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Contents: General Idea

Planning is the model-based approach to autonomous behavior

Tutorial focuses on most common planning models and algorithms

• Classical Model; Classical Planning: complete info, deterministic actions

• Non-Classical Models ; Non-Classical Planning: incomplete info, sensing, . . .

. Bottom-up Approaches: Transformations into classical planning

. Top-down Approaches: Native solvers for more expressive models
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More Precise Outline

1. Introduction to AI Planning

2. Classical Planning as Heuristic Search

3. Beyond Classical Planning: Transformations

. Soft goals, Incomplete Information, Plan Recognition

4. Planning with Uncertainty: Markov Decision Processes (MDPs)

5. Planning with Incomplete Information: Partial Observable MDPs (POMDPs)

6. Open Problems and Challenges
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Planning: Motivation

How to develop systems or ’agents’

that can make decisions on their own?
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Example: Acting in Wumpus World (Russell and Norvig)

Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1
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3
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START

Gold

Stench

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

Chapter 7 5
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Autonomous Behavior in AI

The key problem is to select the action to do next. This is the so-called control
problem. Three approaches to this problem:

• Programming-based: Specify control by hand

• Learning-based: Learn control from experience

• Model-based: Specify problem by hand, derive control automatically

Planning is the model-based approach to autonomous behavior where agent
controller derived from model of the actions, sensors, and goals.

Different models yield different types of controllers . . .
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Basic State Model: Classical Planning

• finite and discrete state space S

• a known initial state s0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a deterministic transition function s′ = f(a, s) for a ∈ A(s)

• positive action costs c(a, s)

A solution is a sequence of applicable actions that maps s0 into SG, and it is
optimal if it minimizes sum of action costs (e.g., # of steps)

Resulting controller is open-loop

Different models and controllers obtained by relaxing assumptions in bold . . .
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Uncertainty but No Feedback: Conformant Planning

• finite and discrete state space S

• a set of possible initial state S0 ∈ S

• a set SG ⊆ S of goal states

• actions A(s) ⊆ A applicable in each s ∈ S

• a non-deterministic transition function F (a, s) ⊆ S for a ∈ A(s)

• uniform action costs c(a, s)

A solution is still an action sequence but must achieve the goal for any possible
initial state and transition

More complex than classical planning, verifying that a plan is conformant in-
tractable in the worst case; but special case of planning with partial observability
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Planning with Markov Decision Processes

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost to goal
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Partially Observable MDPs (POMDPs)

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A

• transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to G

Hector Geffner, Advanced Intro to Planning: Models and Methods, Tutorial IJCAI-11, 7/2011 10



Example

Agent A must reach G, moving one cell at a time in known map

A

G

• If actions deterministic and initial location known, planning problem is classical

• If actions stochastic and location observable, problem is an MDP

• If actions stochastic and location partially observable, problem is a POMDP

Different combinations of uncertainty and feedback: three problems, three models
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Models, Languages, and Solvers

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model =⇒ Planner =⇒ Controller

• Many models, many solution forms: uncertainty, feedback, costs, . . .

• Models described in suitable planning languages (Strips, PDDL, PPDDL, . . . )
where states represent interpretations over the language.
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A Basic Language for Classical Planning: Strips

• A problem in Strips is a tuple P = 〈F,O, I,G〉:

. F stands for set of all atoms (boolean vars)

. O stands for set of all operators (actions)

. I ⊆ F stands for initial situation

. G ⊆ F stands for goal situation

• Operators o ∈ O represented by

. the Add list Add(o) ⊆ F

. the Delete list Del(o) ⊆ F

. the Precondition list Pre(o) ⊆ F
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From Language to Models

A Strips problem P = 〈F,O, I,G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms from F

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are ops in O s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) +Add(a)

• action costs c(a, s) are all 1

– (Optimal) Solution of P is (optimal) solution of S(P )

– Slight language extensions often convenient: negation, conditional effects,
non-boolean variables; some required for describing richer models (costs,
probabilities, ...).
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Example: Blocks in Strips (PDDL Syntax)

(define (domain BLOCKS)

(:requirements :strips) ...

(:action pick_up

:parameters (?x)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) ...)

(:action put_down

:parameters (?x)

:precondition (holding ?x)

:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action stack

:parameters (?x ?y)

:precondition (and (holding ?x) (clear ?y))

:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x)(handempty) ...))

