
Inference and Decomposition in Planning
Using Causal Consistent Chains

Nir Lipovetzky
Departament of Technology (DTIC)

Universitat Pompeu Fabra
08018 Barcelona, SPAIN

nir.lipovetzky@upf.edu

Hector Geffner
Departament of Technology (DTIC)
ICREA & Universitat Pompeu Fabra

08018 Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

Current state-of-the-art planners solve problems, easy and
hard alike, by search, expanding hundreds or thousands of
nodes. Yet, given the ability of people to solve easy prob-
lems and to explain their solutions, it seems that an essen-
tial inferential component may be missing. The reasons ex-
pressed by people for selecting actions appear to be related
to causal chains: sequences of causal links ai → pi+1,
i = 0, . . . , n − 1, such that a0 is applicable in the current
state, pi is a precondition of action ai, and pn is a goal. Some
of these causal chains or paths appear to be good, some bad,
others appear to be impossible. In this work, we focus on such
paths and develop three techniques for performing inference
over them from which a path-based planner is obtained. We
define the conditions under which a path is consistent, pro-
vide an heuristic estimate of the cost of achieving the goal
along a consistent path, and introduce a planning algorithm
that uses paths as decomposition backbones. The resulting
planner, called C3, is not complete and does not perform as
well as recent planners that carry extensive but extremely ef-
ficient searches such as LAMA, but is competitive with FF
and in particular, with FF running in EHC mode which yields
very focused but incomplete searches, and thus provides, a
more apt comparison. Moreover, many domains are solved
backtrack-free, with no search at all, suggesting that planning
with paths may be a meaningful idea both cognitively and
computationally.

Introduction
Consider a simple instance of Blocks-World where n blocks,
1, . . . , n on the table must be arranged into a single tower
with block i on top of block i + 1, i = 1, . . . , n − 1.
In the initial state, there is a single best action, namely,
picking up block n − 1. Yet there are n − 1 actions
applicable in this state, and they all result in states with
the same heuristic value according to either of the hadd,
hmax, hFF, or h+ heuristics (Bonet and Geffner 2001;
Hoffmann and Nebel 2001). In problems such as this, two
approaches have been pursued in the context of heuristic
search planners that are not exclusive of each other. One is
the formulation of heuristics that take deletes into account;
the other, is the use of implementations and search algo-
rithms that allow more states to be evaluated before com-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mitting to the first action in a plan. The Fast Downward
planner, for example, adopts both strategies, managing to
integrate the notion of ’helpful actions’ developed in FF in
a complete search strategy (Helmert 2006). More recently,
LAMA has built on this strategy, while switching back to
delete-relaxation heuristics (Richter and Westphal 2008).

There is no question that more extensive searches and
better heuristics are necessary for solving hard combinato-
rial problems, yet problems such as the one above, called
Tower-n in (Vidal and Geffner 2005), are not hard, and the
same can be said about many of the benchmarks in plan-
ning. This does not mean that ’easy’ problems are easy for
a domain-independent planner; the challenge is to recognize
and exploit the structure that makes those problems easy by
domain-independent methods, something that does not ap-
pear to be simple at all. Yet people appear to do that, while
being able to explain their solutions, even if they are not
particularly good at solving hard problems. In a problem
such as Tower-n, they can immediately see that picking up a
block other than n−1 is a wasted move. The reason for this,
indeed, is not heuristic but structural: picking up a block m
different than n-1 appears relevant to the goal through the
’path’
pick(m)→ hold(m)→ stack(m,m+1)→ on(m,m+1)
yet it can be formally proved that if this path is understood as
a sequence of causal links (Tate 1977), no plan for achieving
the goal can comply with it.

In this paper, we take the view that paths made up of se-
quences of causal links that reach a goal provide the reasons
for selecting actions. However, some of these paths appear
to be good, some bad, and still others, as illlustrated in the
example above, are impossible. In this work, we focus on
the study of such paths and develop three techniques for
performing inference over them that result in a path-based
planner called C3 for ’causal consistent chains’. We define
the conditions under which a path is consistent, provide an
heuristic estimate of the cost of achieving the goal along
a consistent path, and introduce a planning algorithm that
uses paths as decomposition backbones. The resulting plan-
ner is not complete and does not perform as well as recent
planners that carry extensive but efficient searches such as
LAMA, but is competitive with FF and in particular, with FF
running in EHC mode which yields very focused but incom-
plete searches, and thus provides, a more apt comparison.

Moreover, many domains are solved backtrack-free, with no
search at all, suggesting that planning with paths may be a
meaningful idea both cognitively and computationally.

The paper is organized as follows. We provide first a
background (Section 2) and then consider the consistency
and minimality of paths (Sections 3 and 4), a planning al-
gorithm that uses paths as decomposition backbones (Sec-
tion 5), and a heuristic used to rank paths in the decompo-
sition (Section 6). We then analyze the behavior of the C3
planner on two concrete examples (Section 7), and compare
C3 experimentally with FF and LAMA over many IPC do-
mains (Section 8).

