Phoneme-based Neural Transducer for Large Vocabulary Speech Recognition

Weichao Zhou, Simon Berger, Ralf Schlüter, Hermann Ney

Phoneme-based Neural Transducer (TLv2)

Motivation

- Classical hybrid hidden Markov model (HMM)
 - **pros:** flexibility (modularity), scalability to low-resource tasks
 - **cons:** complexity, inconsistency of modeling
- End-to-end automatic speech recognition (ASR)
 - **pros:** simplicity, consistent training & inference
 - **cons:** flexibility, scalability, amount of data & training time

Goal: join the advantages of both approaches

Phoneme-Based Neural Transducer

Model definition

\[p(a_i^T | x^T) = \sum_{(a_j^u, a_j^v)} p(y_j^u, s_j^v | h_i^T) \]

- input feature sequence \(x^T \)
- alignment sequence \(a_i^T \) \(\rightarrow \) \(h_i^T \)
- encoder output \(y_j^u \) \(\rightarrow \) \(s_j^v \) \(\rightarrow \) \(y_j^u \) \(\rightarrow \) \(a_j^u \)
- output label sequence \(a_j^u \)

- context size \(k \) (default 1): local dependency (co-articulation)

HMM alignment label topology

- \(a_i^u \): each \(a_i \) can loop for multiple steps and no blank \(a_i^u \)

Decision & Decoding

- external word-level language model (LM) and lexicon
- no internal LM (2019) applied: suppressed negative effect

Simplification and Aachment

Simplified NN architecture

- recurrent neural network transducer (RNN-T) [Graves 2012]
- encoder: \(6 \times 512 \) bidirectional long short-term memory (BiLSTM) with subsampling of factor 2 using max-pooling
- feed-forward neural network (FFNN)-based prediction network
- joint network (element-wise addition) and a final softmax
- footprint: about 30M parameters

Viterbi training

- full-sum (FS) over all alignments: time and memory consuming
- frame-wise cross-entropy (CE) loss w.r.t. \(p(y_j^u, s_j^v | h_i^T) \) and a fixed external alignment
- enable more training techniques for speed and performance

Word boundary-based phoneme label augmentation

- end-of-word (EOW) phonemes: \(2 \times |V| \)
- start-of-word (SOW) + EOW phonemes: \(4 \times |V| \)

Experiments and Word Error Rate (WER) Results

Setup

- TED-LIUM Release 2 (TLv2)
- 300 Switchboard (SWBD): Hub5’00 (dev) and Hub5’01 (test)
- recognition: full-sum decoding with a 4-gram word-level LM

Label unit & topology

<table>
<thead>
<tr>
<th>Phonetone Label</th>
<th>TLv2-dev</th>
<th>Hub5’00</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA HMM</td>
<td>RNA HMM</td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>7.6</td>
<td>9.3</td>
</tr>
<tr>
<td>EOW-awarded</td>
<td>6.9</td>
<td>8.8</td>
</tr>
<tr>
<td>+ SOW-awarded</td>
<td>7.3</td>
<td>9.0</td>
</tr>
<tr>
<td>Hybrid HMM</td>
<td>7.4</td>
<td>7.3</td>
</tr>
<tr>
<td>segEnd</td>
<td>6.3</td>
<td>13.4</td>
</tr>
<tr>
<td>CTC</td>
<td>7.2</td>
<td>13.4</td>
</tr>
</tbody>
</table>

Alignment & Label position

- \(\nu_l \): positions in \(y_j^u \) where \(s_j^v \) occurs
- stable training procedure: various alignment properties

Conclusion

A simple and competitive phoneme-based neural transducer approach

- advantages of both classical and end-to-end approaches
- utilize local dependency of phonemes: simplified NN with small footprint and straightforward LM integration
- stable and efficient training using frame-wise CE loss
- RNA topology: better than HMM topology for transducer modeling
- EOW-awarded phonemes: consistent improvement
- phonetic context size of one + chunk-wise Viterbi training: best performance

References

- [Sak 2015](#) Hailin Sak et al., “Recurrent Neural Aligner: An Encoder-Decoder Neural Network Model for Sequence-to-Sequence Mapping”, Interspeech 2017
- [Tüske 2017](#) Zoltan Tümke et al., “Attention based Sequence-to-Sequence Model for State-of-the-Art Results on Switchboard”, Interspeech 2017
- [Variani 2020](#) Ehsan Variani et al., “Hybrid Autoregressive Transducer”, CSTR 2020
- [Zhou 2020](#) Wei Zhou, Simon Berger, Ralf Schlüter, Hermann Ney

Further WER Results

<table>
<thead>
<tr>
<th>Work</th>
<th>Epoch</th>
<th>Modeling</th>
<th>Label</th>
<th>LM</th>
<th>TLV2-dev (test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karita 2019</td>
<td>100</td>
<td>Attention</td>
<td>Label</td>
<td>RNN</td>
<td>9.3</td>
</tr>
<tr>
<td>Han 2017</td>
<td>50</td>
<td>Transducer</td>
<td>Label</td>
<td>RNN</td>
<td>9.4</td>
</tr>
<tr>
<td>Zhou 2020</td>
<td>50</td>
<td>Transducer</td>
<td>Label</td>
<td>RNN</td>
<td>9.4</td>
</tr>
<tr>
<td>Variani 2020</td>
<td>50</td>
<td>Transducer</td>
<td>Label</td>
<td>RNN</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 645952, project 'SEQCLAS') and from a Simple Focus Award. The work reflects only the authors’ views and none of the funding parties is responsible for any use that may be made of the information it contains.