(define (problem BLOCKS_6_1)

(:domain BLOCKS)

(:objects F D C E B A)

(:init (CLEAR A) (CLEAR B) ... (ONTABLE B) ... (HANDEMPTY))

(:goal (AND (ON E F) (ON F C) (ON C B) (ON B A) (ON A D))))
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Example: Logistics in Strips PDDL

(define (domain logistics)

(:requirements :strips :typing :equality)

(:types airport - location truck airplane - vehicle vehicle packet - thing ..)

(:predicates (loc-at ?x - location ?y - city) (at ?x - thing ?y - location) ...)

(:action load

:parameters (?x - packet ?y - vehicle)

:vars (?z - location)

:precondition (and (at ?x ?z) (at ?y ?z))

:effect (and (not (at ?x ?z)) (in ?x ?y)))

(:action unload ..)

(:action drive

:parameters (?x - truck ?y - location)

:vars (?z - location ?c - city)

:precondition (and (loc-at ?z ?c) (loc-at ?y ?c) (not (= ?z ?y)) (at ?x ?z))

:effect (and (not (at ?x ?z)) (at ?x ?y)))

...

(define (problem log3_2)

(:domain logistics)

(:objects packet1 packet2 - packet truck1 truck2 truck3 - truck airplane1 - ...)

(:init (at packet1 office1) (at packet2 office3) ...)

(:goal (and (at packet1 office2) (at packet2 office2))))
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Example: 15-Puzzle in PDDL

(define (domain tile)

(:requirements :strips :typing :equality)

(:types tile position)

(:constants blank - tile)

(:predicates (at ?t - tile ?x - position ?y - position)

(inc ?p - position ?pp - position)

(dec ?p - position ?pp - position))

(:action move-up

:parameters (?t - tile ?px - position ?py - position ?bx - position ?by - ...)

:precondition (and (= ?px ?bx) (dec ?by ?py) (not (= ?t blank)) ...)

:effect (and (not (at blank ?bx ?by)) (not (at ?t ?px ?py)) (at blank ?px ?py) ..))

...

(define (domain eight_tile) ..

(:constants t1 t2 t3 t4 t5 t6 t7 t8 - tile p1 p2 p3 - position)

(:timeless (inc p1 p2) (inc p2 p3) (dec p3 p2) (dec p2 p1)))

(define (situation eight_standard)

(:domain eight_tile)

(:init (at blank p1 p1) (at t1 p2 p1) (at t2 p3 p1) (at t3 p1 p2) ..)

(:goal (and (at t8 p1 p1) (at t7 p2 p1) (at t6 p3 p1) ..)
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Next

• Solving classical planning problems

• Using classical planners for non-classical tasks

• Other models and solvers . . .
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Computational Approaches to Classical Planning

• General Problem Solver (GPS) and Strips (50’s-70’s): mean-ends analysis,
decomposition, regression, . . .

• Partial Order (POCL) Planning (80’s): work on any open subgoal, resolve
threats; UCPOP 1992

• Graphplan (1995 – 2000): build graph containing all possible parallel plans up
to certain length; then extract plan by searching the graph backward from Goal

• SATPlan (1996 – . . . ): map planning problem given horizon into SAT problem;
use state-of-the-art SAT solver

• Heuristic Search Planning (1996 – . . . ): search state space S(P ) with heuristic
function h extracted from problem P

• Model Checking Planning (1998 – . . . ): search state space S(P ) with
‘symbolic’ Breadth first search where sets of states represented by formulas
implemented by BDDs . . .
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State of the Art in Classical Planning

• significant progress since Graphplan

• empirical methodology

. standard PDDL language

. planners and benchmarks available; competitions

. focus on performance and scalability

• large problems solved (non-optimally)

• different formulations and ideas

1. Planning as Heuristic Search
2. Planning as SAT
3. Other: Local Search (LPG), Monte-Carlo Search (Arvand), . . .

I’ll focus on 1 (see IJCAI-11 Tutorial on Classical Planning by Jussi Rintanen for
more complete overview)
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Recall: Problem P into State Model S(P )

A Strips problem P = 〈F,O, I,G〉 determines state model S(P ) where

• the states s ∈ S are collections of atoms from F

• the initial state s0 is I

• the goal states s are such that G ⊆ s

• the actions a in A(s) are ops in O s.t. Prec(a) ⊆ s

• the next state is s′ = s−Del(a) +Add(a)

• action costs c(a, s) are all 1

– (Optimal) Solution of P is (optimal) solution of S(P )

– Thus P can be solved by solving S(P )
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Solving P by solving S(P )

Search algorithms for planning exploit the correspondence between (classical)
states model S(P ) and directed graphs:

• The nodes of the graph represent the states s in the model

• The edges (s, s′) capture corresponding transition in the model with same cost

In the planning as heuristic search formulation, the problem P is solved by
path-finding algorithms over the graph associated with model S(P )
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Search Algorithms for Path Finding in Directed Graphs

• Blind search/Brute force algorithms

. Goal plays passive role in the search
e.g., Depth First Search (DFS), Breadth-first search (BrFS), Uniform Cost

(Dijkstra), Iterative Deepening (ID)

• Informed/Heuristic Search Algorithms

. Goals plays active role in the search through heuristic function h(s) that
estimates cost from s to the goal

e.g., A*, IDA*, Hill Climbing, Best First, WA*, DFS B&B, LRTA*, . . .
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Properties of Search Algorithms

• Completeness: whether guaranteed to find solution

• Optimality: whether solution guaranteed to be optimal

• Time Complexity: how time increases with size

• Space Complexity: how space increases with size

DFS BrFS ID A* HC IDA* B&B
Complete No Yes Yes Yes No Yes Yes
Optimal No Yes∗ Yes Yes No Yes Yes
Time ∞ bd bd bd ∞ bd bD

Space b · d bd b · d bd b b · d b · d

– Parameters: d is solution depth; b is branching factor

– Breadth First Search (BrFS) optimal when costs are uniform

– A*/IDA* optimal when h is admissible; h ≤ h∗
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Learning Real Time A* (LRTA*)

• LRTA* is a very interesting real-time search algorithm

• It’s like a hill-climb or greedy search that updates the heuristic V as it moves
along, starting with V = h.

1. Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Exit if s′ is goal, else go to 1 with s := s′

• Two remarkable properties

. Each trial of LRTA* gets eventually to the goal if space connected

. Repeated trials eventually get to the goal optimally, if h admissible!

• In addition, simple change in line 1 yields RTDP that solves MDPs!
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Heuristic Search Planning

• Explicitly searches graph associated with model S(P ) with heuristic h(s) that
estimates cost from s to goal

• Key idea: Heuristic h extracted automatically from problem P

This is the mainstream approach in classical planning (and other forms of planning
as well), enabling the solution of problems over very large spaces
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Heuristics: where they come from?

• General idea: heuristic functions obtained as optimal cost functions of relaxed
problems

• Examples:

– Manhattan distance in N-puzzle
– Euclidean Distance in Routing Finding
– Spanning Tree in Traveling Salesman Problem
– Shortest Path in Job Shop Scheduling

• Yet

– how to get and solve suitable relaxations?
– how to get heuristics automatically?
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Heuristics for Classical Planning

• Key development in planning in the 90’s is automatic extraction of informative
heuristic functions from the problem P itself

• Most common relaxation in planning, P+, obtained by dropping delete-lists
from ops in P . If c∗(P ) is optimal cost of P , then heuristic set to

h+(P )
def
= c∗(P+)

• Heuristic h+ intractable but easy to approximate; i.e.

. computing optimal plan for P+ is intractable, but

. computing a non-optimal plan for P+ (relaxed plan) easy

• While this relaxation is 10-15 years old by now, it still provides heuristics for
state-of-the-art planners such as LAMA-2011 winner of 2011 IPC
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Additive Heuristic

• For all atoms p, if O(p) denotes actions that add p:

h(p; s)
def
=

{
0 if p ∈ s, else
mina∈O(p) [cost(a) + h(Pre(a); s)]

• For sets of atoms C, assume independence:

h(C; s)
def
=
∑
r∈C

h(r; s)

• Resulting heuristic function hadd(s):

hadd(s)
def
= h(Goals; s)

Heuristic not admissible but informative and fast
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Max Heuristic

• For all atoms p,

h(p; s)
def
=

{
0 if p ∈ s, else
mina∈O(p) [cost(a) + h(Pre(a); s)]

• For sets of atoms C, replace sum by max

h(C; s)
def
= max

r∈C
h(r; s)

• Resulting heuristic function hmax(s):

hmax(s)
def
= h(Goals; s)

Heuristic admissible but not very informative . . .
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Max Heuristic and (Relaxed) Planning Graph

• Build reachability graph P0, A0, P1, A1, . . .

P0 A0 P1 A1

...

...

...