Background
We consider Strips planning problems P = 〈F, I,O,G〉
where F is a set of fluents or atoms, I ⊆ F and G ⊆ F
are the initial and goal situations, and O is a set of (ground)
actions or operators a, each with an Add, Delete, and Pre-
condition list Add(a), Del(a), Pre(a). For convenience,
and without loss of generality, we assume as in partial order
planning that O contains an End action whose precondi-
tions are the real goals of the problem and whose only effect
is a dummy goal g so that G = {g}.

Most forward-state planners use heuristic functions h(s)
for guiding the search in the graph. The planner HSP uses
the additive heuristic h(s) = h(g), where h(p) = 0 for
atoms p, if p ∈ s, and else is h(p) = mina∈O(p)[1 + h(a)],
where O(p) is the set of actions in O that add p and h(a) =∑

q∈Pre(a) h(q) (Bonet and Geffner 2001). The max heuris-
tic hmax is defined in a similar way but with the addition
replaced by maximization. The max heuristic is equivalent
to the heuristic that can be obtained from a relaxed planning
graph (Hoffmann and Nebel 2001) by assigning to each flu-
ent p or action a the index of the lowest layer where it ap-
pears, starting from layer 0.

The best supporters of a fluent p 6∈ s in either heuristic,
are the actions a ∈ O(p) with smallest h. The heuristic
hFF(s) used in FF is given by the size |πFF(s)| of the re-
laxed plan computed by FF in s. This plan πFF(s) can be
defined recursively in terms of the best hmax supporters, by
collecting backwards from the goal, a best supporter a for
each goal, and recursively, a best supporter for each precon-
dition of a that is not in s (Keyder and Geffner 2008). The
definition in (Hoffmann and Nebel 2001) uses instead a re-
laxed planning graph and NO-OPs, along with a preference
for NO-OPs supporters, which amounts to a preference for
best (hmax) supports.

In addition to the heuristic, FF introduced two ideas that
account to a large extent for its remarkable speed: help-
ful action pruning (HA) and enforced hill-climbing search
(EHC). Helpful action pruning is a criterion for eliminating
from consideration a number of actions a in a state s with-
out having to evaluate the heuristic for the resulting states
sa. The EHC search looks for a state s′ that improves the
heuristic of the current state s by carrying a breadth-first
search from s, while pruning actions that are not helpful.

The notion of paths considered in this paper builds on the
notion of causal links developed in the context of partial or-

der planning (Tate 1977; McAllester and Rosenblitt 1991).
A causal link a, p, b is a triple that states that action a pro-
vides the support for precondition p of b. This is taken as a
constraint that implies that a must precede b in the plan and
no other action that adds or deletes p can appear between
them. We will see below that by exploiting this semantics
of causal links, we will be able to propagate information
along sequences of causal links a0, p1, a1, p2, a2, . . . , pn, an

and show that some of such sequences are impossible. For
this, we will make use of the notion of (structural) mutexes:
pairs of atoms that cannot be both true in any reachable
state and which can be computed in polynomial time (Blum
and Furst 1995). More precisely, pairs 〈p, q〉 are mutex if
h2(〈p, q〉) =∞ where h2 is a heuristic closely related to the
heuristic underlying Graphplan, introduced in (Haslum and
Geffner 2000). Provided with the mutexes, it is simple to
show that a causal link a, p, b must rule out from the interval
between a and b not only the actions that delete p but also
the actions that do not add p and have a precondition q that
is mutex with p. We say that actions e-delete p, either be-
cause they delete p, or because they presume that p is false
and do not make it true (Nguyen and Kambhampati 2001;
Vidal and Geffner 2005).

Paths: Consistency
We assume that the reasons for performing an action take
the form of a sequence of causal links, that we call causal
chains. When these causal chains reach the goal, we call
them paths.

Definition 1 A sequence a0, p1, a1, p2, a2, . . ., pn, an of
actions ai and fluents pi forms a causal chain if pi+1 is a
precondition of action ai+1 and a positive effect (add) of
action ai for i = 0, . . . , n.

Definition 2 A path is a causal chain that ends with the
End action.

Paths are not plans but rather plan skeletons, where ac-
tions may have to be filled in for achieving all the precondi-
tions of the actions in the path.

A path starting with an action a that is applicable in the
state s is said to be applicable in s. Such a path can be
taken to suggest that a may be relevant for achieving the
goal in s (Nebel, Dimopoulos, and Koehler 1997). Still, as
argued above, it can be shown that certain paths, understood
as sequences of causal links, cannot occur in any plan. We
have seen an example in Tower-n, where blocks 1, . . . , n
intially on the table are to be arranged so that i is on top of
i+ 1 for i = 1, . . . , n− 1. For this problem, the paths

t : pick(k), hold(k), stack(k, k + 1), on(k, k + 1), End

for any k 6= n− 1 can be shown not to be true in any plan.1
Indeed, if there is any plan where the path holds, one can

1A causal link a, p, b is true in a sequential plan when a pre-
cedes b in the plan, a adds p, p is a precondition of b, and no action
between a and b either adds or deletes p. If there are many occur-
rences of a and b in the plan, then the CL is true in the plan when
is true for one pair of such occurrences. It is direct to extend this to
sequences of causal links being true in a plan.

show that ontable(k+1) will be true whenEnd is executed,
but this atom is mutex with the precondition on(k+1, k+2)
of End because ontable(k+ 1) is initially true and remains
true when hold(k) is preserved (first causal link), and when
on(k, k + 1) is preserved (second causal link). This sort of
inference, that captures side-effects along chains is formal-
ized below.

