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Computers and Thought (1963)
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Early collection of Al papers describing programs for playing chess and checkers,
proving theorems in logic and geometry, planning, etc.
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Importance of Programs in Early Al Work

In preface of 1963 edition of the book:

We have tried to focus on papers that report results. In this collection, the
papers . . . describe actual working computer programs . . . Because of the
limited space, we chose to avoid the more speculative . . . pieces.

In preface of 1995 AAAI edition

A critical selection criterion was that the paper had to describe . . . a running
computer program . . . All else was talk, philosophy not science . . . (L)ittle
has come out of the “talk”.
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Al, Programming, and Al Programming

Many of the key Al contributions in 60s, 70s, and early 80s had to do with
programming and the representation of knowledge in programs:

e Lisp (Functional Programming)

e Prolog (Logic Programming)

e Rule-based Programming

e |nteractive Programming Environments and Lisp Machines
e Frame, Scripts, Semantic Networks

e Expert Systems Shells and Architectures
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Programming and Problem of Generality

e For writing an Al dissertation in the 60s, 70s and 80s, it was common to:

> pick up a task and domain X
> analyze/introspect/find out how task is solved
> capture this reasoning in a program

e The dissertation was then

> a theory about X (humor, story understanding, analogy, etc), and
> a program implementing the theory, tested over a few examples.

e Great ideas came out from this work but . . . a methodological problem:

> Programs written by hand were not robust or general
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From Programs to Learners and Solvers

e Limitation led to methodological shift:

— from writing programs for ill-defined problems . . .
— to designing algorithms for well-defined mathematical tasks
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From Programs to Learners and Solvers

e Limitation led to methodological shift:

— from writing programs for ill-defined problems . . .
— to designing algorithms for well-defined mathematical tasks

e New general programs learners and solvers have a crisp functionality: both
can be seen as computing functions that map inputs into outputs

Input * = | FUNCTION f | = Output f(x)

e The algorithms are general in the sense that they are not tied to particular
examples but to classes of models and tasks expressed in mathematical form
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Learners

Input * = | FUNCTION f | = Output f(x)

e In deep learning (DL) and deep reinforcement learning (DRL), training
results in function fy

e fy given by structure of neural network and adjustable parameters 6

> In DL, input x may be an image and output fy(x) a classification label
> In DRL, input & may be state of game, and output fy(x), value of state

e Parameters 6 learned by minimizing error function

> In DL, error depends on inputs and target outputs in training set
> In DRL, error depends on value of states and successor states

e Most common optimization algorithm is stochastic gradient descent
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Learners: Success and Limitations

Input * = | FUNCTION f | = Output f(x)

e Excitement about Al due to successes in DL and DRL

> Breakthroughs in image understanding, speech recognition, Go, . . .
> Superhuman performance in Chess and Go from self-play alone

e The basic ideas underlying DL and DRL not new but from 80s and 90s

> Recently, more CPU power, more data, deeper nets, attractive problems

e One key limitation: Fixed input size x

> No problem for learning to play Chess or Go over fixed size board
> But critical for tackling arbitrary instances of . . . Blocks World
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Solvers

Input * = | FUNCTION f | = Output f(x)

e Solvers derive output f(x) for given input = from model:

> SAT: z is a formula in CNF, f(z) = 1 if x satisfiable, else f(x) =0

> Classical planner: z is a planning problem P, and f(x) is plan that solves P
> Bayesian net: z is a query over Bayes Net and f(x) is the answer

> Constraint satisfaction, Markov decision processes, POMDPs, . ..

e Generality: Solvers not tailored to particular examples
o Expressivity: Some models very expressive, “Al-Complete” (POMDPs)
o Complexity: Computation of f(x) is (NP) hard;

x| not bounded
e Challenge: Solvers shouldn't break just because x has many variables

e Methodology: Empirical, benchmarks, competitions, . . .
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Solvers vs. Learners

Input r —

FuNcTION f

— Qutput f(x)

e Learners require experience over related problems = but then fast

> They compute function f from training, then apply it

e Solvers deal with completely new problems x but need to think

> They compute f(x) for each input x from scratch

Thinking is hard but computational limits are important source of insight

Next: look at some powerful computational ideas in planning
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Finding Plans in Huge Mazes: Relaxation, Heuristics

Old Idea: If you don't know how to solve P, solve simpler problem P’, and use
solution of P’ for solving P (Polya, Minsky, Pearl)

e In monotonic relaxation P’ effects of actions on variables made monotonic
e Monotonicity makes relaxation P’ decomposable and therefore tractable

e Heuristic h(s) in P set to cost of plan from s in relaxation P’

Heuristic obtained and used to solve any problem P from scratch

No experience required in problems related to P
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Goal Recognition: A Classification Problem
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e Task: infer agent goal G € G from observations O on behavior
e Bayes' rule: P(G|O) = P(O|G) P(G)/P(0O), priors P(G) assumed given
e Likelihood P(O|G) set as monotonic function f of difference between:

> ¢~ (G): cost of reaching G with plan that does not comply with observations
> ¢T(G): cost of reaching G with plan that complies with observations

P(G|O) computed using Bayes’ rule and 2|G| calls to planner

No experience required in related problems
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Generalized Planning and One-Shot Learning

@

TC/Right
-B/Up
TB/Up ~B/Down

—C/Down
do a1

TB/Right

Task: move ‘eye’ (mark) one cell at a time til green block found

Observables: Whether marked cell contains a green block (G), non-green block
(B), or neither (C); and whether on table (T) or not (-)

Controller derived using classical planner over transformed problem where

> one action b = (q, 0, a,q’) for each possible controller edge

Generality: Derived controller solves not just given instance but any instance;
i.e., any number of blocks and any configuration

Generalized plan for problem x is not f(x) but function f itself
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Polynomial Algorithms for Exponential Spaces: Width

e IW(1) is a breadth-first search that prunes states s that don’t make a feature
true for first time in the search, from given set of boolean features F

o IW(k) is IW(1) but over set F'*¥ made up of conjunctions of k features from F

> Most domains have small width w < 2 when goals are single atoms

> Any such instances solved optimally by IW(w) in low poly time
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Polynomial Algorithms for Exponential Spaces: Width

e IW(1) is a breadth-first search that prunes states s that don’t make a feature
true for first time in the search, from given set of boolean features F

o IW(k) is IW(1) but over set F'*¥ made up of conjunctions of k features from F

> Most domains have small width w < 2 when goals are single atoms

> Any such instances solved optimally by IW(w) in low poly time

e IW(k) can work with simulators. No PDDL or goal needed. Variants:

> BFWS(R): SOTA planning algorithm which doesn’t use action structure
> Rollout IW(1): fast on-line planner that plays Atari from screen pixels
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Learners and Solvers: Contrasts

e Rollout IW(1) planner and DQN learner perform comparably well in Atari

e They illustrate key difference between learners and solvers:

> DQN requires lots of training data and time, and then plays very fast
> Rollout IW(1) plays out of the box but thinking a bit before each move
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Learners and Solvers: Contrasts

e Rollout IW(1) planner and DQN learner perform comparably well in Atari

e They illustrate key difference between learners and solvers:

> DQN requires lots of training data and time, and then plays very fast
> Rollout IW(1) plays out of the box but thinking a bit before each move

This is a general characteristic:

e Learners require experience over related problems = but then are fast

> They compute function f from training, then apply it

e Solvers deal with completely new problems x but need to think

> They compute f(x) for each input x from scratch
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Learners and Solvers: System 1 and System 27

Dual process accounts of the human mind assume two processes (Daniel Kahne-
man: Thinking, Fast and Slow):

System 1 System 2
(Intuitive Mind) (Analytical Mind)
fast slow
associative deliberative
uNCconscious conscious
effortless effortful
parallel serial
specialized general
| earners? Solvers?
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Learners and Solvers: Challenges (1)

e Key challenge: General two-way integration of System 1 and System 2
inference in Al systems; i.e. learners and solvers

e AlphaZero that learns Chess and Go by pure self-play is effective integration
of a learner and a solver

> AlphaZero learns by imitating and improving (MCTS) planner used as teacher

e Yet AlphaZero can do Chess but not much simpler . . . Blocks World
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Learners and Solvers: Challenges (1)

e Key challenge: General two-way integration of System 1 and System 2
inference in Al systems; i.e. learners and solvers

e AlphaZero that learns Chess and Go by pure self-play is effective integration
of a learner and a solver

> AlphaZero learns by imitating and improving (MCTS) planner used as teacher

e Yet AlphaZero can do Chess but not much simpler . . . Blocks World

> “Doing” BW is near 100% coverage on arbitrary instances with general
algorithm; not 68% coverage on selected instances with 7 blocks!
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Learners and Solvers: Challenges (2)

For general and synergistic integration of learners and solvers:

e Learning the state variables from streams of actions and observations
e Learning useful general features for planning
e Model learning: explanation and accountability require models

e Learning finite-size abstract representations for general plans
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Al: Dreams and Nightmares. Systems 1 and 2 Again
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Al: Dreams and Nightmares. Systems 1 and 2 Again

e Al far from human-level intelligence yet can be used for good or ill
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e Al far from human-level intelligence yet can be used for good or ill
e Asilomar Al principles good and timely but difficult to enforce

e Al aligned with human values nice but why not tech, politics, economics?
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e Life in modern world needs System 2 informed by facts and common good
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Al: Dreams and Nightmares. Systems 1 and 2 Again

e Al far from human-level intelligence yet can be used for good or ill

e Asilomar Al principles good and timely but difficult to enforce

e Al aligned with human values nice but why not tech, politics, economics?

e Markets and politics focused on bottom line and aimed at our System 1

e Life in modern world needs System 2 informed by facts and common good

e |f we want good Al, we need a good and decent society
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