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Abstract
The Atari 2600 games supported in the Arcade
Learning Environment [Bellemare et al., 2013] all
feature a known initial (RAM) state and actions
that have deterministic effects. Classical planners,
however, cannot be used off-the-shelf as there is
no compact PDDL-model of the games, and action
effects and goals are not known a priori. Indeed,
there are no explicit goals, and the planner must se-
lect actions on-line while interacting with a simula-
tor that returns successor states and rewards. None
of this precludes the use of blind lookahead algo-
rithms for action selection like breadth-first search
or Dijkstra’s yet such methods are not effective
over large state spaces. We thus turn to a different
class of planning methods introduced recently that
have been shown to be effective for solving large
planning problems but which do not require prior
knowledge of state transitions, costs (rewards) or
goals. The empirical results over 54 Atari games
show that the simplest such algorithm performs
at the level of UCT, the state-of-the-art planning
method in this domain, and suggest the potential
of width-based methods for planning with simula-
tors when factored, compact action models are not
available.

Introduction
The Arcade Learning Environment (ALE) provides a chal-
lenging platform for evaluating general, domain-independent
AI planners and learners through a convenient interface to
hundreds of Atari 2600 games [Bellemare et al., 2013]. Re-
sults have been reported so far for basic planning algorithms
like breadth-first search and UCT, reinforcement learning al-
gorithms, and evolutionary methods [Bellemare et al., 2013;
Mnih et al., 2013; Hausknecht et al., 2014]. The empirical
results are impressive in some cases, yet a lot remains to be
done, as no method approaches the performance of human
players across a broad range of games.

While all these games feature a known initial (RAM) state
and actions that have deterministic effects, the problem of
selecting the next action to be done cannot be addressed
with off-the-shelf classical planners [Ghallab et al., 2004;

Geffner and Bonet, 2013]. This is because there is no com-
pact PDDL-like encoding of the domain and the goal to be
achieved in each game is not given, precluding the automatic
derivation of heuristic functions and other inferences. Indeed,
there are no goals but rewards, and the planner must select
actions on-line while interacting with a simulator that just re-
turns successor states and rewards.

The action selection problem in the Atari games can be
addressed as a reinforcement learning problem [Sutton and
Barto, 1998] over a deterministic MDP where the state tran-
sitions and rewards are not known, or alternatively, as a net-
benefit planning problem [Coles et al., 2012; Keyder and
Geffner, 2009] with unknown state transitions and rewards.
ALE supports the two settings: an on-line plannning setting
where actions are selected after a lookahead, and a learning
setting that must produce controllers for mapping states into
actions reactively without any lookahead. In this work, we are
interested in the on-line planning setting.

The presence of unknown transition and rewards in the
Atari games does not preclude the use of blind-search meth-
ods like breadth-first search, Dijkstra’s algorithm [Dijkstra,
1959], or learning methods such as LRTA* [Korf, 1990],
UCT [Kocsis and Szepesvári, 2006], and Q-learning [Sutton
and Barto, 1998; Bertsekas and Tsitsiklis, 1996]. Indeed, the
net-benefit planning problem with unknown state transitions
and rewards over a given planning horizon, can be mapped
into a standard shortest-path problem which can be solved
optimally by Dijkstra’s algorithm. For this, we just need to
map the unknown rewards r(a, s) into positive (unknown) ac-
tion costs c(a, s) = C − r(a, s) where C is a large constant
that exceeds the maximum possible reward. The fact that the
state transition and cost functions f(a, s) and c(a, s) are not
known a priori doesn’t affect the applicability of Dijkstra’s al-
gorithm, which requires the value of these functions precisely
when the action a is applied in the state s.

The limitation of the basic blind search methods is that
they are not effective over large state spaces, neither for solv-
ing problems off-line, nor for guiding a lookahead search for
solving problems on-line. In this work, we thus turn to a re-
cent class of planning algorithms that combine the scope of
blind search methods with the performance of state-of-the-
art classical planners: namely, like “blind” search algorithms
they do not require prior knowledge of state transitions, costs,
or goals, and yet like heuristic algorithms they manage to