We can characterize the sets of fluents that must be true
before and after applying each action ai in a causal chain t,
for any plan complying with the chain, in terms of the sets
F−t (ai) and F+

t (ai), defined as follows:

Definition 3 The sets F−t (ai) and F+
t (ai), for a causal

chain t : a0, p1, a1, . . ., pn, an applicable in a state s,
0 ≤ i ≤ n, are

• F−t (a0) = s
• F+

t (ai) = Update(ai;F−t (ai))
• F−t (ai+1) = Persist(pi+1;F+

t (ai))
where Update(a; s) is the set of facts

(s ∪ Pre(a) ∪Add(a)) \Del(a)

and Persist(p; s) is the maximal subset Q ⊆ s, such that
for every q ∈ Q, all the actions a that delete q, either add
or e-delete p, or have a precondition that is mutex with a
q′ ∈ Q.

This definition does not provide a complete characterization
but can be computed efficiently in low polynomial time. The
only subtlety is in the computation of Persists(p; s) that
must be done iteratively, in no more iterations than fluents
in the problem, and usually much fewer.

As an illustration, the forward labels F−t and F+
t that are

obtained for the path t above, for any block k 6= n− 1 are
• F−t (a0) = {ontable(j), clear(j), armfree}
• F+

t (a0) = {ontable(i), clear(i), hold(k)}
• F−t (a1) = {ontable(i), hold(k)}
• F+

t (a1) = {ontable(i), on(k, k+1), clear(k), armfree}
• F−t (a2) = {on(k, k+1), ontable(k +1)}
for each of the 3 actions ai in t (pick, stack, End), and i and
j ranging over [1..n] with i 6= k. Thus, as mentioned above,
ontable(k + 1) gets propagated until the action End, and
since this atom is mutex with the precondition on(k+1, k+
2) ofEnd (one of the goals), it suffices to prove that the path
is not feasible in any plan.

The definition above captures side effects by reasoning
forward along the direction of a causal chain. It is also pos-
sible to infer necessary side effects by reasoning backwards.
The definition of the backward labels B+

t (ai) and B−t (ai)
proceeds in an analogous way:

Definition 4 The sets B−t (ai) and B+
t (ai), for a causal

chain t : ao, p1, a1, . . ., pn, an 0 ≤ i < n, are

• B−t (an) = Pre(a)
• B+

t (ai) = PersistB(pi+1;B−t (ai + 1))
• B−t (ai) = UpdateB(ai;B+

t (ai))
where UpdateB(a; s) is the set of facts

(s ∪ Pre(a)) \Add(a))

and PersistB(p; s) is the maximal subset Q ⊆ s, such that
for every q ∈ Q, all the actions a that add q, either add or
e-delete p.

Indeed, in the same way that the atom ontable(k + 1),
for k 6= n, can be propagated forward along the path t into
the set F−t (End), the atom on(k + 1, k + 2) can be prop-
agated backwards from Pre(End) into B−t (pick(k)). This
is because the only action that adds on(k+1, k+2), namely
stack(k+1, k+2), e-deletes on(k, k+1), as its precondition
clear(k+ 1) is mutex with this atom, while it also e-deletes
hold(k). The atom on(k + 1, k + 2) in B−t (pick(k)) thus
means that in any plan complying with the chain t, the atom
on(k + 1, k + 2) must be true just before the first action of
the chain; an inference that can be understood as a form of
goal ordering along a chain (Koehler and Hoffmann 2000).
We will indeed refer to the fluents p in a label B−t (ai), such
that p 6∈ Pre(ai), as the implicit preconditions of the action
ai along the chain t. These conditions are needed at the time
a is executed, not by a, but by the actions that follow a along
the path.

Forward and backward inference along a chain can be
combined to interact synergistically. For example, knowing
that a certain fluent p must persist backwards along an inter-
val, can help to establish that a certain other fluent q must
persist forward along the same interval, if the actions that
delete q, e-delete p. This combination of forward and back-
ward inference yields fixed point labels that we will refer to
as the final labels L−t (ai) and L+

t (ai). The consistency of a
path is then defined as follows:

Definition 5 A causal chain applicable in a state s is incon-
sistent in s if one of the final labels along the chain include
a mutex pair. If the chain is not inconsistent, it is said to be
consistent.

This is a sound but incomplete definition that can be veri-
fied in polynomial time:

Proposition 6 An inconsistent causal chain applicable in a
state s cannot be true in any plan from s.

The notion of implicit preconditions along a path and the
notion of path consistency, will be two of the building blocks
of the planning algorithm below.

Minimality
A path t starting with the action a in a state s indicates

that the action a appears to be relevant to the goal. If t is
inconsistent, this relevance is only apparent; the path carries
no weight. There are however, paths that are consistent and
yet, should be discarded as well. Consider again the initial
state of the Tower-n and the path

t′ : pick(i), hold(i), stack(i, j), on(i, j), unstack(i, j),
hold(i), on(i, i+ 1), End

where, after block i picked up, it is placed on top of another
block j 6= i + 1. This path contains the irrelevant action
unstack(i, j): irrelevant because it is used to get the atom
hold(i) which appears earlier in the path supported by the
action pick(i).