P0 = {p ∈ s}
Ai = {a ∈ O | Pre(a) ⊆ Pi}

Pi+1 = Pi ∪ {p ∈ Add(a) | a ∈ Ai}

– Graph implicitly represents max heuristic when cost(a) = 1:

hmax(s) = min i such that G ⊆ Pi
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Heuristics, Relaxed Plans, and FF

• (Relaxed) Plans for P+ can be obtained from additive or max heuristics by
recursively collecting best supports backwards from goal, where ap is best
support for p in s if p 6∈ s and

ap = argmina∈O(p)[cost(a) + h(Pre(a))]

• A plan π(p; s) for p in delete-relaxation can then be computed backwards as

π(p; s) =

{
∅ if p ∈ s
{ap} ∪ ∪q∈Pre(ap)π(q; s) otherwise

• In FF, the relaxed plan obtained using h = hmax as

π(s) = ∪p∈Goalsπ(p; s)

• Heuristic then used in FF is not hmax but more informed

hFF(s) = |π(s)|
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State-of-the-art Planners: EHC Search, Helpful Actions,
Landmarks

• In original formulation of planning as heuristic search, the states s and the
heuristics h(s) are black boxes used in standard search algorithms

• More recent planners like FF and LAMA go beyond this, exploiting the structure
of the heuristic and/or problem further:

. Helpful Actions (HA): critical for large branching factors

. Landmarks: provide subgoaling and serialization when goals ‘in conflict’

• They also use novel search algorithms

. Enforced Hill Climbing (EHC): incomplete but effective search, uses HA

. Multi-Queue Best First Search: alternative way to use HA

• As a result, they can often solve huge problems, very fast; much better than
just plugging a heuristic into standard search algorithm
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Classical Planning: Status

• The good news: classical planning works reasonably well

. Large problems solved very fast (non-optimally)

• Model simple but useful

. Operators not primitive; can be policies themselves

. Fast closed-loop replanning able to cope with uncertainty sometimes

• Not so good; limitations:

. Does not model Uncertainty (no probabilities)

. Does not deal with Incomplete Information (no sensing)

. Does not accommodate Preferences (simple cost structure)

. . . .
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Beyond Classical Planning: Two Strategies

• Top-down: Develop solver for more general class of models; e.g., Markov
Decision Processes (MDPs), Partial Observable MDPs (POMDPs), . . .

+: generality
−: complexity

• Bottom-up: Extend the scope of current ’classical’ solvers

+: efficiency
−: generality

• We’ll do both, starting with transformations for

. compiling soft goals away (planning with preferences)

. compiling uncertainty away (incomplete information)

. doing plan recognition (as opposed to plan generation)
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Compilation of Soft Goals

• Planning with soft goals aimed at plans π that maximize utility

u(π) =
∑

p∈do(π,s0)

u(p) −
∑
a∈π

c(a)

• Actions have cost c(a), and soft goals utility u(p)

• Best plans achieve best tradeoff between action costs and utilities

• Model used in recent planning competitions; net-benefit track 2008 IPC

• Yet it turns that soft goals do not add expressive power, and can be compiled
away
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Compilation of Soft Goals (cont’d)

• For each soft goal p, create new hard goal p′ initially false, and two new
actions:

. collect(p) with precondition p, effect p′ and cost 0, and

. forgo(p) with an empty precondition, effect p′ and cost u(p)

• Plans π maximize u(π) iff minimize c(π) =
∑
a∈π c(a) in resulting problem

• Compilation yields better results that native soft goal planners in 2008 IPC

IPC6 Net-Benefit Track Compiled Problems

Domain Gamer HSP*P Mips-XXL Gamer HSP*F HSP*0 Mips-XXL

crewplanning(30) 4 16 8 - 8 21 8
elevators (30) 11 5 4 18 8 8 3

openstacks (30) 7 5 2 6 4 6 1
pegsol (30) 24 0 23 22 26 14 22

transport (30) 12 12 9 - 15 15 9
woodworking (30) 13 11 9 - 23 22 7

total 71 49 55 84 86 50
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Incomplete Information: Conformant Planning

G
I

Problem: A robot must move from an uncertain I into G with certainty, one cell
at a time, in a grid nxn

• Problem very much like a classical planning problem except for uncertain I

• Plans, however, quite different: best conformant plan must move the robot
to a corner first (localization)
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Conformant Planning: Belief State Formulation

G
I

• call a set of possible states, a belief state

• actions then map a belief state b into a bel state ba = {s′ |s′ ∈ F (a, s) & s ∈ b}

• conformant problem becomes a path-finding problem in belief space

Problem: number of belief state is doubly exponential in number of variables.