search large state spaces effectively. The basic algorithm in
this class is called IW for Iterated Width search [Lipovet-
zky and Geffner, 2012]. IW consists of a sequence of calls
IW(1), IW(2), .., IW(k), where IW(i) is a standard breadth-
first search where states are pruned right away when they fail
to make true some new tuple (set) of at most i atoms. Namely,
IW(1) is a breadth-first search that keeps a state only if the
state is the first one in the search to make some atom true;
IW(2) keeps a state only if the state is the first one to make
a pair of atoms true, and so on. Like plain breadth-first and
iterative deepening searches, IW is complete, while search-
ing the state space in a way that makes use of the struc-
ture of states given by the values of a finite set of state vari-
ables. In the Atari games, the (RAM) state is given by a vec-
tor of 128 bytes, which we associate with 128 variables Xi,
i = 1, . . . , 128, each of which may take up to 256 values xj .
A state s makes an atom Xi = xj true when the value of
the i-th byte in the state vector s is xj . The empirical results
over 54 Atari games show that IW(1) performs at the level
of UCT, the state-of-the-art planning method in this domain,
and suggest the potential of width-based methods for plan-
ning with simulators when factored, compact action models
are not available.

The paper is organized as follows. We review the iterated
width algorithm and its properties, look at the variations of
the algorithm that we used in the Atari games, and present
the experimental results.

Iterated Width
The Iterated Width (IW) algorithm has been introduced as
a classical planning algorithm that takes a planning problem
as an input, and computes an action sequence that solves the
problem as the output [Lipovetzky and Geffner, 2012]. The
algorithm however applies to a broader range of problems.
We will characterize such problems by means of a finite and
discrete set of states (the state space) that correspond to vec-
tors of size n. Namely, the states are structured or factored ,
and we take each of the locations in the vector to represent a
variable Xi, and the value at that vector location to represent
the value xj of variableXi in the state. In addition to the state
space, a problem is defined by an initial state s0, a set of ac-
tions applicable in each state, a transition function f such that
s′ = f(a, s) is the state that results from applying action a to
the state s, and rewards r(a, s) represented by real numbers
that result from applying action a in state s. The transition and
reward functions do not need to be known a priori, yet in that
case, the state and reward that results from the application of
an action in a state need to be observable. The task is to com-
pute an action sequence a0, . . . , am for a large horizonm that
generates a state sequence s0, . . . , sm+1 that maximizes the
accumulated reward

∑m
i=0 r(ai, si), or that provides a good

approximation.

The Algorithm
IW consists of a sequence of calls IW(i) for i = 0, 1, 2, . . .
over a problem P until a termination condition is reached.
The procedure IW(i) is a plain forward-state breadth-first
search with just one change: right after a state s is gener-

ated, the state is pruned if it doesn’t pass a simple novelty
test. More precisely,

• The novelty of a newly generate state s in a search al-
gorithm is 1 if s is the first state generated in the search
that makes true some atom X = x, else it is 2 if s is the
first state that makes a pair of atoms X = x and Y = y
true, and so on.

• IW(i) is a breadth-first search that prunes newly gener-
ated states when their novelty is greater than i.

• IW calls IW(i) sequentially for i = 1, 2, . . . until a ter-
mination condition is reached, returning then the best
path found.

For classical planning, the termination condition is the
achievement of the goal. In the on-line setting, as in the Atari
games, the termination condition is given by a time window
or a maximum number of generated nodes. The best path
found by IW is then the path that has a maximum accu-
mulated reward. The accumulated reward R(s) of a state s
reached in an iteration of IW is determined by the unique
parent state s′ and action a leading to s from s′ as R(s) =
R(s′) + r(a, s′). The best state is the state s with maximum
reward R(s) generated but not pruned by IW, and the best
path is the one that leads to the state s from the current state.
The action selected in the on-line setting is the first action
along such a path. This action is then executed and the pro-
cess repeats from the resulting state.

Performance and Width
IW is a systematic and complete blind-search algorithm like
breadth-first search (BRFS) and iterative deepening (ID), but
unlike these algorithms, it uses the factored representation of
the states in terms of variables to structure the search. This
structured exploration has proved to be very effective over
classical planning benchmark domains when goals are single
atoms.1 For example, 37% of the 37,921 problems consid-
ered in [Lipovetzky and Geffner, 2012] are solved by IW(1)
while 51.3% are solved by IW(2). These are instances ob-
tained from 37 benchmark domains by splitting problems
with N atomic goals into N problems with one atomic goal
each. Since IW(k) runs in time that is exponential in k, this
means that almost 90% of the 37,921 instances are solved
in time that is either linear or quadratic in the number of
problem variables, which in such encodings are all boolean.
Furthermore, when the performance of IW is compared with
a Greedy Best First Search guided by the additive heuristic
hadd, it turns out that “blind” IW solves as many problems
as the informed search, 34,627 vs. 34,849, far ahead of other
blind search algorithms like BRFS and ID that solve 9,010
and 8,762 problems each. Moreover, IW is faster and results
in shorter plans than in the heuristic search.