Algorithm 1 SOLV E(s, t,K, π): C3 Planning Algorithm
Input: initial state s = s0; initial path t = {End}; atoms to keep

K = {}; plan prefix π = {}
1: G← Prec of first action in t
2: if G true in s then
3: if t = End then ;; Plan found
4: Return(π)
5: else ;; Reduce
6: SOLV E(s′, t′,K′, π + a)
7: where t = a, p, t′

8: s′ = do(a, s)
9: K′ = (K − ∀(q, a) ∈ K) + (p, b)

10: s.t. b is the first action in t′

11: end if
12: else ;; Extend
13: COMPUTE Min Graph from s excluding actions that e-

delete q for (q, b) ∈ K
14: CHOOSE Min Path a, p, t1 for G in min graph that is con-

sistent, computing implicit preconditions
15: SOLV E(do(a, s), t1 + t,K + (p, b), π + a)
16: if no consistent path left then
17: if if t = {End} and K = {} then
18: fail ;; Backtrack
19: end if
20: else ;; Reset
21: SOLV E(s, {END},K = {}, π)
22: end if
23: end if

A simple way to prune such spurious paths from consid-
eration is by requiring the actions ai that support the fluents
pi+1 to be among the best supporters for pi+1, which as de-
fined above, are the actions a that add pi+1 and have min
hmax(a) value. We call the resulting paths, minimal paths:

Definition 7 A minimal path in the state s is a path a0,p1,
a1,p2,a2,. . .,pn,an applicable in s where each action ai, for
i = 0, . . . , n− 1, is a best supporter of pi+1 in s.

Minimal paths are implicit in the definition of helpful ac-
tion pruning in FF. If we say that an action a is minimal in
state s when there is a minimal path starting with a0 = a in
s, it follows that all helpful actions in s are minimal. The
converse relation, however, does not hold. The minimal ac-
tions can be shown to be actually the actions that are helpful
in some relaxed plan; where different relaxed plans are ob-
tained according to the way ties among best hmax supporters
are broken.

Minimal paths in a state s can be computed efficiently
from the minimum graph obtained from the hmax heuristic
in s by tracing backward from the goal all their best support-
ers and the best supporters of their preconditions recursively.
While the minimal paths in the min graph can be exponential
in number, this turns out to be seldom the case.

In the planner C3, the only paths considered are minimal
paths. This is what makes the planner incomplete, in the
same way that the EHC search over the helpful actions is
incomplete in FF. There is a difference though: while FF
computes the helpful and hence minimal actions without re-
striction, C3 computes the minimal actions in the context of
a set of commitments. Then the minimal actions are not nec-

essarily the actions that are minimal when no commitments
are made.

We will say that a path t is minimal in a state s in the con-
text of a set of atoms p that must be preserved, if t is minimal
in the modified problem where the actions that delete or e-
delete p are excluded. Such paths are obtained from the min
graph obtained from the hmax heuristic with the exclusion
of those actions.

Decomposition: The Planning Algorithm
The plan algorithm in C32 regards a consistent path t :
a0, p1, a1, . . . , pn, an in a state s as a recipe for a decom-
position where the actions a0, a1, . . . are executed in that
order by solving a series of subproblems: after applying the
action ai, the preconditions of the next action ai+1 become
the goal, and so on, until reaching the End action an. In
this decomposition, the implicit preconditions of each ac-
tion ai in the path, derived backward from the goal, are in-
cluded among the explicit preconditions Pre(a). A plan-
ning problem is solved by C3 by finding first a consistent
path to decompose the problem, and using the same method
recursively to decompose the first subproblem until the path
can be reduced.

We refer to the operation of applying the action ai

after its (explicit and implicit) preconditions have been
achieved, as a reduction step. In the reduction of a path
ai, pi+1, ai+1, . . . , pn, an, the current state is progressed
through the action ai, and the algorithm is then called on
the subproblem with path ai+1, . . . , pn, an, where the atom
pi is maintained until the action ai+1 is executed.

A reduction is not possible when the preconditions of
the first action do not hold in the current state s. If t :
ai, pi+1, ai+1, . . . , pn, an is the path then, a new path t′ is
created by composing a minimal chain for an ’open’ pre-
condition of ai (that is not true in s), and the ’tail’ t. This
operation is called an extension. For the construction of the
minimal chain, the actions that delete or e-delete conditions
that must be maintained until ai is executed, are excluded.

The paths that are created by the extensions are always
checked for consistency: inconsistent paths are skipped over
while the implicit preconditions are computed for the paths
found to be consistent.

The state of the planning algorithm or solver is a tuple
comprising the current state s, the committed path t , the set
K of pairs 〈p, a〉 so that p needs to be preserved until a is
applied, and the plan prefix π. Initially, s = s0, t = {End},
and K = π = {}.

