in the width parameter. The empirical results are in-
teresting as they follow from ideas that are very different from those
used in current planners.

1 INTRODUCTION

The main approach for domain independent planning is based on
heuristic search with heuristics derived automatically from problems
[1]. To this, recent planners add other ideas like helpful actions,
landmarks, and multiqueue best-first search for combining different
heuristics [3, 2, 6]. From a different angle, we have recently shown
that most of the benchmark domains are easy when the goals con-
tain single atoms, and that otherwise, goals can be easily serialized
[5]. More precisely, we showed that the former problems have a low
width, and developed an algorithm, Iterative Width (IW) that runs in
time that is exponential in the problem width by performing a se-
quence of pruned breadth first searches. This algorithm is used in the
context of another algorithm, Serialized IW (SIW), that achieves con-
junctive goals by using IW greedily for achieving one goal at a time.
Surprisingly, the blind-search algorithm SIW which has no heuristic
guidance of any sort, performs better than a greedy best-first search
guided by delete-relaxation heuristics. SIW, however, does not per-
form as well as the most recent planners that incorporate other ideas
as well.

In this short paper, we introduce two simple extensions to IW and

1 The University of Melbourne, Melbourne, Australia, email:
first.lastname@unimelb.edu.au

2 ICREA & Universitat Pompeu Fabra, Barcelona, Spain, email:
first.lastname@upf.edu

SIW that narrow the performance gap between width-based algo-
rithms and state-of-the-art planners.

2 PRELIMINARIES

We assume a STRIPS problem P = 〈F, I,O,G〉, where F is the set
of atoms, I is the set of atoms characterizing the initial state, O is the
set of actions, and G is the set of goal atoms.

The algorithm Iterated Width or IW consists of a sequence of calls
IW(i) for i = 0, 1, . . . , |F | until the problem is solved. Each iteration
IW(i) is a breadth-first search that prunes states that do not pass a
novelty test; namely, for a state s in IW(i) not to be pruned there
must be a tuple t of at most i atoms such that s is the first state
generated in the search that makes t true. The time complexities of
IW(i) and IW are O(ni) and O(nw) respectively where n is |F | and
w is the problem width. The width of existing domains is low for
atomic goals, and indeed, 89% of the benchmarks can be solved by
IW(2) when the goal is set to any of the atoms in the goal [5]. The
width of the benchmark domains with conjunctive goals, however, is
not low in general, yet such problems can be serialized.

The algorithm Serialized Iterative width or SIW uses IW for seri-
alizing a problem into subproblems and for solving the subproblems.
Basically, SIW uses IW to achieve one atomic goal at a time, greed-
ily, until all atomic goals are achieved jointly. In between, atomic
goals may be undone, but after each invocation of IW, each of the pre-
viously achieved goals must hold. SIW will thus never call IW more
than |G| times where |G| is the number of atomic goals. SIW com-
pares surprisingly well to a baseline heuristic search planner based
on greedy best-first search and the hadd heuristic [1], but doesn’t ap-
proach the performance of the most recent planners. For this, a new
planner BFS(f) was introduced that integrates the novelty measure
with helpful-actions, landmarks and delete-relaxation heuristics [5].
Here we aim to achieve similar results but with different and simpler
ideas.

3 EXTENSIONS: IW+ AND DFS(i)
The first extension, from IW to IW+ involves a slight change in the
pruning criterion in the breadth-first search IW(i) procedure. When
the new procedure IW+(i) is called from a state s, a relaxed plan
from s is computed, so that the states s′ generated by IW+(i) keep
a count of the number of atoms in the relaxed plan from s that have
been achieved in the way to s′. These atoms are the ones made true
by actions in the relaxed plan that do not hold in s. We say that state
s′ makes the extended tuple (t,m) true if s′ makes the tuple t true
and m is the the number of atoms in the relaxed plan from s that
are made true by the sequence of actions leading to s′ in IW+. For
the state s′ in the breadth-first search underlying IW+(i) not to be

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-1059

1059

pruned, the new condition is that there must be a tuple t with at most
i atoms, such that s′ is the first state in the search that makes the
extended tuple (t,m) true. An interesting property and motivation
of the IW+ algorithms is that all delete-free problems will be solved
efficiently, as they will be solved by IW+(1). The same is not true of
IW(1).