– effective representation of belief states b

– effective heuristic h(b) for estimating cost in belief space

Recent alternative: translate into classical planning . . .
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Basic Translation: Move to the ’Knowledge Level’

Given conformant problem P = 〈F,O, I,G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

Define classical problem K0(P ) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL,K¬L | L ∈ F}
• I ′ = {KL | clause L ∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC → KL

(supports) and ¬K¬C → ¬K¬L (cancellation)

K0(P ) is sound but incomplete: every classical plan that solves K0(P ) is a
conformant plan for P , but not vice versa.
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Key elements in Complete Translation KT,M(P )

• A set T of tags t: consistent sets of assumptions (literals) about the initial
situation I

I 6|= ¬t

• A set M of merges m: valid subsets of tags (= DNF)

I |=
∨
t∈m

t

• New (tagged) literals KL/t meaning that L is true if t true initially
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A More General Translation KT,M(P )

Given conformant problem P = 〈F,O, I,G〉

• F stands for the fluents in P

• O for the operators with effects C → L

• I for the initial situation (clauses over F -literals)

• G for the goal situation (set of F -literals)

define classical problem KT,M(P ) = 〈F ′, O′, I ′, G′〉 as

• F ′ = {KL/t , K¬L/t | L ∈ F and t ∈ T}
• I ′ = {KL/t | if I |= t ⊃ L}
• G′ = {KL | L ∈ G}
• O′ = O but preconds L replaced by KL, and effects C → L replaced by KC/t → KL/t

(supports) and ¬K¬C/t→ ¬K¬L/t (cancellation), and new merge actions∧
t∈m,m∈M

KL/t → KL

The two parameters T and M are the set of tags (assumptions) and the set of merges (valid sets

of assumptions) . . .

Hector Geffner, Advanced Intro to Planning: Models and Methods, Tutorial IJCAI-11, 7/2011 42



Compiling Uncertainty Away: Properties

• General translation scheme KT,M(P ) is always sound, and for suitable choice of
the sets of tags and merges, it is complete.

• KS0(P ) is complete instance of KT,M(P ) obtained by setting T to the set of
possible initial states of P

• Ki(P ) is a polynomial instance of KT,M(P ) that is complete for problems
with width bounded by i.

. Merges for each L in Ki(P ) chosen to satisfy i clauses in I relevant to L

• The width of many benchmarks bounded and equal 1!

• Such problems can be solved with a classical planner after a low poly translation

Translation extended to planning with partial observability and provides basis for
state-of-the-art approaches . . .
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Plan Recognition

S

A B C

D

F EH

J

• Agent can move one unit in the four directions

• Possible targets are A, B, C, . . .

• Starting in S, he is observed to move up twice

• Where is he going? Why?
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Example (cont’d)

S

A B C

D

F EH

J

• From Bayes, goal posterior is P (G|O) = αP (O|G)P (G), G ∈ G

• If priors P (G) given for each goal in G, the question is what is P (O|G)

• P (O|G) measures how well goal G predicts observed actions O

• In classical setting,

. G predicts O best when need to get off the way not to comply with O

. G predicts O worst when need to get off the way to comply with O
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Posterior Probabilities from Plan Costs

• From Bayes, goal posterior is P (G|O) = αP (O|G)P (G),

• If priors P (G) given, set P (O|G) to

function(c(G+O) − c(G+O))

. c(G+O): cost of achieving G while complying with O

. c(G+O): cost of achieving G while not complying with O

– Costs c(G+O) and c(G+O) computed by classical planner

– Goals of complying and not complying with O translated into normal goals

– Function of cost difference set to sigmoid; follows from assuming P (O|G) and
P (O|G) are Boltzmann distributions P (O|G) = α′ exp{−β c(G,O)}, . . .

– Result is that posterior probabilities P (G|O) computed in 2|G| classical planner
calls, where G is the set of possible goals
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Illustration: Noisy Walk
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Graph on left shows ‘noisy walk’ and possible targets; curves on right show resulting
posterior probabilities P (G|O) of each possible target G as a function of time

Approach to plan recognition can be generalized to other models (MDPs, POMDPs);
the idea is that if you have a planner for a model, then you also have a plan
recognizer for that model given a pool of possible goals.
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Summary: Transformations into Classical Planning

• Classical Planning solved as path-finding in state space

. Most used techniques are heuristic search and SAT

• Beyond classical planning: two approaches

. Top-down: solvers for richer models like MDPs and POMDPs (Next)

. Bottom-up: compile non-classical features away

• We have followed second approach with transformations to

. eliminate soft goals when planning with preferences

. eliminate uncertainty in conformant planning

. do plan recognition rather than plan generation

• Other transformations used for compiling away sensing, LTL plan constraints,
control knowledge, HTN hierarchies, etc.
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Transformations; Further illustration: Finite State Controllers

• Problem P : find green block using visual-marker (circle) that can move around
one cell at a time (à la Chapman and Ballard)

• Observables: Whether cell marked contains a green block (G), non-green block
(B), or neither (C); and whether on table (T) or not (–)

q0

TB/Up
-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

• Controller on the right solves the problem, and not only that, it’s compact and
general: it applies to any number of blocks and any configuration!