The reduction and extension steps modify the state of the
solver that exits successfully when the tail t = {End} is
reduced. On the other hand, when the current path t cannot
be reduced or extended with a consistent path, the commit-
ments, i.e., t and K, are reset. The option here is to back-
track rather than to reset, yet this option produces weaker
empirical results. The solver backtracks though when there
is nothing to reset; namely, when the solver state is a reset

2This is C3v2.0; a prior version of the planner using a slightly
different algorithm, entered the 2008 IPC, where it obtained the
’Jury Prize’.

state in which the path cannot be reduced or extended con-
sistently.

Pseudo-code for the C3 planning algorithm is shown in
Figure 1. The minimal chains in the extend operation are
computed very much like relaxed plans, in two phases: in
the forward phase, the heuristic hmax(p) is computed for all
fluents p from the current state s; in the second phase, all
the best hmax supporters of the goals are marked, and the
process is applied recursively to the preconditions of such
actions, excluding the goals and preconditions that are true
in s. In this process, actions a that e-delete an atom p that
must be preserved at that stage, i.e. atoms p for a pair (p, b)
inK, are excluded. The minimal chains compatible with the
commitments in K that extend the current path t can then
be obtained starting with the actions applicable in s that are
marked. The CHOOSE construct in the algorithm expresses
a non-deterministic choice that is critical for the actual per-
formance of the algorithm: the order in which consistent
minimal paths are constructed and considered, given by the
best supporter marks. We address this issue next.

There are two sources of incompleteness in the algorithm.
First, the exclusion of paths that are not minimal in the ex-
tension operation, and second, the interpretation of paths as
sequential decompositions. Neither choice, however, turns
out to be as restrictive as it may appear. In the first case,
because the minimal paths are computed given a set of com-
mitments; in the second, because the implicit preconditions
take into account not only the immediate goals, given by the
preconditions of the first action in the path, but further goals
down the path as well.

Preferences
The building block for ordering the paths in the extension
step, is a new heuristic h(t|s) built from a known base
heuristic, that estimates the cost of achieving the goal along
the path t. The interesting thing about this new heuristic is
that it takes deletes into account, even if the base heuristic
doesn’t, and it penalizes paths t that provide bad decomposi-
tions. Moreover, if the sequence of actions in t constitutes a
plan from s, only then, h(t|s) = 0, as the heuristic excludes
the cost of the actions already committed (actions in t). The
base heuristic is the additive heuristic, but other heuristics
could be used too.

Let t be the consistent path a1, p2, . . . , pn, an. This path
does not have to be applicable in the state s, but as any path,
it must reach the goal (i.e. an = End). For any such
path, we provide first an (heuristic) estimation of the state
si+1 that results right after the action ai in the path is ap-
plied. We use the expression π(ai; si) to denote a relaxed
plan that achieves the (explicit and implicit) preconditions
of action ai in the state si along the path. This relaxed plan
is obtained by collecting the best supporters according to the
base heuristic, backwards from the goal (Keyder and Geffner
2008).

If πi = π(ai, si) is the relaxed plan for achieving the
preconditions of ai from si, then the state si+1 projected
after applying the action ai is estimated as

si+1 = (((si \Del(πi))∪Add(πi)) \ eDel(ai))∪Add(ai)

where Add(πi) is the set of fluents added by the actions in
πi, eDel(ai) is the set of fluents e-deleted by the action ai

and Del(πi) refers to a subset of the fluents deleted by ac-
tions in πi. This subset is defined as the fluents that are
deleted not just by one action in πi, that is a best supporter
of some fluent p in the the relaxed plan, but by all the best
supporters of p, whether they made it in the relaxed plan or
not. The reason is that the choice of best supporters in the
relaxed plan is rather arbitrary, and deleting a fluent because
an arbitrary best supporter deletes it turns out to be more
critical than adding a fluent that an arbitrary supporter adds.
So these deletions aim to be cautious.

A state sequence s1, . . . , sn is then generated for a con-
sistent chain t : a1, p2, . . . , pn, an in a state s, according to
the formula above by setting s1 to s, π(ai, si) to the relaxed
plan for obtaining the preconditions of ai from si, and si+1

as in the formula above. This sequence is used to compute
the heuristic h(t|s), that estimates the cost of achieving the
goal along the path t and can be expressed as

n∑
i=1

h(Pre(ai)|si) ,

where recall that implicit preconditions in the path are
treated as action preconditions. This estimate is just the sum
of the estimated costs of solving each of the subproblems
along the path, assuming that the states si along the path are
those in the projected state sequence.

A problem with this estimate, however, is that due to the
use of deletes, it’s often infinite. This may reflect that the
projected state sequence is misleading, but more often, that
the decomposition expressed by the path t is not perfect. For
example, if a precondition p of an action ai cannot be estab-
lished from the state si, yielding h(ai|si) =∞, it is possible
that such a precondition can be established in the previous
subproblem from the state si−1 and maintained into the fol-
lowing subproblem if the action ai−1 does not e-delete it.