While the algorithm IW calls the algorithm IW(i) sequentially,
IW+ calls IW+(i) instead. The complexity of IW+ is O(nw+1)
where w is the problem width, as in the worst case, the number of
atoms in a relaxed plan can be equal to the number of fluents.

The second extension is a depth-first search algorithm that ex-
tends the serialization of conjunctive goals made greedily by SIW
with the ability to backtrack. For this, the depth-first search algorithm
DFS(i) uses the positive integer parameter i to indicate that invoca-
tions of the IW+ procedure should involve a sequence of IW+(0),
IW+(1), . . . , IW+(i) calls that should fail and lead to a backtrack
when IW+(i) fails to achieve one more atomic goal. SIW, on the
other hand, will keep trying IW(i+1), IW(i+2), and so on, and will
never backtrack.

DFS(i) can be understood as normal depth-first search where the
actions in each node are sets of “macro actions” IW+(1), . . . , IW+(i)
performed in order, such the children resulting from the “macro ac-
tions” in IW+(k) applied in a state s are the states s′ reachable by
IW+(k) from s that achieve all the goal atoms in s plus one.

Notice that while DFS(i) computes a relaxed plan once for each
IW+ call, DFS(i) does not use the relaxed plan for computing heuris-
tic estimates.

4 EXPERIMENTS

The algorithm SIW+ is SIW with the IW procedure replaced by IW+.
Thus, SIW+ incorporates the first extension only, while DFS(i) in-
corporates both extensions. In order to evaluate their performance,
we include results for a baseline heuristic search planner made of a
greedy best-first search (GBFS) driven by hadd [1], and state-of-the-
art planners such as FF [3], PROBE [4], LAMA-11 [6] and BFS(f).
All planners are run over the set of benchmarks from the last Inter-
national Planning Competition on a 2.40GHz Intel Processor, with
processing time or memory out of 30min and 2GB.

Table 1. Number of instances solved. Bold shows best performer.

GBFS SIW SIW+ FF DFS+ BFS(f) PROBE LAMA’11
Barman 0 0 17 0 20 20 20 20
Elevators 2 17 19 20 20 17 20 20
Floortile 3 0 0 2 0 6 5 5
NoMystery 6 0 0 5 4 15 6 10
Openstacks 14 5 20 20 20 16 14 20
Parcprinter 19 20 20 20 20 17 13 19
Parking 5 20 20 19 20 20 19 19
Pegsol 20 0 1 20 19 20 20 20
Scanalyzer 18 16 16 17 18 17 18 18
Sokoban 15 0 0 15 1 13 15 17
Tidybot 17 5 17 19 19 18 19 15
Transport 4 13 14 8 16 16 16 17
VisitAll 3 20 20 3 20 20 18 20
Woodworking 2 19 20 19 20 20 20 19
All 128 135 184 187 217 235 223 239

Interestingly, the results in Table 1 and 2 highlight the big gap
in performance reached by just considering the first extension IW+

in the greedy serialization SIW+, reaching indeed the performance
of FF that uses helpful actions in addition to heuristics and was the
state-of-the-art planner until few years ago. When the second exten-
sion is considered, the performance compares well with current state-
of-the-art planners that also incorporate multiple heuristics and land-
marks. Indeed, as shown in Table 2, even by having a smaller cover-

age, DFS(i) has the highest IPC score3 in terms of speed and doesn’t
perform bad at all in terms of the quality IPC score. DFS(i) back-
tracks mainly in Pegsol, NoMystery, and Sokoban: 31000, 21217,
and 137 times on average.

Table 2. Time(T), and plan length (Q) of first solution as IPC scores. Bold
shows best performer.