The min k value for which IW(k) solves a problem is in-
deed bounded and small in most of these instances. This is ac-

1Any conjunctive goal can be mapped into a single dummy
atomic goal by adding an action that achieves the dummy goal and
that has the original conjunctive goal as a precondition. Yet, this
mapping changes the definition of the domain.



tually no accident and has a theoretical explanation. Lipovet-
zky and Geffner define a structural parameter called the prob-
lem width and show that for many of these domains, any
solvable instance with atomic goals will have a bounded and
small width that is independent of the number of variables
and states in the problem. The min value k for which the it-
eration IW(k) solves the problem cannot exceed the problem
width, so the algorithm IW runs in time and space that are
exponential in the problem width.

Formally, the width w(P ) of a problem P is i iff i is
the minimum positive integer for which there is a sequence
t0, t1, . . . , tn of atom sets tk with at most i atoms each, such
that 1) t0 is true in the initial state of P , 2) any shortest plan
π that achieves tk in P can be extended into a shortest plan
that achieves tk+1 by extending π with one action, and 3) any
shortest plan that achieves tn is a shortest plan for achieving
the goal of P .

While this notion of width and the iterated width algo-
rithms that are based on it have been designed for problems
where a goal state needs to be reached, the notions remain
relevant in optimization problems as well. Indeed, if a good
path is made of states si each of which has a low width, IW
can be made to find such path in low polynomial time for a
small value of the k parameter. Later on we will discuss a
slight change required in IW to enforce this property.

The Algorithms for the Atari Games
The number of nodes generated by IW(1) is n × D × b in
the worst case, where n is the number of problem variables,
D is the size of their domains, and b is the number of ac-
tions per state. This same number in a breadth-first search is
not linear in n but exponential. For the Atari games, n = 128,
D = 256, and b = 18, so that the product is equal to 589, 824,
which is large but feasible. On the other hand, the number of
nodes generated by IW(2) in the worst case is (n×D)2 × b,
which is equal to 19, 327, 352, 832 which is too large, forcing
us to consider only a tiny fraction of such states. For clas-
sical planning problems, the growth in the number of nodes
from IW(1) to IW(2) is not that large, as the variables are
boolean. Indeed, we could have taken the state vector for the
Atari games as a vector of 1024 boolean variables, and apply
these algorithms to that representation. The number of atoms
would indeed be much smaller, and both IW(1) and IW(2)
would run faster then. However by ignoring the correlations
among bits in each one of the 128 words, the results would be
weaker.

IW is a purely exploration algorithm that does not take
into account the accumulated reward for selecting the states
to consider. As a simple variant that combines exploration
and exploitation, we evaluated a best-first search algorithm
with two queues: one queue ordered first by novelty mea-
sure (recall that novelty one means that the state is the first
one to make some atom true), and a second queue ordered
by accumulated reward. In one iteration, the best first search
picks up the best node from one queue, and in the second it-
eration it picks up the best node from the other queue. This
way for combining multiple heuristics is used in the LAMA
planner [Richter and Westphal, 2010], and was introduced in

the planner Fast Downward [Helmert, 2006]. In addition, we
break ties in the first queue favoring states with largest accu-
mulated reward, and in the second queue, favoring states with
smallest novelty measure. Last, when a node is expanded, it is
removed from the queue, and its children are placed on both
queues. The exception are the nodes with no accumulated re-
ward that are placed in the first queue only. We refer to this
best-first algorithm as 2BFS.

For the experiments below, we added two simple variations
to IW(1) and 2BFS. First, in the breadth-first search under-
lying IW(1), we generate the children in random order. This
makes the executions that result from the IW(1) lookahead
less susceptible to be trapped into loops; a potential prob-
lem in local search algorithms with no memory or learning.
Second, a discount factor γ = 0.995 is used in both algo-
rithms for discounting future rewards like in UCT. For this,
each state s keeps its depth d(s) in the search tree, and if
state s’ is the child of state s and action a, R(s′) is set to
R(s) + γd(s)+1r(a, s). The discount factor results in a slight
preference for rewards that can be reached earlier, which is
a reasonable heuristic in on-line settings based on lookahead
searches.