With this in mind, we define the estimated cost of achiev-
ing the goal through a consistent path t : a1, . . . , pn, an as

h(t|s) =
n∑

i=1

hi(Pre(ai)|si) ,

where h1 is equal to the base heuristic h, and hi+1 is

hi+1(p|si+1) = min [h(p|si+1) , hi(p|si) + ∆i(p)]

where ∆i(p) is a penalty term for bringing p from the sub-
problem i along the path t to subproblem i+ 1. We have set
∆i(p) to a large constant, independent of i and p (10 in our
experiments), except when the action ai e-deletes p where
∆i(p) is set to∞. In the computation of the base heuristic
h(p|si) for all fluents p in the subproblem that corresponds
to s = si, all the actions that e-delete a fluent in the label
L−t (ai) are excluded, as those are the fluents that must hold
prior to ai in any plan that complains with the path t.

Provided this heuristic function, the extensions t′ =
b1, q1, b2, . . . , qm, bm of a path t in a state s in the planning
algorithm, are constructed incrementally, starting with the
actions that are applicable in s that have been marked as best

Figure 1: A blocks-world instance requiring goal interleaving

supporters in the extension step in the algorithm. The action
b1 is chosen as the action that minimizes h(t|s1) where s1 is
the state that results from applying b1 in s, and given the ac-
tion bi and the state si projected along the t′ path, the action
bi+1 is chosen as the one that minimizes h(t|si+1), among
the actions in the min graph with a precondition qi that is
added by bi.

In these extensions, we prune the chains that contain ac-
tions bi that either appear already in one of the relaxed
plans π(bk, sk), for some k < i, or that support an atom
qi in the path that some action in those relaxed plans add.
This is because when the planner commits to a path like
b1, q1, b2, q2, . . . where bi is a best supporter for qi, it is rea-
sonable to assume that in the plans that comply with this
path, bi and qi do not occur prior to their occurrence in the
path. In other words, the assumption of best supporters in
the path, is also an assumption of first supporters in the plans
complying with the path.

Examples
The C3 planner is supposed to be a transparent planner
where the choice for the actions selected can be explained
in terms of reasons given by paths. Thus, before reporting
the tables that are standard in the experimental evaluation of
planners, we analyze the behaviour of C3 over two exam-
ples.

Blocks World
The so-called Sussman Anomaly is a small instance of the
Blocks-World domain known because it requires some form
of goal interleaving. The instance is shown in Figure 1: the
problem has two goals, b on c, and a on b, but no goal can be
tackled first while leaving the other goal aside; the subgoals
of the two problems need to be interleaved, something that
appears to defy the decomposition in the C3 planner.

The first consistent path that extends the initial path given
by the End action, in the initial state, is

t1 : unstack(c, a), clear(a), pick(a), hold(a),
stack(a, b), on(a, b), End

with the goal on(b, c), which is the other precondition of
End, inferred to be an implicit precondition of pick(a),
as the actions that add on(b, c) e-deletes both hold(a) and
on(a, b). This is the second path considered in the extension
step, because the first path

t2 : pick(b), hold(b), stack(b, c), on(b, c), End

Figure 2: A Grid instance: key 1 needed to unlock positions 11
and 10 to reach key 2. Key 2 must be placed at 11 and key 1 at 02.

is found to be inconsistent: the precondition on(a, b) is mu-
tex with the atom ontable(a) that is propagated along the
path from the initial state to the End action.

Once the path t1 is returned, it is then reduced by applying
its first action unstack(c, a) in the initial state s = s0. This
reduction implies a commitment to the fluent clear(a) until
pick(a) is executed, and a new path t′1 given by the tail of
t1 starting with pick(a). This new path cannot be reduced
because pick(a) has explicit and implicit preconditions that
do not hold in the resulting state s1 where block c is being
held. The planner then extends t′1 with the chain

t3 : putdown(c), handfree, pick(b), hold(b),
stack(b, c), on(b, c)

that supports one of open (implicit) preconditions of pick(a)
and yields the consistent path t3 + t′1. It turns out that
the actions in this path form a plan from the state s1, and
thus, the problem is solved after 6 successive reductions.
Since no more extensions are needed, the problem is solved
backtrack-free in two extensions: the first that generated the
path t1 that extended the initial path t = {End}; the second,
that generated the path t3 + t′1 that extended the tail t′1 of t1.

Grid Problem
The Grid domain consists of an agent, that can carry a key,
moving around in a grid. Some of the cells in the grid are
locked and can be opened by keys of a certain shape. Before
moving into a locked place, however, the agent has to unlock
it from an adjacent position. The lower-right numbers are
the cell indexes in the grid, and the lower-left shapes indicate
if the positions are locked and the shape needed to unlock
them. The square at position 10 is the shape of key 1 (k1)
and the triangle is the shape of key 2 (k2) at position 22. The
arrows indicate where the keys have to be moved (Fig. 2).

Before finding the first consistent path from the initial
state s0 in the instance shown , the following paths are gen-
erated

t1 : pick(22, k1), hold(k1), put(02, k1), k1@02, End.
t2 : pick(22, k1), hold(k1), put(11, k1), k1@11,

pick&lose(11, k1, k2), k2@11, End.

and pruned, although this time not because they are incon-
sistent but because both have heuristic values h(ti|s0) =∞.
In the first case, because of the last subproblem, where

the precondition k2@11 must be achieved from a pro-
jected state where k2 is at the (still) locked position 10,
while the atom k1@02 is preserved. In the second, be-
cause of the subproblem where the precondition hold(k2)
of pick&lose(11, k1, k2) must be achieved from a projected
state where k2 is at the locked position 10 while maintaining
the atom k1@11. Actually, the generation of the path t2 is
pruned at that point and never reaches the End action.