GBFS SIW SIW+ FF DFS+ BFS(f) PROBE LAMA’11
Barman T 0 0 3.59 0 4.52 15.51 16.56 10.18

Q 0 0 15.3 0 17.95 19.19 17.39 15.19
Elevators T 0.01 1.23 11.33 11.78 15.62 2.41 6.16 16.33

Q 1.14 15.24 10.83 19.44 10.93 12 14.62 18.24
Floortile T 0.06 0 0 0.59 0 3.26 2.2 2.8

Q 2.96 0 0 1.83 0 5.75 4.61 4.67
NoMystery T 1.59 0 0 5 0.08 12.04 2.52 9.48

Q 5.74 0 0 5 3.77 14.57 5.72 9.72
Openstacks T 0.64 1.73 15.72 11.62 19.88 1.99 1.64 13.94

Q 13.4 5 19.83 18.81 19.83 15.38 13.79 19.24
Parcprinter T 16.06 20 20 20 20 7.85 11.74 19

Q 18.9 19.01 19.01 19.79 19.01 16.01 12.88 18.31
Parking T 0.07 19.19 18.82 2.57 18.5 2.35 2.15 5.06

Q 2.53 19.53 19.36 10.94 19.42 10.72 6.27 10.68
Pegsol T 19.01 0 1 20 7.3 19.5 16.86 19.23

Q 17.89 0 1 17.93 17.1 18.99 18 17.92
Scanalyzer T 5.15 15.24 14.32 13.27 14.97 9.91 13.75 10.71

Q 14.81 13.48 13.4 15.82 14.88 14.04 16.56 14.86
Sokoban T 2.2 0 0 9.47 0.3 6.68 11.22 10.08

Q 9.66 0 0 13.83 0.93 10.58 10.29 13.23
Tidybot T 1.66 3.04 6.88 14.41 8.44 2.32 8.02 2.81

Q 13.04 4.86 14.77 14.43 15.81 15.31 16.46 12.54
Transport T 0.09 3.11 13.67 0.18 15.17 4.91 5.84 9.23

Q 2.66 11.79 12.27 6.04 13.38 14 11.14 15.82

VisitAll T 0.14 17.37 12.81 1.88 12.96 20 5.68 6.46
Q 0.25 19.5 19.5 1.58 19.5 20 14.39 14.69

Woodworking T 1.01 7.92 6.05 19 7.18 2.16 2.74 3.44
Q 2 17.47 17.88 16.97 17.81 19.86 20 15.51

All T 47.69 88.84 124.2 129.78 144.92 110.89 107.07 139.96
Q 104.98 125.88 163.15 162.41 190.91 206.49 182.12 200.62

5 CONCLUSIONS

We have shown how ideas based on width considerations result in
a simple planner whose performance approaches the performance of
the best current planners. The ideas are very different than those that
can be found in current planners that usually rely on heuristic es-
timators, helpful actions, and landmarks, suggesting that they may
deserve further consideration.

ACKNOWLEDGEMENTS

This research was co-funded by ARC linkage grant LP11010015,
TIN2009-10232, MICINN, Spain, and EC-7PM-SpaceBook.

REFERENCES

[1] Blai Bonet and Hector Geffner, ‘Planning as heuristic search’, Artificial
Intelligence, 129, 5–33, (2001).

[2] Malte Helmert, ‘The Fast Downward planning system’, Journal of Arti-
ficial Intelligence Research, 26, 191–246, (2006).

[3] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast plan
generation through heuristic search’, Journal of Artificial Intelligence
Research, 14, 253–302, (2001).

[4] Nir Lipovetzky and Héctor Geffner, ‘Searching for plans with carefully
designed probes’, in Proceedings of the Twenty-First International Con-
ference on Automated Planning and Scheduling (ICAPS 2011), pp. 154–
161, (2011).

[5] Nir Lipovetzky and Héctor Geffner, ‘Width and serialization of classical
planning problems’, in Proceedings of the Twentieth European Confer-
ence on Artificial Intelligence (ECAI 2012), pp. 540–545, (2012).

[6] Silvia Richter and Matthias Westphal, ‘The LAMA planner: Guiding
cost-based anytime planning with landmarks’, Journal of Artificial In-
telligence Research, 39, 122–177, (2010).

3 Score for each planner is the sum of T/T ∗ (Q/Q∗), where T (Q) is solu-
tion time (length) divided by the fastest (shortest) solution found T ∗ (Q∗).

N. Lipovetzky and H. Geffner / Width-Based Algorithms for Classical Planning: New Results1060