Controller obtained by running a classical planner over transformed problem
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Last Part: MDP and POMDP Planning

• A planner is a solver over a class of models; it takes a model description, and
computes the corresponding controller

Model =⇒ Planner =⇒ Controller

• We focus next on models that yield closed-loop controllers, where next action
depends on previous observations
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Planning with Markov Decision Processes: Goal MDPs

MDPs are fully observable, probabilistic state models:

• a state space S

• initial state s0 ∈ S

• a set G ⊆ S of goal states

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s′|s) for s ∈ S and a ∈ A(s)

• action costs c(a, s) > 0

– Solutions are functions (policies) mapping states into actions

– Optimal solutions minimize expected cost from s0 to goal
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Discounted Reward Markov Decision Processes

A more common formulation of MDPs . . .

• a state space S

• initial state s0 ∈ S

• actions A(s) ⊆ A applicable in each state s ∈ S

• transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s)

• rewards r(a, s) positive or negative

• a discount factor 0 < γ < 1 ; there is no goal

– Solutions are functions (policies) mapping states into actions

– Optimal solutions max expected discounted accumulated reward from s0
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Partially Observable MDPs: Goal POMDPs

POMDPs are partially observable, probabilistic state models:

• states s ∈ S

• set of goal states G ⊆ S

• actions A(s) ⊆ A

• transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• action costs c(a, s) > 0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

– Belief states are probability distributions over S

– Solutions are policies that map belief states into actions

– Optimal policies minimize expected cost to go from b0 to G
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Discounted Reward POMDPs

Alternative common formulation of POMDPs:

• states s ∈ S

• actions A(s) ⊆ A

• transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s)

• initial belief state b0

• sensor model given by probabilities Pa(o|s), o ∈ Obs

• rewards r(a, s) positive or negative

• discount factor 0 < γ < 1 ; there is no goal

– Solutions are policies mapping states into actions

– Optimal solutions max expected discounted accumulated reward from b0
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Expected Cost/Reward of Policy (MDPs)

• In Goal MDPs, expected cost of policy π starting in s, denoted as V π(s), is

V π(s) = Eπ[
∑
i

c(ai, si) | s0 = s, ai = π(si) ]

where expectation is weighted sum of cost of possible state trajectories times
their probability given π

• In Discounted Reward MDPs, expected discounted reward from s is

V π(s) = Eπ[
∑
i

γi r(ai, si) | s0 = s, ai = π(si)]

Goal states assumed absorbing, cost-free, and observable . . .
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MDPs/POMDPs: Themes and Variations

• Goal MDPs and POMDPs more expressive than Discounted MDPs and
POMDPs, in spite of restriction on costs and goals

• Probabilities not that critical though; qualitative MDPs and POMDPs where
probabilities replaced by sets, and expected cost by cost in worst case also
useful and challenging

• Contingent Planning or Planning with Partial Observability refer to Quali-
tative POMDPs

• We focus on full solutions to these problems, or what’s called off-line planning

• Full solutions, however, not strictly required in on-line planning where action
selection mechanism often suffices . . .
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Computation: Solving MDPs

Conditions that ensure existence of optimal policies and termination of some of
the methods we’ll see:

• For discounted MDPs, 0 < γ < 1, none needed as everything is bounded; e.g.
discounted cumulative reward no greater than C/1− γ, if r(a, s) ≤ C for all a, s

• For goal MDPs, absence of dead-ends assumed so that V ∗(s) 6=∞ for all s
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Basic Dynamic Programming Methods: Value Iteration (1)

• Greedy policy πV for V = V ∗ is optimal:

πV (s) = arg mina∈A(s)[c(s, a) +
∑
s′∈S

Pa(s
′|s)V (s′)]

• Optimal V ∗ is unique solution to Bellman’s optimality equation for MDPs

V (s) = min
a∈A(s)

[c(s, a) +
∑
s′∈S

Pa(s
′|s)V (s′)]

where V (s) = 0 for goal states s

• For discounted reward MDPs, Bellman equation is

V (s) = max
a∈A(s)

[r(s, a) + γ
∑
s′∈S

Pa(s
′|s)V (s′)]
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Basic DP Methods: Value Iteration (2)