The third path generated turns out to be consistent and is

t3 : pick(22, k1), hold(k1), unlock(12, 11, k1),
open(11),move(12, 11), atrobot(11),
unlock(11, 10, k1), open(10),move(11, 10),
atrobot(10), pick&lose(10, k2, k1), hold(k2),
put(11, k2), k2@11, End,

that describes a plan skeleton where after picking up k1,
the robot unlocks 11 from 12, moves then to 11, unlocks
10, moves then to 10, exchanges k1 with k2, and places k2
at its target cell. This is a plan skeleton as some actions
need to be filled in by suitable extensions. Indeed, this path
can be reduced up to End after two successive and success-
ful extensions calls, involving the action move(22, 12) be-
fore unlock(12, 11, k1), and the actionmove(10, 11) before
put(11, k2).

After this reduction, the tail contains theEnd action only,
that cannot be reduced since its other precondition k1@02
does not hold, and then an extension call that keeps the atom
k2@11, results in the following consistent path:

t4 : move(11, 10), atrobot(10), pick(10, k1),
hold(k1), put(02, k1), k1@02, End

whose first two actions can be reduced right away, and where
the ’open’ precondition atrobot(02) of the third action,
put(02, k1) results in an extension call that fills in the moves
needed to apply the action and get to the goal. The plan is
thus obtained after 3 main extensions, the first one extends
the initial path that just contains the End action and results
in the path t2, the second that extends the initial path but in
a different state and with the commitment to keep k2@11,
and the third that extends the tail put(02, k1), k1@02, End
of t4 with the move actions to get to atrobot(02).

Experimental Results
We compare C3 with FF and LAMA over a broad range of
planning benchmarks. C3 is written in C++ and uses Metric-
FF as an ADL to Propositional STRIPS compiler. (Hoffmann
2003). LAMA is executed without the plan improvement
option, reporting the first plan that is found. All experiments
were conducted on a dual-processor Xeon ’Woodcrest’ run-
ning at 2.33 GHz and 8 Gb of RAM. Processes time or mem-
ory out after 2 hours or 2 Gb. All action costs are assumed
to be 1 so that plan cost is plan length.

Table 1 compares C3 with FF and LAMA over 545 in-
stances from previous IPCs. In terms of coverage, C3 solves
5 less problems than LAMA but 14 more than FF, and more
remarkably, it solves 452 problems (30 less than FF and 28

more than FF in EHC) backtrack-free, that is, heading di-
rectly to the goal, without ever having to revise a plan pre-
fix. There are several domains where C3 solves more prob-
lems than both FF and LAMA, the largest difference being in
Storage, where C3 solves 29 problems, and FF and LAMA
18. On the other extreme, FF and LAMA solve all the 20
FreeCell instances, while C3 solves only 6.

A measure of the number of choices made in FF and
LAMA is given by the number of nodes expanded. In C3,
this measure is given by the number of extension operations.
As we have seen, the number of extension operations can
be smaller than the number of actions in the plan, as often,
many of the actions in a path can be reduced one after the
other. While in many cases, FF and LAMA expand thou-
sands of nodes, C3 appear to solve a similar number of prob-
lems by performing a much reduced number of extensions.
This, however, does not mean that C3 is faster; actually, it is
not, due to the overhead in the ordering, filtering, and selec-
tion of paths.

The average quality of the plans found by C3 is 18%
worse than those found by FF, and 9% worse than those
found by LAMA, with the largest differences in Miconic
and Pipesworld. In some cases, however, it delivers shorter
plans, like in Depots, where it delivers plans that are 10%
shorter.

Table 2 compares C3 with FF and LAMA over 240 in-
stances of the more recent IPC held in 2008. In this set of
benchmarks, C3 does relatively worse, with LAMA solving
227 of the problems, FF solving 201, and C3 solving 188;
85% backtrack-free.

Domains like M-Prime, Pathways, Pipes-NT, and Psr-
Small, are not included in the tables because one or more
of the planners had problems parsing the instances. On the
other hand, in Sokoban, C3 could not solve any instance,
very much as FF in EHC mode. In both, the problem arises
from the focus on the paths that are minimal. The version of
C3 used in the last IPC solves these instances by triggering
a best-first search when the basic algorithm fails, very much
as FF. For clarity, however, we have excluded this option
here.

Summary

We have focused on the study of paths for planning and
developed three techniques for performing inference over
them. The resulting planner is not complete and does not
perform as well as recent planners, but surprisingly, does not
lag far behind. Moreover, of the collection of 728 problems,
78% of them are solved backtrack-free. For the future, we
want to study learning in the context of path-based planning,
in the sense that is used in SAT: where the causes of failures
are identified and used to prune the rest of the search. We
also want to use paths to get a better understanding of hi-
erarchical planning and the conditions under which it pays
off. Finally, the path-based heuristic can be used for state-
based planning and may subsume the notion of consistency
provided that inconsistent paths result in infinite heuristic
values.