Experimental Results
We tested IW(1) and 2BFS over 54 of the 55 different games
considered in [Bellemare et al., 2013], from now on abbre-
viated as BNVB.2 The two algorithms were used to play
the games in the on-line planning setting supported by ALE
where we will compare them with the planning algorithms
considered by BNVB; namely, breadth-first search and UCT.
ALE supports also a learning setting where the goal is to learn
controllers that map states into actions without doing any
lookahead. Algorithms across the two settings are thus not di-
rectly comparable as they compute different things. Learning
controllers appears as a more challenging problem and it is
thus not surprising that planning algorithms like UCT tend to
achieve a higher score than learning algorithms. In addition,
the learning algorithms reported by BNVB tend to use the
state of the screen pixels, while the planning algorithms, use
the state of the RAM memory. It is not clear however whether
the use of one input representation is more challenging than
the use of the other. For the learning algorithms, BNVB men-
tion that the results tend to be better for the screen inputs. Ex-
periments were run on a cluster, where each computing node
consists of a 6-core Intel Xeon E5-2440, with 2.4 GHz clock
speed, with 64 GBytes of RAM installed.

Table 1 shows the performance of IW(1) and 2BFS
in comparison with breadth-first search (BRFS) and UCT.
Videos of selected games played by IW(1), 2BFS, and UCT
can be seen in Youtube.3 The discount factor used by all the
algorithms is γ = 0.995. The scores reported for BRFS and
UCT are taken from BNVB. Our experimental setup follows
theirs except that a maximum budget of 150, 000 simulated
frames is applied to IW(1), 2BFS, and UCT. UCT uses this

2We left out SKIING as the reported figures apparently use a dif-
ferent reward structure.

3http://www.youtube.com/playlist?list=
PLXpQcXUQ_CwenUazUivhXyYvjuS6KQOI0.



budget by running 500 rollouts of depth 300. The bound on
the number of simulated frames is like a bound on lookahead
time, as most of the time in the lookahead is spent in calls to
the emulator for computing the next RAM state. This is why
the average time per action is similar to all the algorithms ex-
cept IW(1), that due to its pruning does not always use the
full budget and takes less time per action on average.

Also, as reported by BNVB, all of the algorithms reuse the
frames in the sub-tree of the previous lookahead that is rooted
in the selected child, deleting its siblings and their descen-
dants. More precisely, no calls to the emulator are done for
transitions that are cached in that sub-tree, and such reused
frames are not discounted from the budget that is thus a bound
on the number of new frames per lookahead. In addition, in
IW(1), the states that are reused from the previous searches
are ignored in the computation of the novelty of new states
so that more states can escape pruning. Otherwise, IW(1)
often uses a fraction of the budget. This is not needed in
2BFS which does no pruning. IW(1) and 2BFS are limited
to search up to a depth of 1, 500 frames and up to 150, 000
frames per root branch. This is to avoid the search from go-
ing too deep or being too committed to a single root action.

Last, in the lookahead, IW(1) and 2BFS select an action
every 5 frames, while UCT selects an action every frame.
This means that in order to explore a branch 300 frames deep,
UCT gets to choose 300 actions, while IW(1) and 2BFS get
to choose 60 actions, both however using the same 300 frames
from the budget. For this, we followed the setup of BRFS in
BNVB that also selects actions every 5 frames, matching the
behavior of the emulator that requests an action also every 5
frames. Since the lookahead budget is given by a maximum
number of (new) frames, and the time is mostly taken by calls
to the emulator, this may not be the best choice for IW(1)
and 2BFS that may therefore not be exploiting all the options
afforded by the budget. Interestingly, when UCT is limited
to one action every 5 frames, its performance is reduced by
up to a 50% in games where it performs very well (CRAZY
CLIMBER), and does not appear to improve in those games
where it performs very poorly (FREEWAY).