• Value Iteration finds V ∗ solving Bellman eq. by iterative procedure:

. Set V0 to arbitrary value function; e.g., V0(s) = 0 for all s

. Set Vi+1 to result of Bellman’s right hand side using Vi in place of V :

Vi+1(s) := min
a∈A(s)

[c(s, a) +
∑
s′∈S

Pa(s
′|s)Vi(s′)]

• Vi 7→ V ∗ as i 7→ ∞

• V0(s) must be initialized to 0 for all goal states s
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(Parallel) Value Iteration and Asynchronous Value Iteration

• Value Iteration (VI) converges to optimal value function V ∗ asympotically

• Bellman eq. for discounted reward MDPs similar, but with max instead of min,
and sum multiplied by γ

• In practice, VI stopped when residual R = maxs |Vi+1(s)−Vi(s)| is small enough

• Resulting greedy policy πV has loss bounded by 2γR/1− γ

• Asynchronous Value Iteration is asynchronous version of VI, where states
updated in any order

• Asynchronous VI also converges to V ∗ when all states updated infinitely often;
it can be implemented with single V vector
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Policy Evaluation

• Expected cost of policy π from s to goal, V π(s), is weighted avg of cost of
state trajectories τ : s0, s1, . . . , times their probability given π

trajectory cost is
∑
i=0,∞ cost(π(si), si) and probability

∏
i=0,∞Pπ(si)(si+1|si)

• Expected costs V π(s) can also be characterized as solution to Bellman equation

V π(s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V π(s′)

where a = π(s), and V π(s) = 0 for goal states

• This set of linear equations can be solved analytically, or by VI-like procedure

• Optimal expected cost V ∗(s) is minπ V
π(s) and optimal policy is the arg min

• For discounted reward MDPs, all similar but with r(s, a) instead of c(a, s), max
instead of min, and sum discounted by γ
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Policy Iteration

• Let Qπ(a, s) be expected cost from s when doing a first and then π

Qπ(a, s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V π(s′)

• When Qπ(a, s) < Qπ(π(s), s), π strictly improved by changing π(s) to a

• Policy Iteration (PI) computes π∗ by seq. of evaluations and improvements

1. Starting with arbitrary policy π

2. Compute V π(s) for all s (evaluation)

3. Improve π by setting π(s) to a = arg mina∈A(s)Q
π(a, s) (improvement)

4. If π changed in 3, go back to 2, else finish

• PI finishes with π∗ after finite number of iterations, as # of policies is finite
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Dynamic Programming: The Curse of Dimensionality

• VI and PI need to deal with value vectors V of size |S|

• Linear programming can also be used to get V ∗ but O(|A||S|) constraints:

max
V

∑
s

V (s) subject to V (s) ≤ c(a, s) +
∑
s′
Pa(s

′|s)V (s
′
) for all a, s

with V (s) = 0 for goal states

• MDP problem is thus polynomial in S but exponential in # vars

• Moreover, this is not worst case; vectors of size |S| needed to get started!

Question: Can we do better?
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Dynamic Programming and Heuristic Search

• Heuristic search algorithms like A* and IDA* manage to solve optimally
problems with more than 1020 states, like Rubik’s Cube and the 15-puzzle

• For this, admissible heuristics (lower bounds) used to focus/prune search

• Can admissible heuristics be used for focusing updates in DP methods?

• Often states reachable with optimal policy from s0 much smaller than S

• Then convergence to V ∗ over all s not needed for optimality from given s0

Theorem 1. If V is an admissible value function s.t. the residuals over the
states reachable with πV from s0 are all zero, then πV is an optimal policy from
s0 (i.e. it minimizes V π(s0))
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Learning Real Time A* (LRTA*) Revisited

1. Evaluate each action a in s as: Q(a, s) = c(a, s) + V (s′)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Exit if s′ is goal, else go to 1 with s := s′

• LRTA* can be seen as asynchronous value iteration algorithm for deterministic
actions that takes advantage of theorem above (i.e. updates = DP updates)

• Convergence of LRTA* to V implies residuals along πV reachable states from
s0 are all zero

• Then 1) V = V ∗ along such states, 2) πV = π∗ from s0, but 3) V 6= V ∗ and
πV 6= π∗ over other states; yet this is irrelevant given s0
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Real Time Dynamic Programming (RTDP) for MDPs

RTDP is a generalization of LRTA* to MDPs that adapts Bellman equation used in
the Eval step