FF C3 LAMA
Domain I S EHC Expands T S BF Extends T Quality S Expands T Quality

Blocks World 50 42 42 9,193 0.22 50 50 23 8.79 114% 50 1,496 0.87 187%
Depots 22 22 19 57,777 44.08 22 22 23 107.82 90% 20 42,609 46.58 102%
Driver 20 16 6 7,062 41.28 20 17 21 41.02 118% 20 7,892 4.67 104%
Ferry 50 50 50 50 < 1msec 50 50 17 0.07 117% 50 108 0.18 104%

Free Cell 20 20 14 5,573 38.80 6 3 28 26.21 139% 20 3,091 34.30 115%
Grid 5 5 5 301 < 1msec 5 3 12 107.72 98% 5 174 5.58 95%

Gripper 50 50 50 102 < 1msec 50 50 51 0.98 132% 50 80 0.00 100%
Logistics 28 28 28 94 < 1msec 28 28 29 0.76 135% 28 97 0.25 101%
Miconic 50 50 50 52 < 1msec 50 50 26 0.02 154% 50 37 0.15 100%
Mystery 30 19 15 75,031 323.08 23 14 4 2.44 103% 22 63,597 15.31 93%

Open Stacks 30 30 30 993 7.12 29 29 87 557.51 99% 30 162 12.80 102%
Pipes World 50 22 4 36,572 18.01 28 22 37 957.33 152% 28 36,140 112.25 118%

Rovers 40 40 40 10,341 26.97 39 39 42 548.88 102% 40 1,750 13.44 103%
Satellite 20 20 20 389 0.02 20 20 21 3.24 101% 20 412 0.90 107%
Storage 30 18 3 142,526 15.00 29 10 45 446.06 100% 18 3,348 1.62 121%

TPP 30 30 30 116,904 426.90 27 25 63 586.84 122% 30 1,805 13.11 87%
Zeno Travel 20 20 18 135 2.14 20 20 18 53.15 129% 20 482 3.55 117%

Total 545 482 424 27,241 78.63 496 452 32 202.87 Average 501 9,605 15.62 Average
Percentage 88% 78% 91% 83% 118% 92% 109%

Table 1: C3 vs. FF and LAMA on instances of previous IPCs: S is number of solved instances, EHC is number of problems solved by EHC,
Expands is avg number of expanded nodes, BF is number of instances solved Backtrack-free, Extends is average number of path extensions,
T is avg time in seconds, and Quality is plan quality ratio; e.g. 200% means plans twice as long as those reported by FF on avg.

FF C3 LAMA
Domain I S EHC Expands T S BF Extends T Quality S Expands T Quality
Cyber 30 4 4 228 0.74 20 20 15 170.71 100% 25 151 402.26 100%

Elevator 30 30 30 1,254 1.34 30 29 61 226.25 125% 30 666 3.28 103%
Openstacks 30 30 30 866 0.59 30 30 78 180.84 100% 24 397 0.48 105%
Parc Printer 30 30 21 252 0.05 30 30 18 6.03 102% 30 13,980 3.53 104%

Pegsol 30 30 0 32 9.87 21 4 4,021 70.67 104% 28 873 25.84 100%
Scanalyzer 30 30 22 2,166 55.57 25 25 14 173.31 94% 30 4,882 41.02 97%
Transport 30 30 30 105,754 355.50 24 14 77 806.67 125% 30 6,828 9.83 85%

Wood 30 17 12 1,027 5.08 8 8 21 34.70 98% 30 146 3.68 104%
Total 240 201 149 13,947 53.59 188 160 538 208.65 Average 227 3,490 61.24 Average

Percentage 100% 84% 62% 78% 67% 106% 95% 100%

Table 2: C3 vs. FF and LAMA on instances from the 2008 IPC

Acknowledgements
This work is partially supported by grant TIN2006-15387-
C03-03 from MEC/Spain.

References
Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis. In Proc. IJCAI-95, 1636–1642.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1–2):5–33.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for op-
timal planning. In Proc. of the Fifth International Conference on
AI Planning Systems (AIPS-2000), 70–82.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Hoffmann, J. 2003. The metric-ff planning system: Translating
”ignoring delete lists” to numeric state variables. J. Artif. Intell.
Res. (JAIR) 20:291–341.

Keyder, E., and Geffner, H. 2008. Heuristics for planning with
action costs revisited. In 18th European Conference on Artificial
Intelligence (ECAI-08).
Koehler, J., and Hoffmann, J. 2000. On reasonable and forced
goal orderings and their use in an agenda-driven planning algo-
rithm. JAIR 12:338–386.
McAllester, D., and Rosenblitt, D. 1991. Systematic nonlinear
planning. In Proceedings of AAAI-91, 634–639.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring ir-
relevant facts and operators in plan generation. In Proc. ECP,
338–350.
Nguyen, X. L., and Kambhampati, S. 2001. Reviving partial
order planning. In Proc. IJCAI-01.
Richter, S., and Westphal, M. 2008. The LAMA planner: Us-
ing landmark counting in heuristic search. In 6th. Int. Planning
Competition Booklet (ICAPS-06).
Tate, A. 1977. Generating project networks. In Proc. IJCAI,
888–893.
Vidal, V., and Geffner, H. 2005. Solving simple planning prob-
lems with more inference and no search. In Proc. CP-05.