Table 1 shows that both IW(1) and 2BFS outperform
BRFS, which rarely collects reward in many domains as the
depth of the BRFS search tree results in a lookahead of 0.3
seconds (20 frames or 4 nodes deep). The notable exception
to this is CENTIPEDE where abundant reward can be collected
with a shallow lookahead. On the other hand, both IW(1) and
2BFS normally reach states that are up to 350–1500 frames
deep (70–260 nodes or 6–22 seconds), even if IW(1) does not
always use all the simulation frames allocated due to its agres-
sive pruning. This can be observed in games such as BREAK-
OUT, CRAZY CLIMBER, KANGAROO, and POOYAN, where
the average CPU time for each lookahead is up to 10 times
faster than 2BFS. Computation time for UCT and BRFS are
similar to 2BFS, as the most expensive part of the compu-
tation is the generation of frames through the simulator, and
these three algorithms always use the full budget.

More interestingly, IW(1) outscores UCT in 31 of the 54
games, while 2BFS outscores UCT in 26. On the other hand,
UCT does better than IW(1) and 2BFS in 19 and 25 games
respectively. The relative performance between IW(1) and

2BFS makes IW(1) the best of the two in 34 games, and
2BFS in 16. In terms of the number of games where an algo-
rithm is the best, IW(1) is the best in 26 games, 2BFS in 13
games, and UCT in 19 games. Also, BRFS is best in 2 games
(CENTIPEDE, tied up in BOXING), while the other three al-
gorithms are tied in another 2 games (PONG, BOXING).

Likewise, in FREEWAY and BERZERK both IW(1) and
2BFS attain a better score than the baseline semi-random al-
gorithm Perturb in [Bellemare et al., 2013], that beats UCT
on those games. Perturb is a simple algorithm that selects a
fixed action with probability 0.95, and a random action with
probability 0.05. For Perturb, BNVB do not report the aver-
age score but the best score. Perturb manages to do well in
domains where rewards are deep but can be reached by re-
peating the same action. This is the case of FREEWAY, where
a chicken has to run to the top of the screen across a ten lane
highway filled with traffic. Every time the chicken gets across
(starting at the bottom), there is one unit of reward. If the
chicken is hit by a car, it goes back some lanes. In FREEWAY,
only 12 out of the 18 possible actions have an effect: 6 actions
move the chicken up (up-right, up-left, up-fire, up-right-fire,
up-left-fire), 6 actions move the chicken down (down-right,
down-left, down-fire, down-right-fire, down-left-fire), and 6
actions do nothing. Perturb does well in this domain when the
selected fixed action moves the chicken up. As noted in Ta-
ble 1 and seen in the provided video, UCT does not manage
to take the chicken across the highway at all. The reason that
UCT does not collect any reward is that it needs to move the
chicken up at least 240 times4 something that is very unlikely
in a random exploration. IW(1) does not have this limitation
and is best in FREEWAY.

IW(1) obtains better scores than the best learning algo-
rithm [Mnih et al., 2013] in the 7 games considered there,
and 2BFS does so in 6 of the 7 games. Comparing with the
scores reported for the reinforcement learning algorithms in
BNVB, we note that both IW(1) and 2BFS do much bet-
ter than the best learning algorithm in those games where the
learning algorithms outperform UCT namely, MONTEZUMA
REVENGE, VENTURE and BOWLING. We take this as evi-
dence that IW(1) and 2BFS are as at least as good as learn-
ing algorithms at finding rewards in games where UCT is not
very effective.

For instance, in MONTEZUMA REVENGE rewards are very
sparse, deep, and most of the actions lead to losing a life
with no immediate penalty or consequence. In our experi-
ments, all algorithms achieve 0 score, except for 2BFS that
achieves an average score of 540, and a score of 2, 500 in one
of the runs. This means however that even 2BFS is not able
to consistently find rewards in this game. This game and sev-
eral others like BREAKOUT and SPACE INVADERS could be
much simpler by adding negative rewards for losing a life.
We have indeed observed that our planning algorithms do not
care much about losing lives until there is just one life left,
when their play noticeably improves. This can be seen in the
videos mentioned above, and suggest a simple form of learn-
ing that would be useful to both planners and reinforcement

4One needs to move the chicken up for at least 4 seconds (240
frames) in order to get it across the highway.