1. Evaluate each action a applicable in s as

Q(a, s) = c(a, s) +
∑
s′∈S

Pa(s
′|s)V (s

′
)

2. Apply action a that minimizes Q(a, s)

3. Update V (s) to Q(a, s)

4. Observe resulting state s′

5. Exit if s′ is goal, else go to 1 with s := s′

Same properties as LRTA* but over MDPs: after repeated trials, greedy policy
eventually becomes optimal if V (s) initialized to admissible h(s)
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Find-and-Revise: A General DP + HS Scheme

• Let ResV (s) be residual for s given admissible value function V

• Optimal π for MDPs from s0 can be obtained for sufficiently small ε > 0:

1. Start with admissible V ; i.e. V ≤ V ∗
2. Repeat: find s reachable from πV & s0 with ResV (s) > ε, and Update it

3. Until no such states left

• V remains admissible (lower bound) after updates

• Number of iterations until convergence bounded by
∑
s∈S[V

∗(s)− V (s)]/ε

• Like in heuristic search, convergence achieved without visiting or updating
many of the states in S; LRTDP, LAO*, ILAO*, HDP, LDFS, etc. are algorithms
of this type
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POMDPs are MDPs over Belief Space

• Beliefs b are probability distributions over S

• An action a ∈ A(b) maps b into ba

ba(s) =
∑
s′∈S

Pa(s|s′)b(s′)

• The probability of observing o then is:

ba(o) =
∑
s∈S

Pa(o|s)ba(s)

• . . . and the new belief is

boa(s) = Pa(o|s)ba(s)/ba(o)
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RTDP for POMDPs

Since POMDPs are MDPs over belief space algorithm for POMDPs becomes

1. Evaluate each action a applicable in b as

Q(a, b) = c(a, b) +
∑
o∈O

ba(o)V (b
o
a)

2. Apply action a that minimizes Q(a, b)

3. Update V (b) to Q(a, b)

4. Observe o

5. Compute new belief state boa
6. Exit if boa is a final belief state, else set b to boa and go to 1

• Resulting algorithm, called RTDP-Bel, discretizes beliefs b for writing to and
reading from hash table

• Point-based POMDP methods do not discretize beliefs, using instead a finite
representation of value function over dense set of all beliefs

• Both class of methods shown to solve POMDPs with tens of thousands of states
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Summary: MDP and POMDP Planning

• Two approaches for dealing with uncertainty and sensing:

. Bottom-up: compile uncertainty/sensing away and use classical planners

. Top-down: develop native solvers for more expressive models; e.g. MDPs
and POMDPs

• Methods for MDP and POMDP planning include

. Standard dynamic programming methods like value and policy iteration

. Heuristic search DP methods like RTDP, LAO*, and HSVI

. Adaptive Sparse Lookahead Methods such as UCT . . .
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Challenges and Open Problems

• Classical Planning

. states & heuristics h(s) not black boxes; how to exploit structure further?

• Probabilistic MDP & POMDP Planning

. for scalability, inference can’t be at level of states or beliefs but at level of
variables

• Multi-agent Planning

. for scalability, it should build on single-agent planning and plan recogni-
tion; game theory seldom needed

• Hierarchical Planning

. how to infer and use hierarchies; what can be abstracted away and when?
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Example: Best first search can be pretty blind

Small DoorLarge Door

• Problem involves agent that has to get large package through one of two doors

• The package doesn’t fit through the nearest door

Hector Geffner, Advanced Intro to Planning: Models and Methods, Tutorial IJCAI-11, 7/2011 72



• Numbers in cells show number of states expanded where agent at that cell

• Algorithm is greedy best first search with additive heuristic

• Number of state expansions is close to 998; FF expands 1143 states, LAMA more!

• 34 different states expanded with agent at target, only last one with pkg!

Best first search can be pretty blind: Doors Problem

Hector Geffner, Advanced Intro to Planning: Models and Methods, Tutorial IJCAI-11, 7/2011 73



Another Challenge: Scale up in Wumpus World

Wumpus World PEAS description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell

Chapter 7 5Options: Compilation + classical planners; UCT methods for POMDPs
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Summary

• Planning is the model-based approach to autonomous behavior

• Many models and dimensions; all intractable

• Challenge is computational, how to scale up

• Lots of room for ideas whose value must be shown empirically

• Key technique in classical planning is automatic derivation and use of heuristics

• Power of classical planners used for other tasks via transformations

• Heuristics also used in the context of more expressive MDP and POMDP solvers

• Challenges: learn while searching; solve Wumpus, multi-agent, . . .

• Promise: a solid methodology for autonomous agent design
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