IW(1) 2BFS BRFS UCT
Game Score Time Score Time Score Score

ALIEN 25634 81 12252 81 784 7785
AMIDAR 1377 28 1090 37 5 180
ASSAULT 953 18 827 25 414 1512
ASTERIX 153400 24 77200 27 2136 290700
ASTEROIDS 51338 66 22168 65 3127 4661
ATLANTIS 159420 13 154180 71 30460 193858
BANK HEIST 717 39 362 64 22 498
BATTLE ZONE 11600 86 330800 87 6313 70333
BEAM RIDER 9108 23 9298 29 694 6625
BERZERK 2096 58 802 73 195 554
BOWLING 69 10 50 60 26 25
BOXING 100 15 100 22 100 100
BREAKOUT 384 4 772 39 1 364
CARNIVAL 6372 16 5516 53 950 5132
CENTIPEDE 99207 39 94236 67 125123 110422
CHOPPER COMMAND 10980 76 27220 73 1827 34019
CRAZY CLIMBER 36160 4 36940 58 37110 98172
DEMON ATTACK 20116 33 16025 41 443 28159
DOUBLE DUNK -14 41 21 41 -19 24
ELEVATOR ACTION 13480 26 10820 27 730 18100
ENDURO 500 66 359 38 1 286
FISHING DERBY 30 39 6 62 -92 38
FREEWAY 31 32 23 61 0 0
FROSTBITE 902 12 2672 38 137 271
GOPHER 18256 19 15808 53 1019 20560
GRAVITAR 3920 62 5980 62 395 2850
HERO 12985 37 11524 69 1324 12860
ICE HOCKEY 55 89 49 89 -9 39
JAMES BOND 23070 0 10080 30 25 330
JOURNEY ESCAPE 40080 38 40600 67 1327 7683
KANGAROO 8760 8 5320 31 90 1990
KRULL 6030 28 4884 42 3089 5037
KUNG FU MASTER 63780 21 42180 43 12127 48855
MONTEZUMA REVENGE 0 14 540 39 0 0
MS PACMAN 21695 21 18927 23 1709 22336
NAME THIS GAME 9354 14 8304 25 5699 15410
PONG 21 17 21 35 -21 21
POOYAN 11225 8 10760 16 910 17763
PRIVATE EYE -99 18 2544 44 58 100
Q*BERT 3705 11 11680 35 133 17343
RIVERRAID 5694 18 5062 37 2179 4449
ROAD RUNNER 94940 25 68500 41 245 38725
ROBOT TANK 68 34 52 34 2 50
SEAQUEST 14272 25 6138 33 288 5132
SPACE INVADERS 2877 21 3974 34 112 2718
STAR GUNNER 1540 19 4660 18 1345 1207
TENNIS 24 21 24 36 -24 3
TIME PILOT 35000 9 36180 29 4064 63855
TUTANKHAM 172 15 204 34 64 226
UP AND DOWN 110036 12 54820 14 746 74474
VENTURE 1200 22 980 35 0 0
VIDEO PINBALL 388712 43 62075 43 55567 254748
WIZARD OF WOR 121060 25 81500 27 3309 105500
ZAXXON 29240 34 15680 31 0 22610

# Times Best (54 games) 26 13 1 19
# Times Better than IW (54 games) – 16 1 19
# Times Better than 2BFS (54 games) 34 – 1 25
# Times Better than UCT (54 games) 31 26 1 –

Table 1: Performance that results from various lookahead algorithms in 54 Atari 2600 games. The algorithms, BRFS, IW(1), 2BFS, and
UCT, are evaluated over 10 runs (episodes) for each game. The maximum episode duration is 18, 000 frames and every algorithm is limited
to a lookahead budget of 150,000 simulated frames. Figures for BRFS and UCT taken from Bellemare et al. Average CPU times per action
in seconds, rounded to nearest integer, shown for IW(1) and 2BFS. Numbers in bold show best performer in terms of average score, while
numbers shaded in light grey show scores that are better than UCT’s. Bottom part of the table shows pairwise comparisons among the
algorithms.



learning algorithms.
We are not reporting the performance of IW(k) with pa-

rameter k = 2 because in our preliminary tests and according
to the discussion in the previous section, it doesn’t appear to
improve much on BRFS, even if it results in a lookahead that
is 5 times deeper, but still too shallow to compete with the
other planning algorithms.

Exploration and Exploitation
The notion of width underlying the iterated width algorithm
was developed in the context of classical planning in order
to understand why most of the hundreds of existing bench-
marks appear to be relatively simple for current planners,
even though classical planning is PSPACE-complete [Bylan-
der, 1994]. A partial answer is that most of these domains
have a low width, and hence, can be solved in low polynomial
time (by IW) when goals contain a single atom. Benchmark
problems with multiple atomic goals tend to be easy too, as
the goals can often be achieved one at a time after a simple
goal ordering [Lipovetzky and Geffner, 2012].

In the iterated width algorithm, the key notion is the nov-
elty measure of a state in the underlying breadth-first search.
These novelty measures make use of the factored representa-
tion of the states for providing a structure to the search: states
that have width 1 are explored first in linear time, then states
that have width 2 are explored in quadratic time, and so on.
In classical planning problems with atomic goals, this way of
organizing the search pays off both theoretically and practi-
cally.

The use of “novelty measures” for guiding an optimization
search while ignoring the function that is being optimized is
common to the novelty-based search methods developed in-
dependently in the context of genetic algorithms [Lehman and
Stanley, 2011]. In these methods individuals in the population
are not ranked according to the optimization function but in
terms of how “novel” they are in relation to the rest of the
population, thus encouraging diversity and exploration rather
than (greedy) exploitation. The actual definition of novelty in
such a case is domain-dependent; for example, in the evolu-
tion of a controller for guiding a robot in a maze, an indi-
vidual controller will not be ranked by how close it takes the
robot to the goal (the greedy measure), but by the distance
between the locations that are reachable with it, and the loca-
tions reachable with the other controllers in the population (a
diversity measure). The novelty measure used by IW, on the
other hand, is domain-independent and it is determined by the
structure of the states as captured by the problem variables.

The balance between exploration and exploitation has re-
ceived considerable attention in reinforcement learning [Sut-
ton and Barto, 1998], where both are required for converging
to an optimal behavior. In the Atari games, as in other de-
terministic problems, however, “exploration” is not needed
for optimality purposes, but just for improving the effective-
ness of the lookahead search. Indeed, a best-first search algo-
rithm guided only by (discounted) accumulated reward will
deliver eventually best moves, but it will not be as effective
over small time windows, where like breadth-first search it’s
likely not to find any rewards at all. The UCT algorithm pro-

vides a method for balancing exploration and exploitation,
which is effective over small time windows. The 2BFS algo-
rithm above with two queues that alternate, one guided by the
novelty measures and the other by the accumulated reward,
provides a different scheme. The first converges to the opti-
mal behavior asymptotically; the second in a bounded number
of steps, with the caveat below.

Duplicates and Optimality
The notions of width and the IW algorithm guarantee that
states with low width will be generated in low polynomial
time through shortest paths. In the presence of rewards like
the Atari games, however, the interest is not in the shortest
paths but in the best paths; i.e, the paths with maximum re-
ward. IW may actually fail to find such paths even when
calling IW(k) with a high k parameter. Optimality could
be achieved by replacing the breadth-first search underlying
IW(k) by Dijkstra’s algorithm yet such a move would make
the relation between IW and the notion of width less clear.
A better option is to change IW to comply with a different
property; namely, that if there is a “rewarding” path made up
of states of low width, then IW will find such paths or bet-
ter ones in time that is exponential in their width. For this, a
simple change in IW suffices: when generating a state s that
is a duplicate of a state s′ that has been previously generated
and not pruned, s′ is replaced by s if R(s) > R(s′), with
the change of reward propagated to the descendants of s′ that
are in memory. This is similar to the change required in the
A* search algorithm for preserving optimality when moving
from consistent to inconsistent heuristics [Pearl, 1983]. The
alternative is to “reopen” such nodes. The same change is ac-
tually needed in 2BFS to ensure that, if given enough time,
2BFS will actually find optimal paths. The code used for IW
and 2BFS in the experiments above does not implement this
change as the overhead involved in checking for duplicates in
some test cases did not appear to pay off. More experiments
however are needed to find out if this is actually the most ef-
fective option.

Summary
We have shown experimentally that width-based algorithms
like IW(1) and 2BFS that originate in work in classical plan-
ning, can be used to play the Atari video games where they
achieve state-of-the-art performance. The results also suggest
more generally the potential of width-based methods for plan-
ning with simulators when factored, compact action models
are not available. In this sense, the scope of these planning
methods is broader than those of heuristic-search planning
methods that require propositional encodings of actions and
goals, and with suitable extensions, may potentially approach
the scope of MCTS methods like UCT that work on simula-
tors as well.
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